
 

  

Abstract—The three-way decision paradigm is a 

decision-making approach that is analogous to human 

reasoning. It involves a neutrosophic set as an efficient tool for 

handling ambiguity. Using cotangent similarity, the Hamming 

distance, and the innovative Vicis-Wave Hedges distance for 

ranking, this study proposes three novel three-way decision 

models based on the Bayes decision. In particular, single-valued 

neutrosophic numbers are employed to represent each loss 

function. The proposed models are then condensed into an 

algorithm. Subsequently, an example is presented to 

demonstrate the validity and rationality of the proposed models. 

Finally, we compare the three models. This research provides a 

new method for decision-making problems. 

 
Index Terms—three-way decision; cotangent similarity; 

single-valued neutrosophic set; Vicis-Wave Hedges distance; 

Hamming distance 

 

I. INTRODUCTION 

 

HINKING in terms of threes is the primary concept 

underlying the three-way decision (3WD) paradigm. In 

contrast to the conventional two-way decision approach, the 

3WD approach involves acceptance, rejection, and delayed 

decision-making in order to address the ambiguity of the 

problem. 

Yao proposed 3WD in 2010 [1] and described 3WD using 

the trisecting–acting–outcome model in 2018 [2]. 3WD is a 

specific instance of the larger three-way decision space 

defined by Hu [3]. Yao [4] combined the 3WD framework 

with various nonstandard sets. Zhang [5] identified two 

categories of classification mistakes. Hu [6] addressed two 

open issues by modifying the decision parameters of the 

3WD definition. Using 3WD, Lang [7] developed efficient 

conflict analysis techniques. An innovative 3WD model that 

incorporates order information was proposed by Liu and 

Liang [8]. By combining the notions of erosion and dilation 
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from mathematical morphology with the principles of 3WD, 

Wang and Yao [9] proposed a framework of 

contraction-and-expansion-based three-way clustering. Jia 

[10] proposed a unique decision model by combining 3WD 

and multi-criteria decision-making. A generalized 

multi-granulation sequential 3WD model based on various 

thresholds was proposed by Qian [11]. Luo [12] presented a 

3WD algorithm that can handle data scale changes. Li [13] 

expanded the three-way decision model originally developed 

for 0-1 tables to include general information tables and 

established a 3WD framework for such tables. 

Zadeh proposed the fuzzy set [14]; subsequently, 

Smarandache [15] presented neutrosophic sets (NSs) based 

on an intuitionistic fuzzy set [16]. In particular, Wang [17] 

methodically introduced single-valued neutrosophic sets 

(SVNSs). SVNSs are more in line with human thinking. 

Zhang [18] investigated the inclusion relations of NSs. Xu 

[19] examined the applications of SVNSs and multi-attribute 

decision-making. An increasing number of scientists are 

employing 3WD and fuzzy sets in their research. Using three 

membership degrees of an NS, Abedel-Basset presented two 

rules for 3WD [20]. Singh proposed the use of a neutrosophic 

set to describe a three-way fuzzy concept lattice [21] and also 

investigated the three-way n-valued neutrosophic concept 

lattice at different granulation levels [22]. Jiao [23] proposed 

two 3WD models combined with SVNNs. 

This study proposes three 3WD models that are based on 

cotangent similarity, the Hamming distance, and the novel 

Vicis-Wave Hedges distance with SVNSs. The remainder of 

this paper is organized as follows. Section II presents the 

preliminaries. Section III describes the three 3WD models. 

Section IV discusses applications of the models with specific 

cases. Finally, Section V concludes this paper. 

II. PRELIMINARIES 

 

A. Single-valued neutrosophic set 

Definition 2.1 [15]: Supposed that U is a domain. The   

single-valued neutrosophic set A  on the domain U is 

constituted by three elements: truth, indeterminacy, and false 

memberships. They can be represented by ( )AT x , ( )AI x and 

( )AF x . Each membership is a real number between [0,1]. Its 

form is as follows: 

 , ( ), ( ), ( ) :A A AA x T x I x F x x U=  . 

