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Abstract— Bond is one of the most attractive financial 

instruments for both investors in the capital market and 

companies seeking funds for benefit. Investing in bonds often 

yields fixed income through coupons and also exposes investors 

to investment risk, such as credit risk. This credit risk 

encompasses the potential loss arising from a failure to meet 

credit payment obligations upon maturity, leading to a 

declaration of default. To proactively address this issue, there is 

a need to calculate the default probability of a company in order 

to gain insights into the entire default potential. Previous studies 

had predominantly employed bond models that assumed ln 

returns on assets follow a normal distribution. However, real-

world ln returns on traded assets exhibited characteristics 

including excess kurtosis and heavy tails, which diverged from 

the assumptions of a normal distribution. The models developed 

on this assumption did not accurately reflect the nature of the 

data. In order to bridge this gap, this study aimed to introduce 

a novel approach for gauging default probability through the 

use of the Variance Gamma model. The chi-square test is used 

to determine goodness of fit. The Variance Gamma parameter 

estimation used Maximum Likelihood Estimation (MLE), with 

the initial value being the outcome of parameter estimation 

through the moment method. This approach assessed default 

probability in the context of both one-period and two-period 

coupon value payments. 
 

Index Terms— Variance Gamma, bond, coupon, default 

probability 

I. INTRODUCTION 

HE capital market in Indonesia is undergoing rapid 

growth, encompassing a diverse array of assets and 

volumes. As a result, there is a need to employ precise models 

in order to accurately value financial instruments including 

bonds, options, and securities. An example of such a 

prevalent model is the Geometric Brownian Motion (GBM), 

frequently employed to depict the dynamics of asset price 

shifts. The simplicity of the model facilitates its application 

in modeling the prices of diverse corporate assets and 

measuring tool for risk management. The foundational 

assumption of GBM lies in the normal distribution of natural 

logarithm returns from assets. 
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Studies conducted using data from traded asset prices in 

Indonesia showed the presence of excess kurtosis and tails in 

the distribution of natural logarithm returns. Consequently, 

the performance of the GBM falls short of accurately 

depicting asset price dynamics [1]. By adding parameters to 

control kurtosis and volatility in the distribution of natural 

logarithm asset returns, the Variance Gamma (VG) model 

presents an advantage [2]. Furthermore, a three-parameter 

VG process has been developed by [3], encompassing an 

additional parameter to control skewness. This sentiment was 

shared by [4], stating that the VG managed volatility and also 

influenced the slope and kurtosis of the distribution of natural 

logarithm asset returns. The results were compared against 

GBM, culminating in the conclusion that VG more 

effectively characterizes the dynamics of asset prices in the 

market. Several papers in finance have supported the use of 

process variance-gamma. For example, [5] and  [6]  confirm 

that an excellent model for managing financial data is the 

variance-gamma distribution. There are various procedures 

available for computing the Variance-Gamma model, such as 

those described by Avramidis et al. [7] and [8] . The closed 

form for this model is presented in [3] and was later 

developed by  [9]  and [10] . 

Investing in bond entails considerations of risk, 

particularly credit risk, which arises when a company 

becomes incapable of meeting its debt obligations upon 

maturity, effectively defaulting. To measure credit risk, bond 

price valuation scenarios can be generated to assess the ability 

of a company to fulfill its debt commitments. This process 

empowers investors to select or evaluate secure bond for 

investment. There are two models of credit risk, namely 

structural and reduced model. The structural model relies on 

internal company information, such as assets and liabilities, 

while the reduced leverages market-derived data, specifically 

company ratings [11] . 

The concept of bond valuation was first introduced by 

Merton in 1974. He proposed a method to measure the risk 

associated with corporate bonds by analyzing changes in the 

value of corporate assets and debts. The Merton model is used 

to estimate the probability of a company going bankrupt, 

which is similar to the Black-Scholes option pricing method 

[12] . A company is considered default when, at maturity, the 

value of its assets is lower than the value of its debt, assuming 

the company has only issued one zero-coupon bond. The 

landscape of bond valuation models is expanding, but there 
remains a limited discourse on coupon bond valuation. It is 

crucial to note that several contemporary bond is issued with 
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coupon. Studies considered the valuation of coupon bond 

with normally distributed assets, including the valuation of 

corporate bond featuring coupon using the GBM model [13] 

Additional study explored bond valuation, specifically 

coupling the Black-Scholes model with equations related to 
higher statistical moments—skewness and kurtosis. This 

comprehensive valuation entails estimating equity and 

default probabilities for bond-issuing companies, based on 

the Normal distribution and employing the standard Gram-

Charlier expansion model with the Hermite polynomial 

approach [14]. 

Further studies on the valuation of coupon bond within 

non-normally distributed datasets have been pursued. The 

method used includes the Fast Fourier Transform (FFT) in 

conjunction with the characteristic function of the Normal 

Inverse Gaussian distribution [15], the Variance Gamma 

distribution [16], and the GBM jump-diffusion model [17]. It 

should be noted that these investigations generally revolved 

around one-period coupon. This study distinguishes itself by 

introducing a novel approach, namely ascertaining default 

probabilities integral to coupon bond valuation through the 

Variance Gamma. The development of default probability 

assessments encompasses both one-period and two-period 

coupon bond, factoring in default at maturity. The resultant 

modeling aims to contribute to the advancement of financial 

statistical theory, particularly within the domain of bond 

investment. 

