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Abstract—This paper explores fundamental aspects of ir-
resolute maps and investigates separation axioms, specifically
semi-T2 and semi normal properties. The study introduces
Irr-topological transformation groups, Irr∗-topological trans-
formation groups, I∗-topological transformation groups and
I-topological transformation groups, providing an in-depth
analysis of their interrelations. Through detailed examination,
the topological properties of these groups are elucidated,
complemented by relevant examples and counterexamples. This
comprehensive exploration aims to enhance our understanding
of irresolute maps, separation axioms, and the intricate rela-
tionships within the introduced transformation groups.

Index Terms—Topological groups, Transformation groups,
Irresolute functions, Pre semi open, Separation axioms.

I. INTRODUCTION

The exploration of sets possessing both algebraic
and topological structures invites an investigation into
their interrelation. Examining continuous algebraic
operations emerges as a natural approach for such a study.
Mathematicians like Andrew Gleason, Deane Montgomery,
and Leo Zippin made significant contributions to understand
the structure and properties of topological groups. In
a topological group structure, the multiplication and
inverse mapping exhibit continuity. However, it is equally
reasonable to investigate structures in which algebraic
operations are endowed with the weaker forms of continuity.
This exploration led to the study of semi-topological groups
(where the multiplication map is separately continuous),
paratopological groups (where multiplication is jointly
continuous), and quasi-topological groups (semi-topological
groups with a continuous inverse map) between the 1930s
and 1950s [1], [18], [15].

Diverse topological groups, including S-topological
groups [2], irresolute topological groups [12], almost
topological groups [17], and p-topological groups [23], arise
when continuity is replaced by semi continuity, irresolute,
almost continuous, and pre continuity, respectively, in the
definition of a topological group. Numerous authors have
examined the properties of these groups. Jinfan Xu et
al., [9] investigated various interior and additive closure
operators and their relations on quasi-pseudo-BL algebras.
Muhammad Arshad et al., [14] analyzed the common fixed
point of generalized contractive type mappings in 2011.
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The mid-20th century saw the formalization and systematic
development of the theory of topological transformation
groups. The study of topological transformation groups
continues to evolve with advancements in mathematics.
Researchers explore deeper connections with other areas,
such as geometry, algebraic topology, and functional
analysis. A topological transformation group introduced by
Gleason [3], provides a similar bridge between algebraic
and topological structures. When a topological group acts
continuously on a topological space, it gives rise to a
topological transformation group.

The concept of semi open sets is a generalization of open
sets in topology. The study of semi open sets emerged as
part of the broader development of topology, which began
in the early 20th century. Specifically in 1963, Levine [10]
popularized the term semi open by incorporating closure and
interior operators. Sterling Gene Crossley [8] explored semi
topological spaces and their characteristics. Subsequently,
C. Dorsett [5] defined semi compactness and explored its
properties. Maheswari established the separation axioms
[11] and the characteristics of semi open sets. The study of
semi open sets has found applications in various branches of
mathematics, including functional analysis, topology, and set
theory. Sandhya S Pai et al., [22] defined soft L-topological
spaces and discussed the properties of separation axioms
and continuity.

In 2024, Rajapandiyan et al., [20] introduced the
innovative concept of S-topological transformation
groups—a novel structure encompassing semi-totally
continuous actions on topological groups. The study
investigates the comprehensive exploration of properties
associated with algebraic and topological concepts.
Additionally, the definition of fixed points within the
S-topological transformation group is elucidated, and their
fundamental properties are explored [21].

The paper is organized into distinct sections. Section 2
serves as an introduction, presenting the necessary prelimi-
naries essential for the development of the primary outcomes.
In Section 3, an in-depth exploration is conducted on charac-
teristics associated with irresolute functions and separation
axioms for semi open sets. Section 4 is dedicated to the
comprehensive definition of various topological aspects of
transformation groups. This includes Irr-topological trans-
formation groups, Irr∗-topological transformation groups, I∗-
topological transformation groups, and I-topological trans-
formation groups. The section further investigates the inter-
relationships between these defined transformation groups,
substantiated by relevant examples and counterexamples.
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II. PRELIMINARIES

In this section, fundamental definitions essential for de-
riving the main outcomes are presented. These definitions
establish the groundwork for a comprehensive understanding
of the subsequent discussions and pave the way for the
exploration and analysis of the broader context or topic at
hand.

(Y, TY) denotes the topological space. For B ⊆ Y, Cl(B)
denotes the closure of B and Int(B) denotes the interior of
B.

Definition 2.1. [10] A set B ⊆ Y is semi open ⇐⇒ B ⊆
Cl(Int(B)). The class of all semi open sets in Y is denoted
by SO(Y).

Definition 2.2. [8] A set B ⊆ Y is semi closed ⇐⇒
Int(Cl(B)) ⊆ B. The class of all semi closed sets in Y is
denoted by SC(Y).