For convenience, we called the ( ( ), ( ), ( ))A A Aa T x I x F x=  

or ( , , )a a aa T I F=  as a single-valued neutrosophic number. 

The abbreviation is SVNN. 
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Definition 2.2 [24]: Let n and m be two SVNNs. The 

addition between SVNNs and number multiplication with a 

real number θ are defined as follows: 

(1) , ,e f e f e f e fe f T T T T I I F F = + −     

(2) ( )1 1 ,( ) , ( ) , 0e e ee T I F
   = − −   

Definition 2.3 [25]: Suppose ( , , )e e ee T I F= and 

( , , )f f ff T I F=  are two SVNNs, if , ,e f e f e fT T I I F F   , 

then we say n ≤ m. 

This comparison technique, however, is excessively 

severe and cannot be extensively applied. As an illustration, 

consider the neutrosophic numbers n = (0.3,0.4,0.5) and m = 

(0.4,0.5,0.6). Since these two neutrosophic numbers do not 

meet the requirements of Definition 2.3, they cannot be 

compared.  

Definition 2.4 [26] Suppose ( , , )e e ee T I F= and 

( , , )f f ff T I F= , their cotangent similarity is defined as 

follows: 

1cot ( , ) cot[ ( )]
4 12

e f e f e fe f T T I I F F
 

= + − + − + −  (1)                     

To compare the sizes of two neutrosophic sets, we 

typically select an ideal neutrosophic set to facilitate the 

comparison. In general, the minimum I = (0,1,1) or the 

maximum T = (1,0,0) is widely employed. Assume that the 

minimum neutrosophic set I = (0,1,1) is used for calculation. 

In this case, a larger or more significant cotangent similarity, 

indicating greater similarity to the minimum neutrosophic set, 

implies a smaller neutrosophic set and vice versa.   

Example 2.1 We can compare any two SVNNs using 

cotangent similarity. If e = (0.3,0.6,0.1), f = (0.8,0.2,0.4) and 

we choose I = (0,1,1), the calculation results of the cotangent 

similarity between e and I and between f and I are as follows: 

cot( , )e I =0.3839 

cot( , )f I =0.2126 

because of cot( , )e I ＞ cot( , )f I , it can be concluded that 

e ＜ f. 

Cotangent similarity has good operational properties. 

For instance, if n and m are given as e = (0.1, 0.2, 0.2) and f =     

(0.2, 0.4, 0.4), using the common cosine similarity, the cosine 

similarity of e and f will be found to be 1.But obviously  e ≠ f, 

the cosine similarity is not useful in this case. However, we 

may calculate that e and f have a 0.7673 cotangent 

similarity. We believe that this result is more logical than the 

cosine similarity. 

Definition 2.5 [27] Suppose ( , , )e e ee T I F= and 

( , , )f f ff T I F= , their Hamming distance is defined as 

follows: 

( , ) ( )e f e f e fH e f T T I I F F= − + − + −                      (2) 

Example 2.2 if e = (0.3,0.6,0.1), f = (0.8,0.2,0.4), and we 

choose I = (0,1,1), then the Hamming distance results of e and 

I, f and I are as follows: 

( , )H e I  = 1.6 

( , )H f I  = 2.2 

because of ( , )H e I ＞ ( , )H f I , it can be concluded that   

e<f. 

 

Definition 2.6 Suppose that the ( )e = , ,e e eT I F  and 

( )f = , ,f f fT I F  are two SVNNs; the Vicis-Wave Hedges 

distance of n and m is defined as follows： 

( , )
1 min( , ) 1 min( , ) 1 min( , )

e f e f e f

e f e f e f

T T I I F F
V e f

T T I I F F

− − −
= + +

+ + +
 (3) 

Proof 2.1:  Let ( )e = , ,e e eT I F  and ( )f= , ,f f fT I F  be 

two SVNNs. The above defined the SVNNs neutrosophic 

distance ( ),V e f  between SVNNs e  and f  satisfies the 

following properties (1)–(4): 

(1) ( ), 0V e f  ; 

(2) ( ), 0V e f =  if and only if e f= ; 

(3) ( ) ( ), ,V e f V e f= ; 

(4) If e f g  ,C  is the other SVNN in X , then 

( ) ( ), ,V e g V e f  and ( ) ( ), ,V e g V f g . 