A. Variance Gamma Distribution 

The density function of the multivariate Variance Gamma 

distribution with dimension 𝑑 with shape parameter (𝑣) is as 

follows: 
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      (1)             

Where: 

𝑿′ = (𝑋1, 𝑋2, … , 𝑋𝑑), is a vector of random variables 

𝑣 = a parameter shape  

Q(𝒙) =  (𝒙 − 𝝁)′𝚺−1(𝒙 − 𝝁), representing the Mahalanobis 

distance 

𝝁′ = (𝜇1, 𝜇2, . . . , 𝜇𝑛), indicating the location parameter 

vector 

𝜽′ = (𝜃1, 𝜃2, … , 𝜃𝑛), signifying the skewness parameter 

vector 

 

𝚺 = [

𝑉𝑎𝑟(𝑋1)
𝐶𝑜𝑣(𝑋2, 𝑋1)

𝐶𝑜𝑣(𝑋1, 𝑋2) ⋯
𝑉𝑎𝑟(𝑋2) ⋯

𝐶𝑜𝑣(𝑋1, 𝑋𝑑)
𝐶𝑜𝑣(𝑋2, 𝑋𝑑)

⋮ ⋮ ⋮
𝐶𝑜𝑣(𝑋𝑑 , 𝑋1) 𝐶𝑜𝑣(𝑋𝑑 , 𝑋2) … 𝑉𝑎𝑟(𝑋𝑑)

] 

is the covariance matrix [18]. 

 

For 𝑑 = 1, Equation (1) is the univariate Variance Gamma 

distribution as stated by [3], namely: 

𝑓𝑋 (𝑥 ;  𝜇, 𝜎, 𝜃, 𝜈) =  𝐶(𝜇, 𝜎, 𝜃, 𝜈) ×  
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Where: 

 𝒦𝜐 ( ) :  a modified Bessel function of a second order type 𝜈 

    𝐶(𝜇, 𝜎, 𝜃, 𝜈) =
2
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 𝜇 : a location parameter 

 𝜎 : a dispersion parameter 

 𝑣 : a shape parameter  

 𝜃 : a skewness parameter  

The modified Bessel function of the second kind κ𝑛(𝑥∗) is 

defined as follows: 

𝜅𝑛(𝑥∗) =  
𝜋(𝐼−𝑛(𝑥∗)−𝐼𝑛(𝑥∗))

2sin (𝜋𝑛)
  

𝐼𝑛(𝑥∗) (The modified Bessel function of the first kind 𝑥∗) 

is a special solution of a second-order differential equation, 

as follows: 

𝑥∗2𝑦" + 𝑥∗𝑦 − (𝑥∗2 + 𝑛2)𝑦 = 0  

and can be expressed by the following infinite series: 

𝐼𝑛(𝑥∗) =  ∑
1

𝑛∗!Γ(𝑛+𝑛∗+1)
 (

𝑥∗

2
)

𝑛+𝑛∗

∞
𝑛∗=0   

Where n is the real number (order) [19]. 

 

B. Parameter Estimation 

The moment method is one way for estimating Variance 

Gamma parameters. [3], which is straightforward to execute 

and yields a closed-form solution. For example, at a given 

time interval 𝑡, the random variable 𝑋𝑡  follows a Variance 

Gamma distribution with mean 𝜃𝑔 and variance 𝜎√𝑔, 

expressed as:  

   𝑋𝑡 =  𝜃𝑔 + 𝜎√𝑔𝓏   (3) 

Where 𝓏 ~ Normal (0,1) and 𝑔 ~ Gamma(𝑡. 𝑣𝑡).  

Finding the first four moments (mo) of 𝑋𝑡 is the first step 

in estimating the VG parameter as follows : 
1. 𝑚𝑜1 = 𝐸(𝑋𝑡) 

    = 𝐸(𝜃𝑔 + 𝜎√𝑔𝑧 ) 

    = 𝜃𝑡    (4) 

2. 𝑚𝑜2 = 𝐸 [(𝑋𝑡 − 𝐸(𝑋𝑡))
2

] 

 By assuming 𝑥 = 𝑋𝑡 − 𝐸(𝑋𝑡)  

            𝑥 =  (𝑔 − 𝑡)𝜃 +  𝜎√𝑔 

       𝑚𝑜2 = 𝐸(𝑥2) 

                   = (𝜃2𝑣 + 𝜎2)𝑡   (5) 

3. 𝑚𝑜3 = 𝐸(𝑥3) 

          𝐸(𝑥3) =  [(𝑔 − 𝑡)𝜃 +  𝜎√𝑔𝑧]
2
. [(𝑔 − 𝑡)𝜃 +

                                 𝜎√𝑔𝑧], 

       = (2𝜃3𝑣2 + 3𝜎2𝜃𝑣)𝑡   (6) 

4. 𝑚𝑜4 = 𝐸(𝑥4) 

