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Abstract—Data custodians are required to safeguard personal
health information in accordance with the Health Insurance
Portability and Accountability Act (HIPAA). Nevertheless, the
practice of data suppression, which is frequently employed
to handle small-count records, can induce biases that result
in underestimating disease loads in rural regions. This work
provides a formal description and analysis of three methods
that are used to estimate suppressed data values. The algo-
rithms are applied to synthetic heart disease mortality data
at the county level. These algorithms vary depending on their
utilization of demographic adjustments, area illness risk, and
level of implementation complexity. Although population-based
estimation of suppressed data is the most straightforward to
do, it may be more precise for diseases that have a natural
spatial element. Estimates can be enhanced by integrating risk,
whether it is specified at a broader geographical level (such as
the state level) or at a more localized level (such as a group of
nearby counties). Gaining insight into these trade-offs can aid
in predicting concealed data using illness attributes. This can
also aid in reducing biases caused by data suppression.

Index Terms—Algorithms, Data estimation, Data generation,
Data suppression.

I. INTRODUCTION

As stated in Act [1], Nelson [2], the Health Insurance
Portability and Accountability Act of 1996 (HIPAA) man-
dates that custodians of public health data, like CDC WON-
DER, must establish measures to safeguard and restrict the
disclosure of an individual’s identifiable health information.
This is achieved by employing diverse methodologies, such
as data consolidation as suggested by Croner [3], Tiwari
et al. [4], masking Allshouse et al. [5], Kwan et al. [6],
Leitner and Curtis [7], suppression Tiwari et al. [8], or a
combination of these three. Various federal and state public
health authorities, such as the CDC, employ a blend of
aggregation and suppression techniques to safeguard the con-
fidentiality of individuals. The process of consolidating data
into larger geographic units, such as counties, is typically
the initial measure taken to protect the confidentiality of
health data at the individual level. Nevertheless, in regions
with limited populations, just combining the data into a less
detailed format may not offer sufficient safeguards against
the possible exposure of personal health information at an
individual level. Data suppression is frequently a subsequent

Manuscript received October 2, 2023; revised January 31, 2023. This work
was supported in part by the Texas Department of State Health Services.

Fariba Afrin Irany is a Ph.D. student at the University of North Texas,
Denton, Texas 76207, USA (Corresponding Author, phone: 940-465-9618;
email: faribaafrinirany@my.unt.edu).

Sundos Al Subhi is a PhD candidate of the Georgia State University,
Atlanta, Georgia 30302, USA. (e-mail: salsubhi1@student.gsu.edu).

Rubenia Borge Flores is a Ph.D. student at the University of North Texas,
Denton, TX 76207, USA. (e-mail: rubeniaborgeflores@my.unt.edu).

Chetan Tiwari is an Associate Professor of Georgia State University,
Atlanta, Georgia 30302, USA. (e-mail: ctiwari@gsu.edu).

measure taken to guarantee privacy safeguarding. Data cus-
todians commonly employ suppression rules that are based
on two primary criteria: (1) the suppression of all cells in
a data table that have 10 or fewer observations, and (2)
the classification of data as ”unreliable” when any data
cell contains less than 20 observations, as stated by the
Centers for Disease Control and Prevention (2022). Although
aggregation and suppression are crucial for safeguarding the
potential identification of health information for people, they
can introduce biases that affect the accurate representation
of disease loads in a certain geographic area. Prior studies
have revealed that rural regions with lower populations are
more prone to experiencing data suppression in contrast to
metropolitan areas with greater populations. [8] stated that
if end users utilize suppressed data without making proper
demographic modifications, it will continuously result in
underestimating disease burdens in rural areas throughout the
United States. Utilizing secondary data such as area disease
risk and demographic structures might help estimate the
suppressed data values, thus reducing the possible influence
of spatial biases. Nevertheless, the geographical delineation
of regional risk can impact the computation of suppressed
data values estimations. We present three different algorithms
that employ distinct regional risk definitions to estimate
suppressed data values and analyze the tradeoffs between
implementation complexity and accuracy level for each of
the algorithm.