Proof: Obviously, ( ),V e f  satisfies (1), (2), and (3). It 

only needs to be verified that property (4). 

If e f g  ,i.e., e f gT T T  , e f gI I I  , 

e f gF F F  . 

From the aforementioned conditions, we obtain 

( )min ,e f eT T T= , ( )min ,e g eT T T= , ( )min ,f g fT T T= , 

e g e fT T T T−  − , e g f gT T T T−  − ;

e g e fI I I I−  − , e g f gI I I I−  − ;

e g e fF F F F−  − , e g f gF F F F−  − . 

According to equation (1), we can get 

( ),
1 1 1

e f e f e f

e f f

T T I I F F
V e f

T I F

− − −
= + +

+ + +
 

( ),
1 1 1

e g e g e g

e g g

T T I I F F
V e g

T I F

− − −
= + +

+ + +
 

( ),
1 1 1

f g f g f g

f g g

T T I I F F
V f g

T I F

− − −
= + +

+ + +
 

It is obvious that ( ) ( ), ,V e g V e f , ( ) ( ), ,V e g V f g . 

Example 2.3 Similarly, if e = (0.3,0.6,0.1), f = (0.8,0.2,0.4), 

and we choose O= (0,1,1), then the Vicis-Wave Hedges 

distance results of e and I, f and I are as follows 

( , )V e O =1.3682 

( , )V f O =1.8952 

because of ( , )V e O ＜ ( , )V f O , it can be concluded that  

e<f. 

In addition, the distance provides advantageous 

operating features. For example, if e = (0.2,0.4,0.6), f = 

(0.8,0.6,0.3), and g = (0.1,0.3,0.2), by using the common 

Hamming distance, we find that the Hamming distance of e 

and f and that of f and g are both 1.1. However, obviously e 

≠  g; hence, this reflects the limitation of the Hamming 

distance. After calculation, the Vicis-Wave Hedges distance 

of e and f is 0.8304, and that of f and g is 0.9505. Thus, the 

results show that e is closer than g to f. 
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B. Three-way decision 

The fundamental tenet of the 3WD is to partition the 

domain into three distinct sections: the positive, negative, and 

border. Additionally, they have established three 

decision-making guidelines: acceptance, rejection, and 

non-commitment. The 3WD is greatly congruent with how 

people behave and make judgments. 

3WD, based on the Bayesian decision process, is 

composed of a state set and a behavior set. The state set is 

{ , }X X =  , among them, X and X represents the object 

x in state X and not in state X. The behavior set is 

{ , , }p B Na a a = , represents the loss function when x is 

decided to accept, do not commit, and reject, respectively. 

The loss functions caused by different behaviors in different 

states are shown in Table 1. 

 
TABLE I 

THE LOSS FUNCTIONS 

 X (positive) X (negative) 

pa （acceptance） PP  PN  

Ba （non-commitment） BP  BN  

Na （rejection） NP  NN  

 

After obtaining the loss functions, we can obtain the loss 

expectation of decision-makers taking different behaviors. 

The calculation formulas are as follows: 

( )[ ] Pr( [ ] ) Pr( [ ] ), , ,D P D N Da x X x X x P B N  • • •= +  • =

    Among them, 
[ ]

P( [ ] )
[ ]

R

R

R

X x
X x

x
=  

and
[ ]

P( [ ] )
[ ]

R

R

R

X x
X x

x


 =  represent the conditional 

probabilities that x in the equivalence class [ ]Rx  belongs to 

X  and X respectively. According to Bayesian decision 

theory, there are the following minimum-cost criterion 

decision rules: 

(P)if ( )[ ]p Ra x ≤ ( )[ ]B Ra x and ( )[ ]p Ra x ≤ ( )[ ]N Ra x , 

then ( )x Pos X ; 