            𝐸(𝑥4) = 𝐸[(𝑔 − 𝑡)𝜃 +  𝜎√𝑔𝑧]
2
. [(𝑔 − 𝑡)𝜃 +

                                𝜎√𝑔𝑧]
2
  

  = (3𝜎4𝑣 + 12𝜎2𝜃2𝑣2 + 6𝜃4𝑣3)𝑡 +
              (3𝜎4 + 6𝜎2𝜃2𝑣 + 3𝜃2𝑣2)𝑡2 (7) 
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According to [20],  the solution of those equations may in 

practice require iterative procedure, but the following simple 

arguments can be used to begin such a procedure, and will 

sometimes suffice for estimation. From equation (5)-(7) for 

very small values of 𝜃 the values of 𝜃2, 𝜃3, 𝜃4 are close to 

zero.  

a. Estimated Parameter 𝜎 : 

Var(𝑋𝑡) = 𝐸(𝑥2) 

                    =  𝜃2𝑣 + 𝜎2 

                    = (0)𝑣 + 𝜎2 

                    =  𝜎2 

     So that �̂� = √Var(𝑋𝑡)     (8) 

 

b. Estimated Parameter 𝜃 : 

Skewness (𝑋𝑡) =  
𝑚𝑜3

𝜎3   

                        =  
𝐸(𝑥3)

𝜎3  

                        =  
2𝜃3𝑣2+3ó2𝜃𝑣

(𝜃2𝑣+𝜎2)3/2  

                        =  
2(0)𝑣2+3𝜎2𝜃𝑣

((0)𝑣+𝜎2)3/2  

                        =  
3𝜃𝑣

𝜎
 

So that 

         𝜃 =
𝜎 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋𝑡)

3𝑣
                                   (9)   

 

c.  Estimated Parameter  𝑣 : 

Kurtosis (𝑋𝑡) =  
𝑚𝑜4

𝜎4  

                       = 3(𝑣 + 1) 

                   𝑣 =  
Kurtosis (𝑋𝑡)

3
− 1    (10) 

In this study, the maximum likelihood method was 

employed for VG parameter estimation, a technique 

discussed in a paper authored by [21]. Partitioning the data 

into k intervals, the goodness of fit test uses the Chi-square 

test. The Chi-square formula as follow : 

𝜒2 = ∑
(𝒪𝑖−𝒩𝑝𝑖)2

𝒩𝑝𝑖

𝑘
𝑖=1        (11) 

Where 𝒩 is the sample size;  𝒪𝑖 is the observed value in the 

ith sub-interval; and 𝑝𝑖 is the probability that the observed 

value will occur by random in the ith sub-interval. This Chi-

square statistic is then compared to the 𝜒𝛼; 𝑘−1−𝓂
2  value, 

where 𝛼 signifies the significance level, and m represents the 

VG model's number of parameters [22]. 

C. Geometric Brownian Motion (GBM) Model 

The GBM model encompasses two parameters, the first 

one, 𝜇, corresponds to the expected value of ln returns on 

assets, while the second parameter, 𝜎, signifies asset price 

volatility. 

GBM model is mathematically formulated as follows: 

𝑑𝐴𝑡 = 𝜇𝐴𝑡𝑑𝑡 +  𝜎𝐴𝑡𝑑𝑊𝑡    (12) 

This equation is a Stochastic Differential Equation. In the 

context of Equation (12), A represents the asset price, 𝑡 

signifies time [23], and W stands for standard Brownian 

motion with a Normal distribution characterized by a mean of 

0 and a variance equal to 𝑡𝑗 − 𝑡𝑗−1, signifying the expected 

value of asset returns. The parameter 𝜎 represents asset price 

volatility. The resolution of Equation (12) to attain the GBM 

asset price model is achieved through the Ito theorem. The 

theorem is expressed in the equation below:  

𝑑𝐴𝑡 = 𝜇𝐴𝑡𝑑𝑡 +  𝜎𝐴𝑡𝑑𝑊𝑡   

According to the Ito theorem, the function ℋ = ℋ(𝐴, 𝑡) is 

as follows: 

 

𝑑ℋ = (
𝜕ℋ

𝜕𝐴𝑡
𝜇𝐴𝑡 +

𝜕ℋ

𝜕𝑡
+

1

2

𝜕2ℋ

𝜕𝐴𝑡
2 𝜎2𝐴𝑡

2) 𝑑𝑡 +
𝜕ℋ

𝜕𝐴𝑡
𝜎𝐴𝑡𝑑𝑊𝑡  

  

For example ℋ = ln 𝐴𝑡 function, with the condition 

 
𝜕ℋ

𝜕𝐴𝑡
=

1

𝐴𝑡
,  

𝜕2ℋ

𝜕𝐴𝑡
2 = −

1

𝐴𝑡
2, 

𝜕ℋ

𝜕𝑡
= 0  

 
From the above expression, the following equation is 

formulated:

                         𝑑ℋ = (𝜇 −
𝜎2

2
) 𝑑𝑡 + 𝜎 𝑑𝑊𝑡   

By integrating both sides of the equation from 0 to t,  

 