II. LITERATURE REVIEW

In recent decades, researchers have uncovered biases in
several illness areas and suggested techniques to alleviate
their impact. Within this section, I will critically examine
several scholarly articles pertaining to biases and the various
approaches employed to mitigate their effects. Now, I provide
the results of my review for a couple of related papers
below. In their study, Lipsitch et al. [9] initially discuss the
inherent biases that hinder the accurate interpretation of CFR,
a metric used to gauge the severity of a disease outbreak.
They subsequently suggest methods to mitigate these biases
and conclude by examining the circumstances in which risk
factors for mortality may be influenced by these biases. [10]
examine the biases related to estimate procedures for DRS,
a metric used to manage confounding in non-experimental
investigations. They argue that typical estimation tactics
are unable to effectively reduce these biases and provide
methods to address this issue. Chiang et al. [11] report the
findings of their investigation into the impact of rater bias
and the methodology used to assess the severity of a disease.
Additionally, they address the significance of diminishing
biases, noting that estimated biases amplify the potency of
the hypothesis. Conner et al. [12] provide a method to detect
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the presence of bias in prevalence estimates obtained from
harvest samples, which offer insights into disease trends.
Accorsi et al. offered a way to address biases that occurred
in different types of observational research on COVID-19.
Their findings were published in a paper titled ”Detecting
and Correcting for Bias in Observational Studies of COVID-
19” [13]. Huang et al. [14] introduce a novel approach called
Biased Sentinel Hospital-based Area Disease Estimation (B-
SHADE) to mitigate geographical biases in search engine
data. The study conducted by Bower et al. [15] aimed to
examine the biases commonly found in electronic health
record (EHR)-based studies on cardiovascular disease (CVD)
risk. The researchers offered various approaches to mitigate
the influence of these biases. The study conducted by Alonzo
et al. [16] examines the impact of a test without a definitive
standard on bias, and identifies a correlation between the
screening test and an inappropriate reference test. Wood et al.
[17] propose a technique to reduce bias in sample and mul-
tiscale entropy in fMRI data. They argue that this technique
can be applied to other methodologies used to investigate ab-
normal brain activity in various brain disorders. The authors
Angelopouloset al. [18] contend that the estimation of time-
and severity-dependent reporting of cases is subject to biases.
To address these biases, they first examine biases associated
with CFR estimation. Subsequently, they propose a corrected
estimator that involves testing the contacts of infected in-
dividuals regardless of symptoms. In order to address the
biases related to the examination of disease progression,
Mitchell et al.’s research [19] examines statistical techniques
and their application, while Pack et al.’s work [20] highlights
the biases associated with randomized control trials (RCTs)
where the treatment for obstructive sleep apnea (OSA) did
not reduce the occurrence of cardiovascular failure. The
researchers focused solely on estimating prejudice rather than
developing techniques to mitigate biases. For instance, the
study conducted by Hall et al. [21] examines the presence
of racial bias among healthcare workers and its resulting
consequences. Shan et al. [22], Croskerry [23], Sajeev et
al. [24] assess the cognitive strategy biases. Dawson et al.
[25] discuss the concept of hindsight bias, which refers to the
challenges associated with accurately estimating the proba-
bility of clinicopathologic conference impediment. Jensen et
al. [26] discuss the presence of bias in estimations of illness
prevalence. Rudolph et al. [27] highlight the significance
of measuring bias in respondent-driven samples. Baines et
al. [28] discuss how mixed mode administration can help
eliminate bias. [29] conduct a systematic analysis to compare
bias and accuracy in the context of renal disease, specif-
ically focusing on bias reduction techniques for electronic
health record data. Czeisler et al. [30] discuss survival bias
in relation to mental health surveys conducted during the
COVID-19 pandemic. Lachish and Kris [31] identify the
origins of bias in a study on disease ecology. Our research is
the first to offer techniques for mitigating the biases in illness
rate estimation caused by data suppression in CDC Wonder,
which is a public health data repository. This publication
builds upon the research conducted by Tiwari et al. [8] by
introducing methodologies to mitigate the impact of data
suppression. The proposed method is essential to demonstrate
that the existing strategy employed by the CDC Wonder to
hide data fails to safeguard persons’ privacy.

III. MATERIALS AND METHODS

Initially, we discuss the dataset that was utilized for
our research endeavors. We created synthetic data at the
county level to evaluate the effectiveness of three proposed
algorithms in calculating suppressed values for heart disease
mortality. The number of instances (i.e., deaths) for each
county (i) and age group (g) was simulated using the
following procedure:

i. Define the regional risk by utilizing a spatial weights file
that delineates the influence of n neighboring counties on the
rate of heart disease mortality in age group g within county
i. The regional influence on each county i is believed to be
distinct and is determined by randomly selecting neighboring
counties within a range of 0 to 150 miles from the centroid
of i.

ii. The crude rate for age group g in county i is calculated
by averaging the rates for age group g in all nearby counties,
as obtained in step (i) above. Excluded from the analysis are
data points that had missing rates, either due to suppression
or missing data. If rates for all surrounding counties (n) are
unavailable, the crude rate for age group g in i is designated
as ”Not Available.”

iii. The case counts for each county i and age group g
are determined by multiplying the age-group-specific rate
obtained from (ii) by the corresponding population. Cells
lacking rate information are also designated as ”Not Avail-
able.” iv. One hundred synthetic datasets of heart disease
mortality were generated by altering the level of geographical
impact, as outlined in step (I).