Definition 2.3. [8] A function g : Y → Z is said to be
irresolute ⇐⇒ for any D1 ∈ SO(Z), g−1(D1) ∈ SO(Y).

Definition 2.4. [8] Let Y and Z be two topological spaces.
Y and Z are said to be semi homeomorphic ⇐⇒ there
exists a function g : Y → Z, such that g is bijective, pre
semi open and irresolute. Such a function g is called semi
homeomorphism.

Definition 2.5. [6] A space Y is said to be semi normal if
for each B,C ∈ SC(Y ) such that B ∩ C = ∅, there exist a
disjoint D1,D2 ∈ SO(Y) such that B ⊂ D1 and C ⊂ D2.

Definition 2.6. [11] A space Y is semi-T2 if ∀ y1 ̸= y2
of Y, there exist D1,D2 ∈ SO(Y) such that D1 ∩ D2 = ∅
containing y1 and y2, respectively.

Definition 2.7. [25] A space Y is called extremally discon-
nected if for each D1 ∈ TY, Cl(D1) ∈ TY.

Definition 2.8. [5] A space Y is called semi compact if every
semi open cover of Y has a finite subcover. A set B ⊆ Y is
said to be semi compact if it is semi compact as a subspace.

Definition 2.9. [8] A function g : Y → Z is said to be pre
semi open ⇐⇒ for all B ∈ SO(Y), g(B) ∈ SO(Z).

Definition 2.10. [10] Let g : Y → Z be a function such that
∀ D1 ∈ TZ, g−1(D1) ∈ SO(Y) then g is said to be semi
continuous.

Proposition 2.1. [4] Let g : Y → Z be an irresolute function.
Let B be a subset of Y. If B is semi compact in Y, then g(B)
is semi compact in Z.

Definition 2.11. [19] A space Y is said to be SCS if B ⊆ Y
which is semi compact in Y is semi closed.

Theorem 2.1. [19] Let Y be a semi-T2 extremally discon-
nected space. Then Y is SCS.

Corollary 2.1. [19] For a semi-T2 semi compact space, the
following are equivalent:

1) Y is SCS.
2) Y is extremally disconnected.

Definition 2.12. [24] A function g : Y → Z is said to be pre
semi closed if g(F ) ∈ SC(Z) for every F ∈ SC(Y).

Definition 2.13. [16] Let (H, ✼) be a group and, TH be a
topology on H. Then (H, ✼ , TY) is said to be a topological
group if the multiplication map

m : H× H → H ∋ m(h1, h2) = h1h2

and the inverse map

i : H → H ∋ i(h) = h−1

are continuous.

Definition 2.14. [12] Let (H, ✼) be a group and TH be
a topology on H. Then (H, ✼, TH) is said to be an Irr-
topological group if the multiplication map

m : H× H → H ∋ m(h1, h2) = h1h2

and the inverse map

i : H → H ∋ i(h) = h−1

are irresolute.

Definition 2.15. [12] Let (H, ✼) be a group and, TH be a
topology on H. Then (H, ✼ , TH) is said to be an irresolute
topological group if for all h1, h2 ∈ H and for each D3 ∈
SO(H) of h1 ✼ h−1

2 , there exist D1 ∈ SO(H) of h1 and
D2 ∈ SO(H) of h2 such that

D1 ✼ D−1
2 ⊆ D3.

Definition 2.16. [3] Let (H, ✼) be a group and Y be a set.
Then a map

ψ : H× Y → Y ∋ ψ(h, y) = hy

satisfying the following conditions,
1) ψ(e, y) = y, ∀ y ∈ Y, where e is the identity of H;
2) ψ(h2, ψ(h1, y)) = ψ(h2h1, y) for all h1, h2 ∈ H and

y ∈ Y.

The triple (H,Y, ψ) is called a transformation group or H-
action on Y and Y is called a H-set.

Definition 2.17. [3] A triplet (H,Y, ψ) is called a topologi-
cal transformation group (TTG) in which H is a topological
group, Y is a topological space and

ψ : H× Y → Y ∋ ψ(h, y) = hy

is a continuous map satisfying the following conditions,
1) ψ(e, y) = y, for all y ∈ Y, where e is the identity

element of H.
2) ψ(h2, (h1, y)) = ψ(h2h1, y), for every h1, h2 ∈ H and

y ∈ Y The space Y, along with a given action ψ of H,
is called a H-space.

Definition 2.18. [13] A map g : Y → Z is said to be semi
quotient, for any subset D1 of Z is open in Z if and only if
g−1(D1) is semi open in Y.

Theorem 2.2. [7] Let (Y, TY) be a topological space. Then
the following statements are equivalent.

1) (Y, TY) is extremally disconnected
2) For each D1,D2 ∈ SO(Y), D1 ∩ D2 ∈ SO(Y).