                       ∫ 𝑑ℋ
𝑡

0
= ∫ (𝜇 −

𝜎2

2
) 𝑑𝑡 + 𝜎 𝑑𝑊𝑡

𝑡

0
  

                     ln 𝐴𝑡 |0
𝑡 =  ∫ (𝜇 −

𝜎2

2
) 𝑑𝑡 + ∫ 𝜎 𝑑𝑊𝑡

𝑡

0

𝑡

0
 

            ln 𝐴𝑡 − ln 𝐴0 =  ∫ (𝜇 −
𝜎2

2
) 𝑑𝑡 + ∫ 𝜎 𝑑𝑊𝑡

𝑡

0

𝑡

0
  

            ln 𝐴𝑡 − ln 𝐴0 = (𝜇 −
𝜎2

2
) 𝑡  + 𝜎 𝑊𝑡  

            𝐴𝑡 = 𝐴0. exp ((𝜇 −
𝜎2

2
) 𝑡 + 𝜎 𝑊𝑡)       [24] (13) 

When the process follows the VG process equation (13), 

then it can be written as follows: 

𝐴𝑡 = 𝐴0. exp[(𝜔 + 𝑟 − 𝑞)𝑡 + 𝑋𝑡]  
Where 𝑞 represents the dividend. If there is no dividend 

(𝑞 = 0) the model becomes: 

𝐴𝑡 = 𝐴0. exp[(𝜔 + 𝑟)𝑡 + 𝑋𝑡]   (14) 

Where 𝜔 =
1

𝑣
ln (1 − 𝜃𝑣 −

1

2
𝜎2𝑣) and 𝑟 is a risk-free 

interest rate [25]. Equation (14) is the Variance Gamma asset 

model. 

II. ONE-PERIOD COUPON DEFAULT PROBABILITY 

According to [14], a one-period coupon bond granted 

investors coupon payments once during the stated duration, 

issued upon maturity. Alongside the obligation to pay a 

coupon 𝐾, the bond issuer would also be obligated to pay the 

bondholders the face value. For example, when a company 

had a total asset value of 𝐴𝑡, a face value obligation of K, a 

risk-free interest rate represented as r, a bond coupon size 

denoted with 𝑐, and a bond maturity 𝑇1 , two possible 

scenarios emerged upon maturity. Firstly, when the asset 

value was greater than or equal to the face value plus the 

coupon (𝐾 + 𝑐 = 𝐾1), specifically when 𝐴𝑇1
< 𝐾1, the bond 

issuer would remit 𝐾1 to investors. The capital or equity of 

the issuer was 𝐴𝑇1
− 𝐾1, and when the asset value was less 

than the face value plus the coupon 𝐴𝑇1
< 𝐾1, the values 

would be 0, indicating a default situation. As detailed in 

[13], Fig. 1 showed an overview of the circumstances for a 

single coupon payment period. 

Considering default at maturity, it was assumed that a 

company defaulted exclusively at the maturity of the bond  

(𝑇1). Consequently, the time of default (η) became a discrete 

random variable defined as follows: 

𝜂 = {
∞     If   𝐴𝑇1

 ≥  𝐾1

𝑇1     If    𝐴𝑇1
 <  𝐾1

  

 The probability of default at maturity was expressed as 

followed: 
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𝑃(𝜂 = 𝑇1) = 𝑃(𝐴𝑇1
< 𝐾1) 

                  = 𝑃(𝐴0 exp{(𝑟 + 𝜔)𝑇1 + 𝑋} < 𝐾1) 

         = 𝑃 (𝑋 < (𝐿𝑛 (
𝐾1

𝐴0
) −  (𝑟 + 𝜔)𝑇1)) 

         = ∫ 𝑓𝑋 (𝑥)𝑑𝑥
𝑧

−∞
   

      (15) 

Where, 

 

  𝑧 = ln (
𝐾1

𝐴0
) − (𝑟 + 𝜔)𝑇1 

 

              
Fig. 1. Bond with a one-period coupon. 

 

III. TWO-PERIOD COUPON DEFAULT PROBABILITY 

Based on [13], an overview of the situation for the two 

coupon payment periods was shown in Fig. 2. A bond with a 

two-period coupon could be exemplified as follows. A bond 

issuer (or obligor) company issued a bond with a coupon 

featuring a face value 𝐾 and maturing at 𝑇2 . The coupon value 

was paid twice during the period of the bond, at coupon 

payment 𝑇1  and at maturity 𝑇2 , each with a fixed interest rate, 

𝑐1 and 𝑐2, respectively. As a result, the obligor was obligated 

to make payments at 𝑇1(𝑐1) and at 𝑇2(𝐾1 = 𝐾 + 𝑐2). Default 

considerations indicated that at 𝑇1 , two scenarios arose: either 

the obligor paid the debt, remitting 𝑐1, or the company 

defaulted. Similarly, at 𝑇2, the company either fulfilled its 

obligations by paying the face value of the bond (𝐾) plus the 

coupon value (𝑐2), or defaulted [14] 

 

 

 
Fig. 2. Bond with a two-period coupon. 