(B)if ( )[ ]B Ra x ≤ ( )[ ]P Ra x and ( )[ ]B Ra x ≤ ( )[ ]N Ra x , 

then nd( )x B X ; 

(N)if ( )[ ]N Ra x ≤ ( )[ ]P Ra x and ( )[ ]N Ra x ≤ ( )[ ]B Ra x , 

then ( )x Neg X ; 

III. THREE-WAY DECISION MODELS 

 

A. Three-way decision model using cotangent similarity 

ranking method 

 

The 3WD model based on cotangent similarity under 

single-valued neutrosophic information will be presented in 

this part. Under single-valued neutrosophic information, the 

loss functions are represented by SVNNs. Table 2 shows the 

loss function table under single-valued neutrosophic 

information. 

 

 
TABLE Ⅱ 

THE LOSS FUNCTIONS BY SVNNs 

 X (positive) X (negative) 

pa (acceptance) ( , , )
PP PP PPPP T I F   =

 

( , , )
PN PN PNPN T I F   =

 

Ba (non-commitment) ( , , )
BP BP BPBP T I F   =

 

( , , )
BN BN BNBN T I F   =

 

Na (rejection) ( , , )
NP NP NPNP T I F   =

 

( , , )
NN NN NNNN T I F   =

 

 

Accordingly, for the object x in X, take actions
pa , 

Ba and Na , then the loss expectations are 

( )[ ] Pr( [ ] ) Pr( [ ] ), , ,D P D N Da x X x X x P B N  • • •= +  • =        

Concretely, by Definition 2.2, it can be got that 

( ) Pr( [ ] ) Pr( [ ] )

Pr( [ ] ) Pr( [ ] )

Pr( [ ] ) Pr( [ ] )

[ ] (1 (1 ) (1 ) ,

( ) ( ) ,

( ) ( ) )

R R

PP PN

R R

PP PN

R R

PP PN

X x X x

p R

X x X x

X x X x

a x T T

I I

F F

 

 

 








= − − −

(4)                     

( ) Pr( [ ] ) Pr( [ ] )

Pr( [ ] ) Pr( [ ] )

Pr( [ ] ) Pr( [ ] )

[ ] (1 (1 ) (1 ) ,

( ) ( ) ,

( ) ( ) )

R R

BP BN

R R

BP BN

R R

BP BN

X x X x

B R

X x X x

X x X x

a x T T

I I

F F

 

 

 








= − − −

(5)                       

( ) Pr( [ ] ) Pr( [ ] )

Pr( [ ] ) Pr( [ ] )

Pr( [ ] ) Pr( [ ] )

[ ] (1 (1 ) (1 ) ,

( ) ( ) ,

( ) ( ) ).

R R

NP NN

R R

NP NN

R R

NP NN

X x X x

N R

X x X x

X x X x

a x T T

I I

F F

 

 

 








= − − −

(6)                       

Since   are all single-valued neutrosophic numbers, it is 

obvious that all loss expectations are SVNNs, and 

0 Pr( [ ] ),Pr( [ ] ) 1R RX x X x   . Then, according to the 

definition of cotangent similarity and the minimum cost 

decision rules, we can get 

(P1)if ( ) ( )cot , ( [ ] ) cot , ( [ ] )p R B Ra x a x     and

( ) ( )cot , ( [ ] ) cot , ( [ ] )p R N Ra x a x    , then 

( )x Pos X ;  

(B1)if ( ) ( )cot , ( [ ] ) cot , ( [ ] )B R P Ra x a x     and 

( ) ( )cot , ( [ ] ) cot , ( [ ] )B R N Ra x a x    , then 

( )x Bnd X ;  

(N1)if ( ) ( )cot , ( [ ] ) cot , ( [ ] )N R P Ra x a x     and 

( ) ( )cot , ( [ ] ) cot , ( [ ] )N R B Ra x a x    , then 

( )x Neg X . 

The newly generated decision rules (P1) - (N1) provide a 

specific and clear scheme to use the three-way decision 

method for decision making. 