For each synthetic dataset, a corresponding suppressed
dataset was generated by eliminating all cells that had fewer
than ten observations. Subsequently, the three methods were
implemented on every dataset. Prior to delving into the
techniques and their significance, we outline the crucial
computations required for implementing such techniques on
a synthetic dataset.

A. Necessity of Developing Methods to Estimate Suppressed
Value

Information regarding mortality rates and other health
indicators can frequently be obtained at various geographical
levels, such as county and state levels. Typically, the number
of cases or deaths recorded at the state level is unlikely
to be less than 10 and is not withheld or concealed. Data
obtained from smaller populations, such as at the county or
census tract level, are more prone to being withheld due
to the higher likelihood of suppression. The discrepancy
between the total number of reported cases for a specific
state and the combined count of available (unrestricted) cases
at the county level within that state will indicate the exact
number of instances that have been withheld or suppressed.
The same reasoning is applicable to age-specific data that
is being requested at the county level. In this scenario, the
likelihood of data suppression is lower when data is collected
for a county without age stratification, as opposed to when
individual age-stratified data counts are sought for the same
county. The discrepancy between the combined unsuppressed
data (e.g., total reported count for a whole county) and
the total of available (i.e., unsuppressed) counts for the
categorized data (e.g., total counts across all unsuppressed
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age groups in that county) will determine the number of
cases that are withheld (Si). The three approaches described
below utilize data on population distribution, statewide or
regional risk, or a mix of both to redistribute the count of
missing data (Si) among suppressed data cells. Subsequently,
we will examine a specific scenario in order to gain a
deeper comprehension of the necessity for employing these
strategies.

If data for a certain age group in a county are withheld,
the projected count for that county can be determined using
the following equation:

∀i ∈ I gs ∈ G c′i,gs
= Di −Σm−1

g=1 di,gus (1)

In Equation 1, the symbol denotes a county from the set of
all counties I, where there is just one data cell that has been
suppressed. The variable gs denotes the age group that has
withheld information among the m age groups in the set G.
The variable c′i,gs denotes the estimated count for a specific
county and age group when the data is intentionally withheld.
The variable is denoted as gs. Di is the overall count
(not divided into age groups) provided for the county (i),
whereas Σm−1

g=1 di, gus indicates the total of counts available
for age groups with unsuppressed data. In such instances,
the precise value for the suppressed cell is calculated by
straightforwardly subtracting this value from Di, so ensuring
no margin of error. In this instance, the derived estimate
(c′i,gs ) is equivalent to Si (as explained in the calculation
procedure given above under ”Necessary Calculations for
Methods”). The counties depicted on the maps in Figure
1, 2, 3 below are represented by the class that is shaded
white, without any errors. In situations when data is withheld
for multiple age groups within a county, it is necessary to
develop techniques for computing the suppressed values.

Presently, we put up three distinct approaches to calcu-
late concealed data values. The computation process of the
method parameter Si is outlined in subsection ”Necessary
Calculations for Methods.” The methods are presented below:

B. Method 1: Population-derived Estimates for Counties
with More Than One Suppressed Cell

In Method 1, local population structures obtained from the
US Census Bureau American Community Survey (ACS) are
used to estimate missing data in suppressed cells as follows:

∀i ∈ I ∀gs ∈ G c′i,gs
=

pi,gs

Σms
gs=1pi,gs

× Si (2)

While the basic steps for method 1 are presented in
algorithm 1, we explain the algorithm using the equation
2 for ease of understanding. In Equation 2, the variable i
represents a county from the set of all n counties (I). The
variable gs represents an age group with suppressed data. The
variable ms represents the total number of age groups with
suppressed data. The variable c′i,gs represents the estimated
count for county i and age group. gs denotes the suppressed
age group, and pi,gs represents the population in county
i for that age group. The expression Σms

gs=1pi, gs denotes
the cumulative population of all age groups that have been
suppressed in county i. On the other hand, Si indicates the
overall count of suppressed cases in county i. When it is not