Lemma 2.1. Let H,K be two groups and g be a homomor-
phism of H into K. Then

1) for any subset C and D of H, g(CD) = g(C)g(D)
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2) for any subset E and F of K, g−1(E)g−1(F) ⊂
g−1(EF).

3) for any symmetric subset C of H, g(C) is symmetric in
K

4) for any symmetric subset D of K, g−1(D) is symmetric
in H

III. BASIC PROPERTIES OF IRRESOLUTE FUNCTIONS AND
SEPARATION AXIOMS

This section outlines the characteristics of an irreso-
lute functions and the separation axioms. It elucidates the
properties that are necessary for providing a foundational
understanding of subsequent discussions.

Lemma 3.1. If the maps ψi : Yi → Zi are pre semi open
for i = 1, 2 then

ψ1 × ψ2 : Y1 × Y2 → Z1 × Z2,

∀ D1 ∈ SO(Y1),D2 ∈ SO(Y2),∃ E1 ∈ SO(Z1),E2 ∈
SO(Z2) such that

(ψ1 × ψ2)(D1 × D2) ⊆ E1 × E2.

Proof: Let ψ1, ψ2 be a pre semi open maps, D1 ∈
SO(Y1),D2 ∈ SO(Y2) then there exist E1 ∈ SO(Z1),E2 ∈
SO(Z2) ∋ ψ1(D1) ⊆ E1 and ψ2(D2) ⊆ E2 by assumption.
Thus

(ψ1 × ψ2)(D1 × D2) ⊆ E1 × E2.

Remark 3.1. In general, product of pre semi open maps
need not be pre semi open

Theorem 3.1. The projection map

p : Y × Z → Y ∋ p(y, z) = y

is irresolute and pre semi open.

Proof: Let p : Y × Z → Y such that p(y, z) = y.
To prove p is both irresolute and pre semi open. Let D ∈
SO(Y × Z), there exists D1 ∈ TY×Z such that D1 ⊆ D ⊆
Cl(D1) then

p(D1) ⊆ p(D) ⊆ p(Cl(D1)) ⊆ Cl(p(D1)),

since p is continuous and open, p(D) ∈ SO(Y). Thus p is
pre semi open. Similarly p is irresolute.

Example 3.1. Let Y = {1, 2} be the set, TY =
{∅, {1}, {1, 2}} be a topology on Y, (Y, TY) be a topological
space. Then the projection map

p : Y × Y → Y ∋ p(y1, y2) = y1

is irresolute and pre semi open.

Lemma 3.2. Let Y,Z, and W be a topological spaces. In
below commutative diagram, ψ3 is an irresolute map, if ψ1

is an irresolute map and ψ2 is a surjective pre semi open
map.

Y

Z W

ψ2
ψ1

ψ3

Fig. 1. Commutative diagram of functions

Proof: Let D1 ∈ SO(W). Since ψ2 is surjective,

ψ−1
3 (D1) = ψ2 ◦ ψ−1

2 (ψ−1
3 (D1)) = ψ2(ψ

−1
1 (D1)).

Since ψ1 is irresolute and ψ2 is pre semi open, ψ−1
3 (D1) ∈

SO(Z), which implies that ψ3 is irresolute.

Example 3.2. Let Y = {0, 1, 2, 3} = Z4 be the set,

TY = {∅, {0, 2}, {1, 3},Y}

be a topology on Y, the map

ψ1, ψ2, ψ3 : Z4 → Z4

such that ψ1(0) = ψ2(0) = 1, ψ1(1) = ψ2(1) = 2, ψ1(2) =
ψ2(2) = 3, ψ1(3) = ψ2(3) = 0 and

ψ3(0) = 0, ψ3(1) = 1, ψ3(2) = 2, ψ3(3) = 3.

Then ψ3 is an irresolute map, since ψ1 is an irresolute map
and ψ2 is a surjective pre semi open map.

Lemma 3.3. Let Y be a semi compact space and Z be a
semi-T2 extremally disconnected space.

1) Then any irresolute map ψ : Y → Z is pre semi closed.
2) If ψ is bijective and irresolute, then ψ is a semi

homeomorphism.

Proof: Any subset F ∈ SC(Y) is semi compact, since Y
is semi compact. Hence ψ(F) is semi compact by Proposition
2.1. Similarly ψ(F) ∈ SC(Z), since Z is SCS by Theorem
2.1. Thus ψ is pre semi closed.

If ψ is bijective and irresolute, ψ−1 is irresolute, hence
ψ is a semi homeomorphism, since bijective, irresolute pre
semi closed map is a semi homeomorphism.