 

B. Three-way decision model using Hamming distance 

ranking method 
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Now we apply the Hamming distance ranking method to 

three-way decisions. The loss expectations are identical to the 

previous chapter. Then, according to the Hamming distance, 

the decision rules ( 1 )HP  - ( 1 )HN  can be re-represented 

as: 

( 1 )HP if ( ) ( ), ( [ ] ) , ( [ ] )p R B RH a x H a x     and 

( ) ( ), ( [ ] ) , ( [ ] )p R N RH a x H a x    ，then ( )x Pos X ; 

( 1 )HB if ( ) ( ), ( [ ] ) , ( [ ] )B R P RH a x H a x     and

( ) ( ), ( [ ] ) , ( [ ] )B R N RH a x H a x    ，then 

( )x Bnd X ; 

( 1 )HN if ( ) ( ), ( [ ] ) , ( [ ] )N R P RH a x H a x     and

( ) ( ), ( [ ] ) , ( [ ] )N R B RH a x H a x    ，then 

( )x Neg X . 

 

C. Three-way decision model using Vicis-Wave Hedges 

distance ranking method 

 

Now we apply the Vicis-Wave Hedges distance ranking 

method to three-way decisions. The loss expectations are 

identical to the previous chapter. Then, according to the 

Hamming distance, the decision rules ( 1 )VP  - ( 1 )VN  can 

be re-represented as: 

( 1 )VP if ( ) ( ), ( [ ] ) , ( [ ] )p R B RV a x V a x     and 

( ) ( ), ( [ ] ) , ( [ ] )p R N RV a x V a x    , then ( )x Pos X ; 

( 1 )VB if ( ) ( ), ( [ ] ) , ( [ ] )B R P RV a x V a x     and

( ) ( ), ( [ ] ) , ( [ ] )B R N RV a x V a x    , then ( )x Bnd X ; 

( 1 )VN if ( ) ( ), ( [ ] ) , ( [ ] )N R P RV a x V a x     and

( ) ( ), ( [ ] ) , ( [ ] )N R B RV a x V a x    , then ( )x Neg X . 

In conclusion, we may outline the 3WD process method 

under single-valued neutrosophic information based on 

cotangent similarity, Hamming distance, and Vicis-Wave 

Hedges distance. These are the steps in the algorithm. 

First step : It is primary to give the decision table 

( , , )U C D V , where the object set is 1 2{ , , , }nU x x x= , the 

condition attribute set is 1 2{ , , , }mC a a a= , the decision 

attribute set is { }D d= , and V is the attribute value set.           

According to the decision attribute, the two states X  and 

X  ,and the equivalence class 

[ ] { | ( ) ( ), 1,2, , }
i iR a ax y U R x R y i m=  = =  of the 

object are obtained; among them ( )
iaR x  is the attribute 

value of x concerning the attribute. 

Second step: The 
[ ]

P( [ ] )
[ ]

R

R

R

X x
X x

x
=  and 

[ ]
P( [ ] )

[ ]

R

R

R

X x
X x

x


 =  are calculated 

Third step: The expected losses of each equivalence class 

( )[ ] ( , , )Ra x P B N =  are calculated by (4) ~ (6). 

Fourth step: According to definition 2.4, definition 2.5, and 

definition 2.6, the cotangent similarities, Hamming distances, 

and Vicis-Wave Hedges distances corresponding to each loss 

expectation are computed. 

Fifth step: decision results are finally gained according to    

the decision rules. 

 

IV. APPLICATION WITH CASE 

 

The model is then applied to an antique collection 

situation [28]. The pastime of collecting antiques is 

well-known and has been around for a long time. Table 3 

displays the current selection of 15 antiques, each with 4 

conditional and 1 decisional features. 1 2 15{ , , , }U x x x=  

stands for the fifteen antiques. 1 2 3 4{ , , , }C a a a a=  represents 

the four condition attributes. The market value is represented 

by 1a ,and the values of it are α, β and γ, representing high, 

medium, and low respectively; 2a  represents the storage 

needs, which contain the terms harsh, medium, and loose; 

and 3a  represents the purchase price, which contains the 

terms expensive, suitable, and cheap. 4a , which includes 1, 

2, and 3, representing big, general, and tiny, respectively, was 

used to indicate value-added space. The decision attribution 

set is { }D d= , in which the attribution value has Y, N and 

means ‘buy’ or ‘do not buy.’ 