 

 

 

 

 

TABLE I 

CAPITAL STRUCTURE OF THE COMPANY ISSUING TWO-PERIOD 

COUPON BOND AT MATURITY 

 

Situation Asset Liability Equity 

Non Default 𝐴𝑇2
≥ 𝐾1  𝐾1  𝐴𝑇2

− 𝐾1  

Default 𝐴𝑇2
< 𝐾1  𝐴𝑇2

 0 

 

The equity of the company at maturity 𝑇2 , can be written 

as: 

𝜑𝑇2
=  {

𝐴𝑇2
− 𝐾1   If   𝐴𝑇2

≥ 𝐾1

0                  If    𝐴𝑇2
< 𝐾1

 

  

𝜑𝑇2
= (𝐴𝑇2

− 𝐾1)+  

       = Max (𝐴𝑇2
− 𝐾1, 0) 

According to [13], the present value of the equity at the 

𝑡 = 𝑇1  is as follows: 

𝜑𝑇1

𝑇2 = exp(−𝑟(𝑇2 − 𝑇1)) 𝐸[(𝐴𝑇2
−𝐾1)+]  

       = exp(−𝑟(𝑇2−𝑇1))[Max (𝐴𝑇2
− 𝐾1, 0)] (16) 

 

The solution to equation (16) is the European VG call 

option (𝐶𝑜) price according to [3], which is expressed as:  

𝐶𝑜(𝐴𝑇1
; 𝐾1, (𝑇2 − 𝑇1))        

= 𝐴𝑇1
Ψ (𝑑 √

1 − 𝒞1

𝑣
, (𝜁 + 𝑠)√

𝑣

1 − 𝒞1

, 𝛾)  

−𝐾1 exp(−𝑟(𝑇2 − 𝑇1))  
 

× Ψ (𝑑 √
1−𝒞2

𝑣
, 𝜁𝑠√

𝑣

1−𝒞2
, 𝛾)    (17) 

 

Where Ψ(𝒜, ℬ, 𝛾) is a solution expressed below: 

∫ 𝑁 (
𝒜

√𝑢
+ ℬ√𝑢)

∞

0

exp(−𝑢)𝑢𝛾−1

Γ(𝛾)
𝑑𝑢  

From the above formula, the following equations are 

formulated: 

 

Ψ(𝒜, ℬ, 𝛾) =
𝒞𝛾+

1
2 exp[𝑠𝑖𝑔𝑛(𝒜)𝒞] (1 + 𝑢)𝛾

√2𝜋Γ(𝛾)𝛾
  

× 𝒦
𝛾+

1
2

(𝒞)Φ [𝛾, 1 − 𝛾, 1 + 𝛾;
1 + 𝑢

2
, −𝑠𝑖𝑔𝑛(𝒜)𝒞(1 + 𝑢)] 

−𝑠𝑖𝑔𝑛(𝒜)
𝒞𝛾+

1
2 exp[𝑠𝑖𝑔𝑛(𝒜)𝒞] (1 + 𝑢)1+𝛾

√2𝜋Γ(𝛾)(1 + 𝛾)
× 𝒦

𝛾−
1
2

(𝒞) 

Φ [1 + 𝛾, 1 − 𝛾, 2 + 𝛾;
1+𝑢

2
, −𝑠𝑖𝑔𝑛(𝒜)𝒞(1 + 𝑢)]  

+𝑠𝑖𝑔𝑛(𝒜)
𝒞

𝛾+
1
2 exp[𝑠𝑖𝑔𝑛(𝒜)𝒞](1+𝑢)𝛾

√2𝜋Γ(𝛾)𝛾
×  

𝒦
𝛾−

1

2

(𝒞)Φ [𝛾, 1 − 𝛾, 1 + 𝛾;
1+𝑢

2
, −𝑠𝑖𝑔𝑛(𝒜)𝒞(1 + 𝑢)]  

 

Where : 

𝛾 =
(𝑇2−𝑇1)

𝑣
, 𝒞1 =

𝑣(𝛼+𝑠)2

2
 ,  𝒞2 =

𝑣𝛼2

2
 

𝑑 =
1

𝑠
[ln (

𝐴𝑇1

𝐾1
) + 𝑟(𝑇2 − 𝑇1) +

(𝑇2−𝑇1)

𝑣
ln (

1−𝒞1

1−𝒞2
)]  

𝑠 =
𝜎

√1+(
𝜃

𝜎
)

2𝑣

2
 

  

𝜁 =  −
𝜃

𝜎2  𝑠 , 𝒞 = |𝒜|√2 + ℬ2 , 𝑢 =
ℬ

√2+ℬ2
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Φ represents a degenerate hypergeometric function of two 

variables with the integral form of Humbert, expressed as 

follows: 

Φ(𝛼1, 𝛽1, 𝛾1; 𝑥1, 𝑦1) =
Γ(𝛾1)

Γ(𝛼1)Γ(𝛾1 − 𝛼1)
× 

∫ [𝑢1
𝛼1−1(1 − 𝑢1)𝛾1−𝛼1−11

0
 (1 − 𝑢1𝑥1)−𝛽1 exp(𝑢1𝑦1)]𝑑𝑢1. 

 
The equity of the obligor at coupon payment time will not 

be equal to zero if 𝐴𝑇1
≥ 𝐴1

∗ , with 𝐴1
∗  representing an estimate 

of 𝐴𝑇1
 satisfying  

 𝐹(𝐴1
∗ ) = 𝜑𝑇1

𝑇2 − 𝑐1 = 0.   

 exp(−𝑟(𝑇2−𝑇1))[Max (𝐴1
∗ − 𝐾1, 0)] − 𝑐1 = 0. 