Example 3.3. Let Z4 = {0, 1, 2, 3} be the set,

TZ4 = {∅, {0, 2}, {1, 3},Z4},

be a topology on Z4, (Z4, TZ4) be a topological space and

Z2 = {0, 1}, TZ2 = {∅, {0},Z2},

(Z2, TZ2) be a topological space then the irresolute map

ψ : Z4 → Z2 ∋ ψ(0) = 0, ψ(1) = 1, ψ(2) = 0, ψ(3) = 1

is not pre semi closed, since Z2 is not a semi-T2 extremally
disconnected space.

Lemma 3.4. In the commutative diagram of Lemma 3.2,
if ψ2 is surjective and Z is endowed with semi quotient
topology induced by the map ψ2. If ψ1 is irresolute, then
ψ3 is semi continuous.

Proof: Let S be any semi open subset of W, the set

ψ−1
2 (ψ−1

3 (S)) = ψ−1
1 (S)
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is semi open. Thus ψ−1
3 (S) is semi open from the definition

of the semi quotient topology.

Lemma 3.5. In the commutative diagram of Lemma 3.2, if
ψ2 is a surjective irresolute map. If ψ1 is pre semi open,
then ψ3 is pre semi open.

Proof: Let D1 ∈ SO(Z). Since ψ2 is surjective,

ψ3(D1) = ψ3 ◦ ψ2(ψ
−1
2 (D1)) = ψ1(ψ

−1
2 (D1)).

Hence ψ3(D1) is semi open by assumption.

Example 3.4. In Example 3.2 ψ3 is pre semi open since ψ2

is a surjective irresolute map and ψ1 is pre semi open.

Proposition 3.1. Let Y be a semi-T2 semi compact SCS, then
SO(Y) forms a topology.

Proof: Let Y be a semi-T2 semi compact SCS, then by
Corollary 2.1, Y is extremally disconnected, by Definition
2.1 SO(Y) is closed under arbitrary union and by Theorem
2.2 SO(Y) is closed under finite intersection. Thus SO(Y)
forms a topology on Y.

Remark 3.2. If Y is semi compact semi-T2 space then
Proposition 3.1 need not be true.

Example 3.5. Let Y = {1, 2, 3, 4}, be the set,

TY = {∅, {1}, {3}, {1, 3}, {1, 2, 3, 4}},

be a topology on Y, (Y, TY) be a topological space and
SO(Y) = {∅, {1}, {3}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4},
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}, SO(Y)
is not closed under finite intersection, since semi compact
semi-T2 space not a SCS, since {1, 3, 4} is semi compact
but not semi closed.

Lemma 3.6. If Z is a semi compact subspace of semi-T2
extremally disconnected space Y and y is not in Z, then
there exist D,E ∈ SO(Y) containing y and Z respectively
such that D ∩ E = ∅.

Proof: Let Z be a semi compact subspace of a semi-T2
extremally disconnected space Y and y /∈ Z. Let z ∈ Z, then
y ̸= z. Since Y is semi-T2 then there exists two disjoint semi
open sets Dz and Ez of y and z respectively. Since for each
z ∈ Z, there exist Ez ∈ SO(Y) containing z. So

Z ⊂
⋃
z∈Z

Ez.

Thus the collection {Ez|z ∈ Z} is a semi open cover of
Z. Since Z is semi compact there exist a finite semi open
subcover say Ez1 ,Ez2 , · · · ,Ezn of {Ez|z ∈ Z}. Consider

E = Ez1 ∪ Ez2 ∪ · · · ∪ Ezn .

Since Ez1 ,Ez2 , · · · ,Ezn covers Z, so Z ⊂ E. Consider

D = Dz1 ∩ Dz2 ∩ · · · ∩ Dzn ,

where Dz1 ,Dz2 , · · · ,Dzn ∈ SO(Y) corresponding to
Ez1 ,Ez2 , · · · ,Ezn ∈ SO(Y). Since for any z ∈ E, then
z ∈ Ezi for some i ∈ {1, 2, · · · , n}, Dzi and Ezi are disjoint.
Thus z /∈ D. Therefore D ∩ E = ∅. Thus D,E ∈ SO(Y)
containing y and z respectively such that D ∩ E = ∅.

Theorem 3.2. Every semi-T2 semi compact extremally dis-
connected space is semi normal.

Proof: Let Y be a semi-T2 semi compact extremally
disconnected space, y ∈ Y and F is a semi closed set in
Y not containing y then F is semi compact, from Lemma
3.6, there exists disjoint semi open sets containing y and F
respectively. Then given disjoint semi closed set F and C
in Y, choose for each point f of F, disjoint semi open sets
Df and Ef containing f and C, respectively. The collection
{Df} covers F because F is semi compact, F can be covered
by finitely many semi open sets Df1 ,Df2 , · · · ,Dfm . Then

D = Df1 ∪ Df2 ∪ · · · ∪ Dfm and

E = Ef1 ∩ Ef2 ∩ · · · ∩ Efm

are disjoint semi open sets containing F and C respectively.