 
TABLE Ⅲ 

THE DECISIION TABLE 

U 1a  2a  3a  4a  d 

1x  β L E 1 Y 

2x  α M S 1 N 

3x  β L E 1 N 

4x  γ L C 3 Y 

5x  β M S 3 Y 

6x  α H C 2 N 

7x  β L E 1 N 

8x  γ L C 3 N 

9x  β M S 3 Y 

10x  β L E 1 Y 

11x  γ L C 3 N 

12x  β M S 3 N 

13x  α H C 2 Y 

14x  β L E 1 Y 

15x  γ L C 3 N 
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The 15 antiques can be divided into 5 equivalence 

classes. Y  and N  indicate the loss of taking 

action Pa  , Ba ,and Na  in the case of purchase and 

non-purchase. The values are shown in Table IV. 

From Table 3, two state sets can be obtained: 

X= 1 4 5 9 10 13 14{ , , , , , , }x x x x x x x , 

┐X= 2 3 6 9 7 8 11 12 15{ , , , , , , , , }x x x x x x x x x , 

And the equivalence classes of each object are: 

1[ ]Rx = 1 3 7 10 14{ , , , , }x x x x x , 

2 2[ ] { },Rx x=  

4 4 8 11 15[ ] { , , , },Rx x x x x=  

5 5 9 12[ ] { , , },Rx x x x=  

6 6 13[ ] { , }Rx x x= . 

The conditional probabilities P( [ ] )Rx  can be 

calculated (as shown in Table 5). 

 
TABLE Ⅴ 

CONDITIONAL PROBABILITIES 

 
1[ ]Rx  

2[ ]Rx  
4[ ]Rx  

5[ ]Rx  
5[ ]Rx  

P( [ ] )RX x  0.60 0 0.25 0.67 0.50 

P( [ ] )RX x  0.40 1 0.75 0.33 0.50 

Tables 4, 5, and Equation (1) show the expected loss of 

taking action pa  on the object in the equivalence class 1[ ]Rx  

is 1( | [ ] ) (0.86,0.23,0.24)p Ra x = . Similarly, the expected 

losses of different behaviors of other equivalence classes can 

be taken, as shown in Table 6. 

 
TABLE Ⅵ 

EXPECTED LOSS 

 ( | [ ] )p Ra x  ( | [ ] )B Ra x  ( | [ ] )N Ra x  

1[ ]Rx  
(0.86,0.23,0.24) (0.83,0.45,0.90) (0.29,0.60,0.24) 

2[ ]Rx  
(0.21,0.93,0.65) (0.95,0.67,0.17) (0.95,0.12,0.71) 

4[ ]Rx  
(0.29,0.92,0.68) (0.08,0.07,0.22) (0.43,0.71,0.82) 

5[ ]Rx  
(0.57,0.23,0.52) (0.57,0.38,0.59) (0.61,0.48,0.47) 

6[ ]Rx  
(0.72,0.36,0.45) (0.71,0.37,0.49) (0.63,0.33,0.78) 

A. Application with cotangent similarity for ranking 

According to Definition 2.4, we can calculate the 

cotangent similarity between each loss expectation and the 

ideal neutrosophic number, respectively, as shown in Table 7. 

Consider the equivalence class 1[ ]Rx  as an example. As 

shown in Table 7, due to 

( ) ( )cot , ( [ ] ) cot , ( [ ] )N R P Ra x a x     

and ( ) ( )cot , ( [ ] ) cot , ( [ ] )N R B Ra x a x    , the 

equivalence class A should be distributed to the negative 

region, meaning that the items 1 3 7 10 14, , , ,x x x x x  are 

inappropriate for purchase. According to an analogy, 

equivalence classes 2[ ]Rx  and 4[ ]Rx  should be separated 

into a positive region.  