 

𝐴1
∗  is estimated with a numerical approach. In this study, 

the numerical approach is used the bisection method. The 

algorithm can be described like this [26],  
1. Set the initial values 𝑎0 = 𝐴𝑙 and 𝑏0 = 𝐴𝑟 where 𝐹(𝐴𝑙)  

and 𝐹(𝐴𝑟) have opposite signs. 

2. Given two rational numbers 𝑎𝑖−1  and 𝑏𝑖−1 with the 

property that 𝐹(𝑎𝑖−1) and 𝐹(𝑏𝑖−1) have the opposite 

signs, set  𝐴1
∗ =  

𝑎𝑖−1+𝑏𝑖−1 

2
 ,  

a) If 𝐹(𝐴1
∗ ) = 0, stop. 

b) If 𝐹(𝐴1
∗ ) ×  𝐹(𝑏𝑖−1) < 0, set 𝑎𝑖 = 𝐴1

∗  and 𝑏𝑖 = 𝑏𝑖. 

c) If 𝐹(𝐴1
∗ ) ×  𝐹(𝑎𝑖−1) < 0, set 𝑎𝑖 = 𝑎𝑖  and 𝑏𝑖 = 𝐴1

∗ . 

3. Increase i by 1 and go back to step 2 as desired. 

 

The capital structure of the bond issuer with a two-period 

coupon at maturity, based on default at maturity, is described 
as follows: 

 
TABLE II  

CAPITAL STRUCTURE OF TWO-PERIOD COUPON BOND 

ISSUING COMPANIES DURING PAYMENT 

 

Situation Asset Liability Equity 

Non Default 𝜑𝑇2

𝑇1 ≥ 𝑐1  𝑐1 𝜑𝑇2

𝑇1 − 𝑐1 

Default 𝜑𝑇2

𝑇1 < 𝑐1 𝑐1 0 

 

During the coupon payment time (𝑇1), the obligor was 

considered to be in default when 𝐴𝑇1
< 𝐴1

∗ . Consequently, the 

probability of default at the time could be expressed as 

follows: 

𝑃(𝜂 = 𝑇1) = 𝑃(𝐴𝑇1
< 𝐴1

∗ ) 

  = 𝑃(𝐴0exp{(𝑟 + 𝜔)𝑇1𝑋} < 𝐴1
∗ ) 

 = 𝑃 (𝑋 < (ln (
𝐴1

∗

𝐴0
) −  (𝑟 + 𝜔)𝑇1)) 

 = ∫ 𝑓(𝑥)𝑑𝑥
ln (

𝐴1
∗

𝐴0
)− (𝑟+𝜔)𝑇1

−∞
  (18) 

From Equation (14), the following expressions can be 
deduced: 

 

𝐴𝑇1
= 𝐴0 exp ((𝑟 + 𝜔)𝑇1 + 𝑋1), and 

𝐴𝑇2
= 𝐴0 exp ((𝑟 + 𝜔)𝑇2 + 𝑋2) 

 

𝑃(𝐴𝑇2
< 𝐾1| 𝐴𝑇1

≥ 𝐴1
∗ ) = 1 −  

𝑃((𝑟 + 𝜔)𝑇2 + 𝑋2) ≥ ln
𝐾1

𝐴0
 ∩ ((𝑟 + 𝜔)𝑇1 + 𝑋1) ≥ ln

𝐴1
∗

𝐴0
)

𝑃(𝐴𝑇1
≥ 𝐴1

∗ )
 

 

 

 

= 1 − 

𝑃(𝑋2 < ln
𝐴0

𝐾1
+  (𝑟 + 𝜔)𝑇2 ∩ 𝑋1 < ln

𝐴0

𝐴1
∗ +  (𝑟 + 𝜔)𝑇1)

1 − 𝑃(𝑀𝑇1
< 𝑀1

∗)
 

 

= 1 −
∫ ∫ 𝑓(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2

𝑧2

−∞

𝑧1

−∞

1 − 𝑃(𝐴𝑇1
< 𝐴1

∗ )
 

= 1 −
∫ ∫ 𝑓𝑋1,𝑋2

(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2
𝑧1

−∞

𝑧2

−∞

1 − ∫ 𝑓(𝑥)𝑑𝑥
𝑧

−∞

 

where 

𝑧1 = ln
𝐴0

𝐴1
∗ +  (𝑟 + 𝜔)𝑇1, 𝑧2 = ln

𝐴0

𝐾1
+  (𝑟 + 𝜔)𝑇2,  

𝑧 = ln (
𝐴1

∗

𝐴0
) − (𝑟 + 𝜔)𝑇1 

 
𝑓𝑋1,𝑋2

(𝑥1, 𝑥2) is obtained from Equation (1) for 𝑑 = 2. This 

equation is a bivariate Variance Gamma distribution, namely: 

𝑓X1,𝑋2
(x1, 𝑥2)

=
2 (

1
𝑣

)

1
𝑣

(
2
𝑣

+ 𝜽′ 𝚺−1𝜽)
1−

1
𝑣

2𝜋|𝚺|
1
2Γ(

1
𝑣)