Remark 3.3. Theorem 3.2 need not be true for a semi
compact semi-T2 space.

Theorem 3.3. Let Y be a semi-T2 semi compact extremally
disconnected space then for a given y in Y and given D1 ∈
SO(Y) of y, there exists D2 ∈ SO(Y) of y such that Cl(D2)
is semi compact and Cl(D2) ⊆ D1.

Proof: Let Y a semi-T2 semi compact extremally dis-
connected space, y ∈ Y and D1 ∈ SO(Y) and C be the
set Y − D1. Then C ∈ SC(Y), thus C is a semi compact
subspace of Y.

By Lemma 3.6 there exist disjoint semi open sets D2 and
D3 containing y and C, respectively. Then Cl(D2) of D2

in Y is semi compact, Cl(D2) is disjoint from C, so that
Cl(D2) ⊂ D1, as desired.

Remark 3.4. Theorem 3.3 need not be true for a semi
compact semi-T2 space.

Example 3.6. Let Y = {a, b, c, d}, be the set,

TY = {∅, {a}, {b}, {a, b}, {a, b, c, d}},

be a topology on Y, (Y, TY) be a semi compact semi-T2 space
and SO(Y) = ∅, {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c},
{b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d}, c ∈
{b, c} ∈ SO(Y), but ∄D ∈ SO(Y) such that Cl(D1) ⊆
{b, c}.

Lemma 3.7. Let H,K be two irresolute topological groups
and g be a homomorphism of H into K. Then

1) for any subset C and D of H, g(C) g(D) ⊂ g(CD)
2) for any subset E and F of K, g−1(E) g−1(F) ⊂

g−1(EF).
3) for any symmetric subset C of H, g(C) is symmetric in

K and hence g(C−1) =
[
g(C)

]−1
.

4) for any symmetric subset D of K, g−1(D) is symmetric
in H and hence g−1(D) =

[
g−1(D)

]−1
.

Proof: Statement (1) and (2) follows from Statement
(1) and (2) of Lemma 2.1 and for any subset C and D of
topological group H,C D ⊂ CD since the multiplication is
irresolute. For (3), g(C) is symmetric by condition (3) of
Lemma 2.1.

Moreover, the inversion mapping in an irresolute topolog-
ical group being a semi homeomorphism, for each subset C,
C−1 = (C)−1. From this (3) and (4) follows directly.
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Proposition 3.2. Let (H, ✼) be a group, TH be the topology
on H and SO(H) forms the topology. (H, ✼, TH) forms an
irresolute topological group if and only if (H, ✼, SO(H))
forms a topological group.

Proof: Let (H, ✼, TH) be an irresolute topological group
which implies that for each h1h

−1
2 , for all D3 ∈ SO(H)

containing h1h
−1
2 , there exist D1 ∈ SO(H) containing h1

and D2 ∈ SO(H) containing h2 such that D1D
−1
2 ⊂ D3.

Thus the multiplication map and inverse map are continu-
ous with respect to SO(H). Hence (H, ✼, SO(H)) forms a
topological group. The proof of converse follows similarly.

Corollary 3.1. Let (H, ✼) be a group and (H, TH) is
extremally disconnected, (H, ✼, TH) forms an irresolute
topological group if and only if (H, ✼, SO(H)) forms a
topological group.

Proof: From Proposition 3.2 and Theorem 2.2 the proof
of corollary follows.

IV. COMPARISON OF TOPOLOGICAL STRUCTURES OF
TRANSFORMATION GROUPS

In this section Irr-topological transformation groups, Irr∗-
topological transformation groups, I∗-topological transfor-
mation groups, and I-topological transformation groups are
introduced and their interrelations are explored through per-
tinent examples and counterexamples.

Definition 4.1. A transformation group (H,Y, ψ) on Y is
said to be Irr-topological transformation group (Irr-TTG) if
H is an Irr-topological group, Y is a topological space, and
the map ψ : H× Y → Y is irresolute.

Example 4.1. Any Irr-topological group acting on itself
forms an Irr-TTG.

Example 4.2. Let H = Z2 = {0, 1} be the group under usual
addition modulo 2. Equip H with the Sierpinski topology
TH = {∅, {0},H}.
SO(H× H) =

{
∅, {(0, 0)}, {(0, 0), (0, 1)}, {(0, 0),

(1, 0)}, {(0, 0), (0, 1), (1, 0)},
{(0, 0), (1, 0), (0, 1), (1, 1)},
{(0, 0), (1, 1)}, {(0, 0), (0, 1),

(1, 1)}, {(0, 0), (1, 0), (1, 1)}
}
,

H acting on itself, (H,H, ψ) is an Irr-TTG. But it is not a
TTG since H is not a topological group and also the map ψ
is not continuous.