Similarly, equivalence classes 5[ ]Rx  should be separated 

into a boundary region, and equivalence classes 6[ ]Rx  into a 

negative region. In particular, antiques 2 4 8 11 15, , , ,x x x x x  

are wise selections and worthwhile purchases; antiques 

5 9 12, ,x x x  require further consideration; and antiques 

1 3 6 7 10 13 14, , , , , ,x x x x x x x  are inappropriate for purchase. 

 

B. Application with Hamming distance for ranking 

The Hamming distance of each loss expectation and 

ideal neutrosophic number may be determined using 

Definition 2.5, as shown in Table Ⅷ. 

Consider the equivalence class 1[ ]Rx  as an example. 

As can be seen from Table 8, due to 

( ) ( ), ( [ ] ) , ( [ ] )N R P RH a x H a x    and 

( ) ( ), ( [ ] ) , ( [ ] )N R B RH a x H a x    , the equivalence class 

1[ ]Rx  should be distributed to the negative region, meaning 

that antiques 1 3 7 10 14, , , ,x x x x x  are inappropriate for 

purchase. According to an analogy, equivalence classes 

2[ ]Rx  should be separated into a positive region, 

equivalence classes 4[ ]Rx  into a positive region, 

equivalence classes 5[ ]Rx  into a boundary region, and 

equivalence classes 6[ ]Rx  into a negative region. In 

particular, we think that antiques 2 4 8 11 15, , , ,x x x x x  are 

TABLE Ⅳ 

THE LOSS FUNCTIONS 

loss 

fuction 
1[ ]Rx  2[ ]Rx  4[ ]Rx  5[ ]Rx  6[ ]Rx  

PY
 

(0.81,0.09,0.15) (0.14,0.65,0.76) (0.7,0.82,0.43) (0.48,0.27,0.49) (0.75,0.95,0.84) 

BY
 

(0.90,0.27,0.97) (0.42,0.03,0.74) (0.04,0.69,0.38) (0.44,0.67,0.96) (0.25,0.54,0.26) 

NY
 

(0.13,0.54,0.96) (0.92,0.84,0.39) (0.27,0.31,0.76) (0.64,0.65,0.34) (0.50,0.13,0.82) 

PN
 

(0.91,0.95,0.48) (0.79,0.93,0.65) (0.05,0.95,0.79) (0.70,0.16,0.59) (0.69,0.14,0.24) 

BN
 

(0.63,0.96,0.80) (0.95,0.67,0.17) (0.39,0.03,0.18) (0.75,0.12,0.22) (0.89,0.26,0.92) 

NN
 

(0.47,0.69,0.03) (0.95,0.12,0.71) (0.47,0.93,0.84) (0.51,0.26,0.90) (0.72,0.86,0.75) 
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TABLE Ⅶ 

COTANGENT SIMILARITIES 

equivalence class ( )1cot , ( [ ] )p Ra x
 

( )1cot , ( [ ] )B Ra x
 

( )1cot , ( [ ] )N Ra x
 

1[ ]Rx
 

0.1611 0.4204 0.4296 

2[ ]Rx
 

0.7146 0.2373 0.2345 

4[ ]Rx
 

0.6911 0.3278 0.6128 

5[ ]Rx
 

0.3191 0.3839 0.3659 

6[ ]Rx
 

0.2934 0.3105 0.4081 

 
TABLE Ⅷ 

HAMMING DISTANCE 

equivalence class ( ), ( [ ] )P RH a x  ( ), ( [ ] )B RH a x  ( ), ( [ ] )N RH a x  

1[ ]Rx
 

2.39 1.48 1.45 

2[ ]Rx
 

0.63 2.11 2.12 

4[ ]Rx
 

0.69 1.79 0.9 

5[ ]Rx
 

1.82 1.6 1.66 

6[ ]Rx
 

1.91 1.85 1.52 

 