Algorithm 1 Population-derived Estimates
Require: set of counties I, set of age group G, county-

specific death count for an age group di,gus
, county-

specific population for suppressed age group pi,gs ,
county-level reported death count Di, suppressed age
group set for each county Gis

Ensure: estimated death count for a county for an age group
c′i,gs

1: for i ∈ I do
2: n ← length(G)
3: t ← length(Gis)
4: Dus ← Σn

g=1di, gus
5: Si ← Di - Dus

6: po ← pi,gs
7: pall ← Σt

g=1pi,gs
8: p ← po ÷ pall
9: c′i,gs ← p× Si

10: end for
11: return c′i,gs

possible to calculate Si, procedure 1 is unable to provide an
estimate for the county with suppressed data (c′i,gs ). In this
approach, we calculate the value of the suppressed cell by
dispersing the value of Si among the suppressed cells, using
the population proportion as a weighting factor. One draw-
back of this strategy is that it is only applicable to diseases
in which the likelihood of infection or mortality is influenced
by the population structure. In other words, the weights used
to redistribute Si based on population proportions must be
relevant to the specific disease being studied. This strategy
tends to exaggerate mortality in younger population groups
and underestimate mortality in older populations, including
heart disease mortality based on our synthetic data.

C. Method 2: Population and Statewide Risk Derived Esti-
mates for Counties with More Than One Suppressed Cell

Method 2 utilizes local population structures derived from
the American Community Survey (ACS) and regional or
statewide risk to estimate missing data in suppressed cells
in the following manner:

∀i ∈ I ∀gs ∈ Gs c′i,gs
=

dj,gs

pj,gs

× pi,gs (3)

We explain the algorithm 2 using the equation 3. The
notations i, I, gs, Gs, c′i,gs , and pi,gs in equation 3 are
explained in Method 1 as mentioned before. In addition, the
variable ’j’ denotes the specific state in which county ’i’ is
situated among all states represented by ’J’. The expression
dj,gs

pj,gs
reflects the calculated statewide risk by dividing the

total count of individuals in age group gs in the state (dj,gs )
by the corresponding population (pj,gs ). If the state-level
counts for any age-group gs data are missing, procedure 2 is
unable to calculate the statewide risk estimate. Consequently,
it is not possible to compute an estimate for the suppressed
cell. This approach is suitable when the regional likelihood
of a disease is comparable to the risk throughout the entire
state. Please be aware that the estimations generated by
this method, namely c′i,gs , do not take into account the
documented count of suppressed cases (Si). The discrepancy
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Algorithm 2 Population and Statewide Risk Derived Esti-
mates
Require: set of counties I, set of age group G, set of

states J, state-specific death count for suppressed age
group dj,gs , state-specific population for suppressed age
group pj,gs , county-specific population for suppressed
age group pi,gs .

Ensure: estimated death count for a county for an age group
pj,gs

1: for j ∈ J do
2: n ← length(G)
3: c ← length(I)
4: dj,gs ← Σc

i=1dj , gs
5: pj,gs ← Σc

i=1pj , gs
6: sr ← dj,gs ÷ pj,gs
7: c′i,gs ← sr × pi,gs
8: end for
9: return c′i,gs

between the total estimated counts for the county i (Σc′i,gs )
and Si is resolved by randomly adding or subtracting counts
until Si is met.

D. Method 3: Population and Local Risk-Derived Estimates

Method 3 incorporates the local population patterns de-
rived from the American Community Survey (ACS) and the
user-defined local risk to estimate missing data in suppressed
cells.

Algorithm 3 Population and Local Risk-Derived Estimates
Require: set of counties I, county-specific death count for an

age group for neighboring county di,gs,k, county-specific
population for suppressed age group neighboring county
pi,gs,k, county-specific population for suppressed age
group pi,gs , neighboring county set N for each county.