Example 4.3. Let H = {e, (12)(34), (13)(24), (14)(23)} be
the group under composition, and the topology on H be

TH = {∅,H, {e}, {e, (12)(34), (13)(24)}},

let Y = {1, 2, 3, 4} be the set and the topology on Y be

TY = {∅,Y, {1}, {1, 2, 3}}

such that (H, ✼, TH) forms an Irr-topological group, (Y, TY)
forms a topological space and ψ : H × Y → Y such that
ψ(σ, y) = σ(y) is irresolute. Thus (H,Y, ψ) forms an Irr-
TTG.

Definition 4.2. A transformation group (H,Y, ψ) on Y is
said to be Irr∗-topological transformation group (Irr∗-TTG)
if H is an Irr-topological group, Y is a topological space,
and the map ψ : H × Y → Y such that ∀ h ∈ H, y ∈ Y,∀
semi open set D3 containing hy ∈ Y, there exist D1 and D2

containing h and y respectively such that D1D2 ⊆ D3.

Example 4.4. Let H = {e, (12)(34), (13)(24), (14)(23)} be
the group under composition, and the topology on H be

TH = {∅,H, {e}, {e, (12)(34), (13)(24)}},

let Y = {1, 2, 3, 4} be the set and the topology on Y be TY =
{∅,Y} such that (H, ✼, TH) forms an Irr-topological group
and (Y, TY) forms a topological space and ψ : H× Y → Y
such that ψ(σ, y) = σ(y). Thus (H,Y, ψ) forms an Irr∗-TTG.

Definition 4.3. A transformation group (H,Y, ψ) on Y is
said to be I∗-topological transformation group (I∗-TTG) if H
is an irresolute topological group, Y is a topological space,
and the map ψ : H× Y → Y is irresolute.

Example 4.5. Let H = {e, (12)(34), (13)(24), (14)(23)} be
the group under composition, and the topology on H be

TH = {∅,H, {e, (12)(34)}, {(14)(23), (13)(24)}},

(H, ✼, TH) forms an irresolute topological group and H
acting on itself, (H,H, ψ) forms an I∗-TTG.

Definition 4.4. A transformation group (H,Y, ψ) on Y is
said to be I-topological transformation group (I-TTG) if H
is an irresolute topological group, Y is a topological space,
and the map ψ : H × Y → Y such that ∀ h ∈ H, y ∈ Y,∀
semi open set D3 containing hy ∈ Y, there exist D1 and D2

containing h and y respectively such that D1D2 ⊆ D3.

Example 4.6. Any irresolute topological group acting on
itself is an I-TTG.

Example 4.7. Let H = {0, 1, 2, 3} be the group under
addition modulo 4,

TH = {∅,H, {0, 2}, {1, 3}}.

(H, ✼, TH) forms an irresolute topological group and H
acting on H/K = {0K, 1K},K = {0, 2} be the cosets,
(H,H/K, ψ) forms an I-TTG.

Proposition 4.1. Let (H, ✼, TH) be an irresolute topological
group, (Y, TY) be a topological space and SO(H), SO(Y)
forms a topology. (H, ✼, TH) acting on (Y, TY), (H,Y, ψ)
is an I-TTG if and only if (H, ✼, SO(H)) acting on
(Y, SO(H)), (H,Y, ψ) is a TTG.

Proof: Let(H, ✼, TH) acting on (Y, TY), (H,Y, ψ) is an
I-TTG which implies that for each hy, for all D3 ∈ SO(Y)
containing gh there exist D1 ∈ SO(H) containing h and
D2 ∈ SO(Y) containing y such that D1D

−1
2 ⊂ D3.

Thus (H, ✼, SO(H)) acting on (Y, SO(H)) is continuous.
Hence (H,Y, ψ) forms a TTG. Similarly the converse is
proved.

Corollary 4.1. Let (H, TH), (Y, TY) are extremally discon-
nected spaces, (H, ✼, TH) be an irresolute topological group
and (Y, TY) be a topological space. (H, ✼, TH) acting on
(Y, TY), (H,Y, ψ) is an I-TTG if and only if (H, ✼, SO(H))
acting on (Y, SO(H)), (H,Y, ψ) is a TTG.
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Proof: Proof follows from Proposition 3.2 and 4.1,
Theorem 2.2

Remark 4.1.
1) There exist an Irr-TTG which is neither an Irr∗-TTG

nor a TTG.
2) Any Irr-topological group acting on itself will be an

Irr-TTG but it need not be an Irr∗-TTG.
3) Let (H, ✼ , TH) be an Irr-TTG, (Y, TY) be a discrete

space then H need not be an Irr∗-TTG for a group
action ψ of H on Y.

4) If TH = co-finite topology on H, H acting on itself then
H is TTG if and only if H is an I-TTG. If H is finite
then TH is discrete which is trivial. If H is infinite then
TH = SO(H), thus from Definition 2.13, 2.15 its true.