×

𝒦1
𝑣

−1
(√Q(𝒙) (

2
𝑣 + 𝜽′ 𝚺−1𝜽)) exp ((𝒙 − 𝝁)′𝚺−1𝜽)

(√Q(𝒙) (
2
𝑣 + 𝜽′ 𝚺−1𝜽))

1−𝜆
 

Where: 

 𝒙′ = (𝑥1, 𝑥2)  

  𝝁 = (𝜇1, 𝜇2) 

  𝜽 = (𝜃1, 𝜃2) 

𝑄(𝒙) =  (𝒙 − 𝝁)′𝚺−1(𝒙 − 𝝁)  

  𝚺 = (
𝜎1

2𝑣1 𝜎1𝜎2𝜌√𝑣1𝑣2

𝜎1𝜎2𝜌√𝑣1𝑣2 𝜎2
2𝑣2

)  

 𝝈 = (𝜎1, 𝜎2) 

 The shape of the covariance matrix is (𝚺), as stated in 

[27].  

IV. DATA AND METHOD 

This study employed bond data from an Indonesian 

banking company, specifically Bank CIMB Niaga Sub-

Ordination Bond III 2018 Series A. The bond was issued on 

November 16, 2018, and reached maturity on November 15, 

2023. The relevant data was sourced from [28]. 

Company asset data were extracted from the financial 

statements of PT Bank CIMB Niaga Tbk, spanning from 

November 2018 to April 2023. These asset details could be 

accessed through [29], and the stages undertaken in this study 

encompassed: 

1) Exploration of data using quantiles plots (Q-Q plots), 

testing the Variance Gamma distribution fit using the Chi-

Square test, and estimating parameters using maximum 

likelihood. 

2) Determining the Variance Gamma asset model, and the 

estimated value of the asset at the time of payment of the 

first coupon value.  
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3) Calculating the default probability of the bond issuer 

company for both one-period and two-period coupon 

using the Variance Gamma distribution. 

Data were processed using software R. Some of the R 

packages used included moments [30], Variance Gamma 

[31], BAS  [32], Bessel [33], and ghyp [34]. 

V. RESULT AND DISCUSSION 

Previous studies developed numerous prediction models 

for assets or stocks. Predictive accuracy was measured using 

the mean absolute percentage error (MAPE). For the asset 

model, prediction accuracy was observed with GBM (MAPE 

= 6.11%) and GBM with jump diffusion (MAPE = 3.87%). 

This comparison showed the superiority of the model with 

jump diffusion [17]. A similar investigation using the same 

data employed the VG model (MAPE = 2.59%), highlighting 

its superiority. It should be noted that modeling for predicting 

daily stock prices had also been conducted by [35], consisting 

of GBM (MAPE = 9.71%), GBM model with jump diffusion 

(MAPE = 11.77%), and VG (MAPE = 5.75%). These results 

collectively underscored the accuracy of VG, causing it to 

emerge as a more appropriate choice for bond valuation. The 

first step carried out in this study was to explore the data, 

namely making quantiles plots (Q-Q plots) and formal tests 

to see distribution compatibility. 

 
Fig. 3. Quantile plots of the variance gamma distribution. 

 

Fig. 3 showed the quantile plots for the Variance Gamma 

distribution, which formed a linear pattern, signifying 

alignment between the data and distribution. The VG 

distribution model was subjected to a fit test, employing the 

following formal hypothesis tests: 

 

𝐻0: ln returns on assets of PT Bank CIMB Niaga Tbk 

adhered to VG distribution 

𝐻1: ln returns on assets of PT Bank CIMB Niaga Tbk do not 

conform to VG distribution 

 

The Chi-Square test was employed for this analysis, with a 

significance level 𝛼 of 5%. The obtained p-value of 0.0840 

led to the conclusion that the distribution of ln returns on the 

assets of PT Bank CIMB Niaga Tbk followed the VG 

distribution. Parameter estimation for the Variance Gamma 

model was carried out using the Maximum Likelihood 

approach, yielding the following results:  

 
TABLE III 

ESTIMATION OF VARIANCE GAMMA MODEL PARAMETERS 

 

 

Table III showed the results of parameter estimation for ln 

returns of assets. The value 𝜈 ̂ = 1.512104 was employed to 

determine kurtosis, and from Equation (10), the value 

kurtosis = 57.43574. This result indicated a presence of 

excess kurtosis, but a non-zero value of 𝜃 implied distribution 

asymmetry. In addition to VG parameters, essential bond data 

variables encompassed face value (𝐾), bond term (𝑇), coupon 

percentage (𝑘), and risk-free interest rate (𝑟).  

 

TABLE IV 

BOND DATA VARIABLES 

 

Data Information 

Bond Name Bank CIMB Niaga Subordinated 

Bond III Year 2018 Series A 

Bond Code IDA0000946A6 

Issuer PT Bank CIMB Niaga Tbk 

Face Value (𝐾) IDR 75,000,000,000 

Issuance Date November 16, 2018 

Maturity Date November 15, 2023 

Bond Term (𝑇)  5 Years 

Company Rating idAAA 

Coupon Percentage (𝑘) 9.85% per year 

 

The risk-free interest rate (𝑟) used referred to the interest 

rate of Bank Indonesia, namely 5.75% [25].  