Ensure: estimated death count for a county for an age group
c′i,gs

1: for i ∈ I do
2: x ← length(N)
3: D ← Σx

k=1di, gs, k
4: P ← Σx

k=1pi, gs, k
5: L ← D ÷ P
6: c′i,gs ← L × pi,gs
7: end for
8: return c′i,gs

∀i ∈ I ∀gs ∈ Gs c′i,gs
=

Σx
k=1di,gs,k

Σx
k=1pi,gs,k

× pi,gs (4)

While the basic steps of method 3 are presented in algo-
rithm 3, we use equation 4 to explain algorithm 3 for clarity.
The notations i, I, gs, Gs, c′i,gs , and pi,gs are defined in
Method 1 as stated in Equation 4. Furthermore, the variable
k symbolizes each individual county within a collection of x
counties denoted as K. The set K is specified for each county
(i) in the research region, specifically as the set of counties
next to county i. This cluster of contiguous counties is
utilized to compute the regional susceptibility to disease. The

TABLE I
SUMMARY STATISTICS OF SPATIAL INFLUENCE

Neighboring
County Statistics of
Counties

Value

mean 35.63

std 37.81

min 1.0

25% 6.0

50% 21.0

75% 55.0

max 192.0

TABLE II
SUMMARY STATISTICS FOR METHOD 1

Method 1 Mean Error Standard Deviation
mean 1.55 1.78

std .033 .033

min 1.45 1.71

25% 1.52 1.76

50% 1.54 1.78

75% 1.57 1.81

max 1.63 1.85

TABLE III
SUMMARY STATISTICS FOR METHOD 2

Method 2 Mean Error Standard Deviation
mean 1.33 1.62

std .030 .046

min 1.26 1.53

25% 1.30 1.59

50% 1.33 1.62

75% 1.35 1.65

max 1.39 1.77

expression Σx
k=1di,gs,k

Σx
k=1

pi,gs,k
indicates the local risk. The expression

Σx
k=1di,gs,k denotes the total number of deaths in all counties

inside the set K that are linked to county i. Similarly,
Σx

k=1pi,gs,k reflects the total population of all counties in
K that are affiliated with county i. Similar to technique 2,
any discrepancy between the estimated counts for county
i (Σc′i,gs ) and Si is rectified by randomly increasing or
decreasing counts until Si is reached. If there is a lack of
data for all counties in K, the user has the option to exclude
the county with missing data or reconsider the definition of
the local region. In cases where there are few inhabitants
and numerous data gaps, researchers may need to resort to
the aforementioned approach 2. Similar to technique 2, any
disparity between the projected number of fatalities and the
officially reported number for the entire state (Si) is rectified
by introducing random additions or subtractions of deaths
until Si is fulfilled. Furthermore, it should be noted that the
local risk for a different county will be calculated based on
its own distinct group of neighboring counties.

Availability of datasets and code: materials.

IV. RESULTS AND DISCUSSION

Figure 1,2,3,4 summarize the error in estimated counts
obtained from methods 1, 2, and 3, respectively. For each

IAENG International Journal of Applied Mathematics

Volume 54, Issue 5, May 2024, Pages 936-944

 
______________________________________________________________________________________ 

https://drive.google.com/drive/folders/1VTo_gVbXj5y8u6nlR97Tabkz-lrzUOP9?usp=sharing


Fig. 1. Methods 1 for Estimating Suppressed Data Values

Fig. 2. Methods 2 for Estimating Suppressed Data Values

TABLE IV
SUMMARY STATISTICS FOR METHOD 3

Method 3 Mean Error Standard Deviation
mean 1.21 1.44

std .026 .030

min 1.13 1.37

25% 1.19 1.42

50% 1.21 1.44

75% 1.23 1.46

max 1.27 1.53

county, the error is defined as the average difference between
the true value (from the synthetic dataset) and the estimated
value (using methods described above) for all suppressed
cells. The colors on the maps in Figure 1,2,3 show the
average error for each county across all 100 simulations of
the synthetic dataset. The error term was grouped into five
classes (Class 1 through Class 5) using the quintiles classi-
fication method. Lighter colors on the map indicate a lower
average error. A visual examination of the map associated
with method 1 (Figure 1) shows a greater intensity of darker
colors, indicating greater average error than methods 2 and
3 (Figure 2 and Figure 3, respectively). Although method 1
only requires information on population proportions and is
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Fig. 3. Methods 3 for Estimating Suppressed Data Values

Fig. 4. Average Error Across Three Different Methods

TABLE V
PERFORMANCE OF DIFFERENT METHODS

Map class Method 1 Method 2 Method 3 % Difference be-
tween Method 1 and
Method 2

% Difference be-
tween Method 2 and
Method 3

No Suppression 608 608 608 0 0

No error 619 619 619 0 0

1(≤ .30) 385 276 301 -28.31 9.05

2(≤ .98) 381 519 580 36.22 11.75

3(≤ 1.63) 383 852 933 122.45 9.50

4(≤ 2.16) 383 248 99 -35.24 -60.08

5(≤ 4.88) 381 18 0 -95.27 -100
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TABLE VI
PERFORMANCE OF DIFFERENT METHODS USING URBAN-RURAL CLASSIFICATION SCHEME