5) Any Irr-topological group H acting on singleton set
{e}, e is the identity of H, then it will be both an Irr-
TTG and an Irr∗-TTG, since topology on singleton set
is discrete.

6) Any irresolute topological group H acting on singleton
set {e}, e is the identity of H, then it will be both an
I-TTG and an I∗-TTG, since topology on singleton set
is discrete.

7) There exist a TTG which is an Irr-TTG, an Irr∗-TTG,
an I-TTG and an I∗-TTG.

Example 4.8. Let H = {e, (123), (132)} be the group under
composition, and the topology on H be

TH = {∅,H, {e}, {e, (123)}},

let Y = {1, 2, 3} be the set and the topology on Y be

TY = {∅,Y, {1}, {1, 2}}

such that (H, ✼, TH) forms an Irr-topological group and
(Y, TY) forms a topological space and ψ : H×Y → Y such
that ψ(σ, y) = σ(y), (H,Y, ψ) forms an Irr-TTG but it is
neither an Irr∗-TTG nor a TTG.

Example 4.9. Let H = {e, a, b, c} be the Klein four group
and a topology on H be

TH = {∅,H, {e}, {e, a, b}}.

H acting on itself, (H,H, ψ) is an Irr-TTG. But it is not an
Irr∗-TTG since m−1(e) cannot be written as the product of
semi open sets of H.

Example 4.10. Any abstract group H with discrete topology
TH = P (H) where P (H) denotes the set of all power sets of
H, H acting on itself, (H,H, ψ) forms a TTG, an Irr-TTG,
an Irr∗-TTG, an I-TTG and an I∗-TTG.

Example 4.11. Let H = {e, (12)(34), (13)(24), (14)(23)}
be the group under composition,

TH = ∅,H, {e, (12)(34)}, {(14)(23), (13)(24)}

be a topology on H and Y = {1, 2, 3, 4} be the set and the
topology on Y be

TY = {∅, {1, 2}, {3, 4},Y}

such that (H, ✼, TH) forms topological group and an
irresolute topological group and (Y, TY) forms a topological
space and ψ : H × Y → Y such that ψ(σ, y) = σ(y),

(H,H, ψ) forms a TTG, an Irr-TTG, an Irr∗-TTG, an I-TTG
and an I∗-TTG.

Theorem 4.1. Let (H, ✼) be a group, TH be a topology on
H, (Y, TY) be a topological space and ψ : H× Y → Y.

1) If (H,Y, ψ) is an I-TTG, then it is an Irr-TTG, an Irr∗-
TTG, an I∗-TTG.

2) If (H,Y, ψ) is an Irr∗-TTG, then it is an Irr-TTG.
3) If (H,Y, ψ) is an I∗-TTG, then it is an Irr-TTG.

Proof:
1) Since every irresolute topological group is an Irr-

topological group and product D1 × D2 of semi open
sets D1 of H and D2 of Y is semi open in H × Y.
Hence (1) is true.

2) Every Irr∗-TTG is an Irr-TTG, since product D1 ×D2

of semi open sets D1 of H and D2 of Y will be a semi
open in H× Y.

3) Every I∗-TTG is an Irr-TTG, since every irresolute
topological group is an Irr-topological group.

Remark 4.2. The converse of above statements need not be
true.

Example 4.12. Let H = {1, 3, 5, 7} be the group under
multiplication modulo 8,

TH = {∅,H, {1}, {1, 3, 5}}.

(H, ✼, TH) forms an Irr-topological group and H acting on
itself, forms an Irr-TTG, but it is not an Irr∗-TTG, an I∗-TTG,
an I-TTG.

Example 4.13. Let H = {0, 1, 2} be the group under
addition modulo 3,

TH = {∅,H, {0}, {0, 1}}.

(H, ✼, TH) forms a Irr-topological group and H acting on
K = {0}, (H,H/K, ψ) forms a Irr∗-TTG, but it is neither an
I∗-TTG nor an I-TTG.

Theorem 4.1 can be pictured as follows,

I − TTG I∗ − TTG

Irr∗ − TTG Irr − TTG

Fig. 2. Interrelations among various topological transformation groups

V. CONCLUSION

This paper analyses the characteristics of semi continuous
and irresolute functions, along with exploring separation
axioms such as semi-T2 and semi normality. The intro-
duction of novel concepts, namely Irr-topological transfor-
mation group, Irr∗-topological transformation group, an I∗-
topological transformation group, and I-topological transfor-
mation group, adds depth to the analysis. Through a system-
atic examination of their interrelations, the paper establishes
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a comprehensive understanding, supported by examples and
counterexamples. This contributes valuable insights into the
aspects of a topological transformation groups in the context
of an irresolute functions, offering a good understanding of
their interplay within the given mathematical framework.
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topological groups,” Mathematica Moravica, vol. 19, no. 1, pp. 73-80,
2015.