TABLE IX 

VICIS-WAVE HEDGES DISTANCE 

equivalence class ( ), ( [ ] )P RV a x  ( ), ( [ ] )B RV a x  ( ), ( [ ] )N RV a x  

1[ ]Rx
 

2.0989 1.2619 1.1529 

2[ ]Rx
 

0.4587 1.8570 1.9638 

4[ ]Rx
 

0.5221 1.5885 0.8119 

5[ ]Rx
 

1.5118 1.2771 1.3219 

6[ ]Rx
 

1.5699 1.5121 1.2574 

 
wise selections and worthwhile purchases; antiques 

5 9 12, ,x x x  require more thought; and antiques 

1 3 6 7 10 13 14, , , , , ,x x x x x x x  are inappropriate for purchase. 

 

C. Application with Vicis-Wave Hedges for ranking 

The Vicis-Wave Hedges distance of each loss 

expectation and ideal neutrosophic number may be 

determined using Definition 2.5, as shown in Table IX. 

Consider the equivalence class 1[ ]Rx  as an example. 

As can be seen from Table IX, due to 

( ) ( ), ( [ ] ) , ( [ ] )N R P RV a x V a x    and 

( ) ( ), ( [ ] ) , ( [ ] )N R B RV a x V a x    , 

the equivalence class 1[ ]Rx  should be distributed to the 

negative region, meaning that antiques 1 3 7 10 14, , , ,x x x x x  

are inappropriate for purchase. According to an analogy, 

equivalence classes 2[ ]Rx  should be separated into a 

positive region, equivalence classes 4[ ]Rx  into a positive 

region, equivalence classes 5[ ]Rx  into a boundary region, 

and equivalence classes 6[ ]Rx  into a negative region. In 

particular, we think that antiques 2 4 8 11 15, , , ,x x x x x  are 

wise selections and worthwhile purchases; antiques 

5 9 12, ,x x x  require more thought; and antiques 

1 3 6 7 10 13 14, , , , , ,x x x x x x x  are inappropriate for purchase. 

 

D. Comparative analysis of these methods 

 

Section III presented different 3WD models that employ 

various distance measurement techniques. In Section IV, 

these models were simultaneously applied to an ancient 

collection case. A comparative study shows that even though 

these models use distinct calculating techniques, the 

outcomes of their decisions are identical. The decision results 

of these methods indicate that antiques 2 4 8 11 15, , , ,x x x x x  

lie in the positive region, making them suitable for purchase; 

antiques 5 9 12, ,x x x  lie in the boundary region, requiring 

further thought; and antiques 1 3 6 7 10 13 14, , , , , ,x x x x x x x  lie 

in the negative region, making them unsuitable for purchase.  

Nevertheless, the three approaches differ significantly 

even though their decision outcomes are identical. The 

cotangent similarity is calculated using the cotangent 
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function, which is more complex and time-consuming albeit 

more standardized as the result lies within [0,1]. The 

Hamming distance and the Vicis-Wave Hedges distance 

employ the easier-to-calculate absolute value and minimum 

value functions, and their computation results do not always 

lie between 0 and 1. 

 

V. CONCLUSION 

This study proposed three 3WD models using 

single-valued neutrosophic information. Specifically, 

cotangent similarity, the Hamming distance, and the 

Vicis-Wave Hedges distance were employed to compare the 

sizes of two neutrosophic sets and determine how similar the 

two sets are to each other. The three-way decision model, 

which is more in line with human thinking, enhances delayed 

decision-making compared to the conventional binary 

decision models.  

Before considering the Vicis-Wave Hedges distance 

measuring technique, the knowledge of the pertinent 

single-valued neutrosophic sets was first reviewed. 

Subsequently, three 3WD models were proposed. Finally, the 

proposed models were applied to a scenario of an antique 

collection, which sufficiently demonstrated their rationality 

and feasibility. 

In future studies, we can consider using other forms of 

neutrosophic sets to combine with 3WD. There is still a lot of 

work to be done. 
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