County Code Total
Coun-
ties

Suppressed
Cells

No Sup-
pression

% of Counties
in Highest Error
Classes (i.e., 4 and
5) for Method 1

% of Counties
in Highest Error
Classes (i.e., 4 and
5) for Method 2

% of Counties
in Highest Error
Classes (i.e., 4 and
5) for Method 3

Large Central
Metro

68 0(0%) 68 0 0 0

Large Fringe
Metro

368 192(52.17%) 176 25 20 4

Medium Metro 372 191(51.34%) 181 34 20 8

Small Metro 358 241(67.31%) 117 34 15 6

Micropolitan 641 596(92.97%) 45 24 10 3

Noncore 1333 1312(98.42%) 21 47 13 5

relatively easy to implement, it is only appropriate for out-
comes where the risk of an adverse outcome is proportional
to population size (e.g., fatal traffic accidents). In the case
study presented in this paper – heart disease mortality – this
method tends to overestimate missing values in the younger
age groups, given their relatively large population proportions
and lower risk for heart disease mortality. Methods 2 and 3
are an improvement over method 1 as they use a combination
of population size and risk when estimating missing values.
In the case of method 2, the risk is defined as the statewide
risk of heart disease mortality. This value is multiplied by the
local population to produce an estimate of the missing value.
Although method 2 requires more information than method
1, it explicitly includes a measure of risk while considering
local population structures. However, this method assumes
little to no variation in risk within the local areas for which
the estimate is being computed. This method is appropriate
where risk is spread over large geographic areas. Method
3 is an improvement over method 2, including a measure
of local risk. In this case, we defined local risk for every
county as the average rate of heart disease mortality of its
surrounding counties. This method is appropriate for cases
where one expects to see local variations in risk. The im-
provement in the estimate obtained using method 3 compared
to methods 1 and 2 is unsurprising, given known local
variations in heart disease mortality risk. While our synthetic
dataset was constructed using some regional definition of
risk, we chose to modify the spatial influence randomly
across all 100 simulations of the dataset. Table I displays
the data pertaining to the created file used to alter the spatial
influence. The simulation provides data on the neighboring
county number for all counties. The properties mean, std,
min, 25%, 50%, 75%, max represent statistical measures of
the number of neighboring counties. The mean represents
the average number of neighboring counties, std represents
the standard deviation which measures the variability of the
neighbor number, min and max represent the smallest and
largest number of neighboring counties. The values 25%,
50%, 75% represent the quartiles, indicating that 25%, 50%,
75% of the neighbor numbers fall within these values.

Tables II, III, and IV display the error data from 100
simulations for method 1, method 2, and method 3, respec-
tively. The properties listed in these tables have the following
significance:

mean:The mean error throughout each table corresponds
to the average value of the average error, while the standard

deviation shows the average variability across 100 simula-
tions; std: The mean error across each table corresponds to
the standard deviation of the average error. The standard
deviation number shows the standard deviation over 100
simulations; min,max: the mean error throughout each table
represents the lowest and highest values of the average error,
respectively. The minimum and maximum values of the stan-
dard deviation are the lowest and highest standard deviations
across 100 simulations; 25%,50%,75%: The values of 25%,
50%, and 75% for the mean error across each table indicate
that 25%, 50%, and 75% of the average errors are within
these respective values. The values of 25%, 50%, and 75% of
the standard deviation indicate that 25%, 50% and 75% of the
standard deviation values fall within this range throughout
100 simulations.