[13] Moiz ud Din Khan, Rafaqat Noreen, and M. S. Bosan, “Semi-quotient
mappings and spaces,” Open Mathematics, vol. 14, no. 1, pp. 1014-
1022, 2016.

[14] Muhammad Arshad, Akbar Azam, Pasquale Vetro, “Common fixed
point of generalized contractive type mappings in cone metric spaces,”
IAENG International Journal of Applied Mathematics, vol. 41, no. 3,
pp. 246-251, 2011.

[15] Piyu Li, Lei Mou, “On quasitopological groups,” Topology and its
Applications, vol. 161, pp. 243-247, 2014.

[16] L. Pontrjagin, “Topological Groups,” Princeton University Press,
Princeton, 1946.

[17] M. Ram, “On Almost Topological Groups,” Mathematica Moravica
vol. 23, no. 1, pp. 97-106, 2019.

[18] O. V. Ravsky, “Paratopological groups I,” Mat. Stud, vol. 16, no. 1,
pp. 37-48, 2001.

[19] Mohammad S. Sarsak, “On semi compact sets and associated proper-
ties,” International Journal of Mathematics and Mathematical Sciences,
vol. 2009, 2009.

[20] C. Rajapandian, V. Visalakshi, S. Jafari, “On a new type of topological
transformation group,” Asia Pacific Journal of Mathematics, vol. 11,
no. 5, 2024.

[21] C. Rajapandiyan, V. Visalakshi, “Fixed Point Set and Equivariant Map
of a S-Topological Transformation Group,” International Journal of
Analysis and Applications, vol. 22, 2024.

[22] Sandhya S Pai, Baiju Thankachan, “Separation Axioms in Soft L-
topological Spaces,” IAENG International Journal of Applied Mathe-
matics, vol. 53, no. 1, pp. 374-380, 2023.

[23] Saeid Jafari, Paulraj Gnanachandra, Arumugam Muneesh Kumar, “On
p-topological groups,” Mathematica Moravica, vol. 25, no. 2, pp. 13-
27, 2021.

[24] D. Sivaraj, “Semihomeomorphisms,” Acta Mathematica Hungarica,
vol. 48, no. 1-2, pp. 139-145, 1986.

[25] M. H. Stone, “Algebraic characterizations of special Boolean rings,”
Fundamenta Mathematicae, vol. 29, no. 1, pp. 223–303, 1937.

Keerthana Dhanasekar was born in Mettur
Dam, India, on 2nd July 1999. She graduated
with a Bachelor of Science in Mathematics from
Bharathiyar University, Coimbatore, India, in May
2019 and obtained a Master of Science in Math-
ematics from the University of Madras, Chennai,
India, in May 2021. Currently, she is a PhD stu-
dent at SRM Institute of Science and Technology,
Kattankulathur, Chengalpattu. She is interested in
the field of Topological spaces.

V. Visalakshi was born in Pudukottai, India, on 6th
September 1986. She graduated with a Bachelor of
Science in Mathematics from Periyar University,
Salem, India, in May 2006. She then earned a
Master of Science in Mathematics from Periyar
University, Salem, India, in May 2008, a Mas-
ter of Philosophy in Mathematics from Periyar
University, Salem, India, in November 2010 and
a Doctorate of Philosophy in Mathematics from
Periyar University, Salem, India, in March 2015.

She has been serving as an Assistant Professor
in SRM Institute of Science and Technology, Kattankulathur, from 2016
until the present. Her publications include: K. Tamilselvan, V. Visalakshi,
Prasanalakshmi Balaji, ”Applications of Picture Fuzzy Filters: Performance
Evaluation of an Employee using Clustering Algorithm,” vol.8, no. 9, pp
21069 - 21088, 2023. C. Rajapandian, V. Visalakshi, S. Jafari, “On a
new type of topological transformation group,” Asia Pacific Journal of
Mathematics, vol. 11, no. 5, 2024. C. Rajapandiyan, V. Visalakshi, “Fixed
Point Set and Equivariant Map of a S-Topological Transformation Group,”
International Journal of Analysis and Applications, vol. 22, 2024. She is
interested in the field of Topological spaces, Fuzzy topological spaces and
Fuzzy graphs.

Dr. Visalakshi is a life member of the Indian Society for Technical
Education (ISTE), the Indian Mathematical Society (IMS) and an Annual
Member of the Indian Science Congress Association (ISCA).

IAENG International Journal of Applied Mathematics

Volume 54, Issue 5, May 2024, Pages 887-893

 
______________________________________________________________________________________ 


	Introduction
	Preliminaries
	Basic properties of irresolute functions and Separation axioms
	Comparison of topological structures of transformation groups
	Conclusion
	References
	Biographies
	Keerthana Dhanasekar
	V. Visalakshi