The graphs in Figure 4 show the error distribution obtained
by the three methods. The extended tail of method 1 indicates
a greater number of counties with significantly larger error
values than methods 2 and 3. Table V presents the perfor-
mance of different methods concerning each other. Method
2 reduces the number of counties in the highest error class
(class 5) by slightly over 95%, i.e., method 2 only has 18
counties in class 5 compared to 381 in method 1. Similarly,
method 2 also contains fewer counties classified number
of counties in classes 2 and 3 improved by ∼36% and
∼122%, respectively. Despite this assumption, we find that
method 3 provides a substantial improvement over method
2, with no counties in the highest error classification (class
5) and ∼60% reduction in the number of counties included
in the 4th highest error classification (class 4). Although the
distributions for methods 2 and 3 in Figure 4 follow similar
trends, the number of observations with lower error values
is greater for method 3 (green line) than method 2 (blue
line). We used the 2013 National Center for Health Statistics
(NCHS) Urban-Rural classification scheme for counties to
better understand where suppression was most likely to
occur in our synthetic dataset and to evaluate the efficacy
of the three algorithms in estimating counts of counties
with suppressed data. Of 3140 counties analyzed in this
study, 608 were not subject to any suppression (∼19%), 619
contained one suppressed cell for which an exact value was
determined (∼20%), and 1913 counties contained more than
two suppressed cells which were estimated using the three
methods described above (∼ 61%). Under the NCHS classi-
fication scheme, counties categorized as large central metro
were not subject to data suppression (Table VI). Among
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the other groups, a little over half the counties classified
as large fringe metro and medium metro (Table VI) were
subject to suppression (52.17% and 51.34%, respectively).
The highest levels of suppression were observed in counties
classified as micropolitan and non-core (92.97 and 98.42%
respectively). Among the three methods used to estimate
suppressed cells, method 1 performed poorly across all
urban-rural classifications. Most notably, estimates obtained
by method 1 showed the highest error in medium metro, non-
core, and small metro, where 35% to 50% of estimated values
(Table VI) fell within the highest two error classes (Class 4
and 5 in Figure 1,2,3). In comparison, estimates obtained
using method 2 show substantial improvement in estimates
across all urban-rural classifications, with very few counties
falling within the two highest error classes (Class 4 and 5 in
Figure 1, 2, 3). Finally, method 3 results in the lowest error
across all urban-rural classes with no counties falling in the
highest error class (Class 5 in Figure 1, 2, 3). In the case of
counties exhibiting the most suppression (i.e., micropolitan
and non-core), estimates obtained using methods 2 and 3
provide substantial improvement over method 1 (Table VI).
To summarize, method 1 shows relatively consistent error
values across the 5 error classes, while methods 2 and 3
perform similarly across error classes 1, 2 and 3. Method 3
outperforms method 2 in the number of counties contained
within the highest two error classes.

V. CONCLUSION
The privacy and confidentiality of individual-level health

data are safeguarded by mechanisms that employ suppression
and aggregation principles. These principles involve the
elimination of data and/or reduction of spatial resolution in
regions with low population density. Prior studies indicate
that these regulations are more prone to be applicable in
rural regions and can result in a partial perspective of the
geographical distribution of illnesses. In the absence of
suitable modifications, the use of data suppression can result
in disease rates that underestimate the actual disease burden.
This research presents three methodologies for approximat-
ing the number of case counts that were excluded owing
to suppression. Our analysis demonstrates that each method
involves trade-offs in terms of use case, implementation
complexity, and the accuracy of the estimations given. We
contend that approach 1 is suitable for diseases that are
predominantly influenced by demographic patterns and lack
an inherent geographical component. Both techniques 2 and
3 utilize data on local population structures, but they employ
distinct conceptualizations of disease risk. Method 2 operates
under the assumption that risk is distributed across expansive
geographic areas and relies on utilizing available estimates
for entities such as states. Method 3 adopts a more refined
geographical interpretation of risk. For the sake of this
paper, we use the assumption that the risk of disease in
a particular area is represented by calculating the average
risk of the surrounding counties. Although the idea of risk
is rather straightforward, we demonstrate that method three
greatly enhances our capacity to estimate the values of
suppressed data cells. After employing three methodologies
on the synthetic heart disease dataset, it is evident that
technique 3 yields the most favorable outcome. Specifically,
this methodology allows for the estimation of 60% of the

suppressed data with an error margin of no more than
1%. Furthermore, we would like to draw attention to the
practices of data suppression and aggregation on a wider
scale. Our analysis reveals that approximately 25% of all
suppressed cells may have their exact values determined
using secondary information available on CDC WONDER,
particularly for outcomes such as heart disease mortality.
Approximately 46% of the remaining suppressed data cells
were approximated with a margin of error of ±1%. Con-
sidering the capacity to analyze concealed values through
straightforward GIS methods and readily accessible data, we
raise doubts about the effectiveness of suppression practices
and if they cause more harm than benefit. Our future plans
involve utilizing local spatial autocorrelation and other GIS
approaches to enhance our understanding of localized risk
and refine our estimations of suppressed data values.

ACKNOWLEDGMENT

I want to express my great appreciation to Dr. Chetan
Tiwari for his valuable and constructive suggestions during
the planning and development of this research work. His
willingness to give his time so generously has been very
much appreciated. I would also like to thank all the co-
authors for their continuous effort to finish the research.

REFERENCES

[1] A. Act, “Health insurance portability and accountability act of 1996,”
Public law, vol. 104, p. 191, 1996.

[2] G. S. Nelson, “Practical implications of sharing data: a primer on data
privacy, anonymization, and de-identification,” in SAS global forum
proceedings, 2015, pp. 1–23.

[3] C. M. Croner, “Public health, gis, and the internet,” Annual Review of
Public Health, vol. 24, no. 1, pp. 57–82, 2003.

[4] C. Tiwari, D. Sterling, and L. Allsopp, “Linking disease outcomes
to environmental risks: The effects of changing spatial scale,” in
Geospatial Technology for Human Well-Being and Health. Springer,
2022, pp. 265–280.

[5] W. B. Allshouse, M. K. Fitch, K. H. Hampton, D. C. Gesink, I. A.
Doherty, P. A. Leone, M. L. Serre, and W. C. Miller, “Geomasking
sensitive health data and privacy protection: an evaluation using an
e911 database,” Geocarto international, vol. 25, no. 6, pp. 443–452,
2010.

[6] M.-P. Kwan, I. Casas, and B. Schmitz, “Protection of geoprivacy
and accuracy of spatial information: How effective are geographical
masks?” Cartographica: The International Journal for Geographic
Information and Geovisualization, vol. 39, no. 2, pp. 15–28, 2004.

[7] M. Leitner and A. Curtis, “A first step towards a framework for
presenting the location of confidential point data on maps—results of
an empirical perceptual study,” International Journal of Geographical
Information Science, vol. 20, no. 7, pp. 813–822, 2006.

[8] C. Tiwari, K. Beyer, and G. Rushton, “The impact of data suppression
on local mortality rates: the case of cdc wonder,” American journal of
public health, vol. 104, no. 8, pp. 1386–1388, 2014.

[9] M. Lipsitch, C. A. Donnelly, C. Fraser, I. M. Blake, A. Cori,
I. Dorigatti, N. M. Ferguson, T. Garske, H. L. Mills, S. Riley et al.,
“Potential biases in estimating absolute and relative case-fatality risks
during outbreaks,” PLoS neglected tropical diseases, vol. 9, no. 7, p.
e0003846, 2015.

[10] R. Wyss, M. Lunt, M. A. Brookhart, R. J. Glynn, and T. Stürmer, “Re-
ducing bias amplification in the presence of unmeasured confounding
through out-of-sample estimation strategies for the disease risk score,”
Journal of causal inference, vol. 2, no. 2, pp. 131–146, 2014.

[11] K.-S. Chiang, C. Bock, M. El Jarroudi, P. Delfosse, I. Lee, and H. Liu,
“Effects of rater bias and assessment method on disease severity
estimation with regard to hypothesis testing,” Plant Pathology, vol. 65,
no. 4, pp. 523–535, 2016.

[12] M. M. Conner, C. W. McCarty, and M. W. Miller, “Detection of bias
in harvest-based estimates of chronic wasting disease prevalence in
mule deer,” Journal of Wildlife Diseases, vol. 36, no. 4, pp. 691–699,
2000.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 5, May 2024, Pages 936-944

 
______________________________________________________________________________________ 



[13] E. K. Accorsi, X. Qiu, E. Rumpler, L. Kennedy-Shaffer, R. Kahn,
K. Joshi, E. Goldstein, M. J. Stensrud, R. Niehus, M. Cevik et al.,
“How to detect and reduce potential sources of biases in studies of
sars-cov-2 and covid-19,” European Journal of Epidemiology, vol. 36,
pp. 179–196, 2021.

[14] D.-C. Huang, J.-F. Wang, J.-X. Huang, D. Z. Sui, H.-Y. Zhang, M.-
G. Hu, and C.-D. Xu, “Towards identifying and reducing the bias
of disease information extracted from search engine data,” PLoS
Computational Biology, vol. 12, no. 6, p. e1004876, 2016.

[15] J. K. Bower, S. Patel, J. E. Rudy, and A. S. Felix, “Addressing bias in
electronic health record-based surveillance of cardiovascular disease
risk: finding the signal through the noise,” Current epidemiology
reports, vol. 4, pp. 346–352, 2017.

[16] T. A. Alonzo, J. T. Brinton, B. M. Ringham, and D. H. Glueck, “Bias in
estimating accuracy of a binary screening test with differential disease
verification,” Statistics in Medicine, vol. 30, no. 15, pp. 1852–1864,
2011.

[17] L. Wood, M. Egger, L. L. Gluud, K. F. Schulz, P. Jüni, D. G. Altman,
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