A. Determining The One-Period Coupon Default 
Probability 

In this study, it was assumed that the company solely 

provided one coupon value (c) during the bond duration, with 

payment occurring upon maturity (𝑇1) . The determination of 

coupon value (𝑐) and 𝐾1 (face value plus coupon value) was 

detailed as follows: 

 

  𝑐 = (
𝐾𝑘

4
) 24 = 6𝐾𝑘,   

     𝐾1 = 𝐾 + 𝑐 

       = 𝐾 + (
𝐾𝑘

4
) 24 

      = 𝐾(1 + 6𝑘) 
      = 75000000000(1 + 6(0.09850)) 

     𝐾1 =   𝑅𝑝 119.325.000.000,00     
 

The values of the remaining variables required to calculate 

the default probability were summarized as follows: 

 
 

Company 

Name 
�̂� 𝜎 𝑣 𝜃 

PT Bank 

CIMB Niaga 

Tbk. 

0.00317 0.02214 1.51210 0.00071 
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TABLE V 

THE VALUE OF VARIABLES TO DETERMINE THE 

PROBABILITY OF A ONE-PERIOD COUPON DEFAULT 

 

Variable 

Name 

Variable Value Information 

𝑐 IDR 44,325,000,000 Coupon Value 

𝐾1  IDR 119,325,000,000     Debt Value and 

Coupon Value 

𝑇1 60 Maturity Time 

𝐴0 IDR 256,211,135,000,000 Company assets at 𝑇0 

(bond issuance time, 

November 2018) 

𝜔 -0.0009583582 Constant 

 

Based on Equation (15), the default probability value was 

formulated as follows: 

𝑃(𝜂 = 𝑇1)  

= 𝑃 (𝑋1 < (𝐿𝑛 (
𝐾1

𝐴0
) −  (𝑟 + 𝜔)𝑇1))  

= 𝑃 (𝑋1 < (𝐿𝑛 (
119325000000

256211135000000
) −  (0.0575 +

(−0.0009583582)60))  

 = 𝑃(𝑋1 < −8.76182) 

The probabilities were computed using the 𝑅 package, and 

the function used was pvg., which produced the following: 

𝑃(𝑋1 < −8.76182) =  1.511977 × 10−203 

The probability value was very small (close to zero), 

indicating that this company was not default at maturity (time 

𝑇1). 

B. Determining The Two-Period Coupon Default 
Probability 

The two-period coupon default probability pertained to 

dual coupon payments across the bond duration, specifically 

at 𝑇1and 𝑇2 . At 𝑇1 , only the coupon value was disbursed, 

while at 𝑇2, payment comprised the coupon value and bond 

payable. In this study, 𝑇1 was set at November 2021 (with the 

possibility of exploring other months), and 𝑇2 signified the 

maturity date, namely November 2023. Estimation of 𝐴𝑇1
 

(𝐴1
∗ ) employed a numerical approach through the bisection 

method. The result of the iterative is 𝐴1
∗  = IDR 

25,113,294,359. In addition to the VG distribution parameters 

shown in Table III, the remaining variables pivotal for 

determining two-period coupon default probability were 

summarized in Table VI. The default probability for the bond 

issuer at the time of coupon value payment (time 𝑇1) based 

on default maturity was expressed below: 

𝑃(𝜂 = 𝑇1)  = 𝑃(𝐴𝑇1
< 𝐴1

∗ )      

                      = 𝑃 (𝑋1 < (𝐿𝑛 (
𝐴1

∗

𝐴0
) −  (𝑟 + 𝜔)𝑇1)) 

= 𝑃 (𝑋1 < (𝐿𝑛 (
25113294359

256211135000000
) −

                    (0.0575 + (−0.0009583582)))  

= 𝑃(𝑋1 < −11.42841) 

          =  1.947979 × 10−265  

 

 

TABLE VI 

 VALUE OF VARIABLES FOR CALCULATING THE 

PROBABILITY OF A TWO PERIOD COUPON DEFAULT 

 

Variable 

Name 

Variable Value Information 

𝑐1 IDR 22,162,500,000 Coupon value at  

time 𝑇1  

𝑐2 IDR 22,162,500,000 Coupon value at 

time 𝑇2  

𝐾1  IDR 97,162,500,000    Value of bond 

payable and 

coupon value 

𝑇1  36 Time for payment 

of the coupon 

value (November 

2021) 

𝑇2 60  Maturity Date 

(November 2023) 

𝐴0 IDR 256,211,135,000,000 Company Asset 

at 𝑇0  (bond 

issuance time, 

November 2018) 

𝐴1 IDR 301,435,478,000,000 Asset Value at 

Time 𝑇1  

𝐴1
∗  IDR 25,113,294,359 Estimated value 

of assets  

𝜔 -0.0009583582 Constant 

 
The default probability for the bond issuer at the time of 

coupon value payment (time 𝑇1) based on default maturity 

was expressed below: 

𝑃(𝜂 = 𝑇1)  = 𝑃(𝐴𝑇1
< 𝐴1

∗ )      

                  = 𝑃 (𝑋1 < (𝐿𝑛 (
𝐴1

∗

𝐴0
) −  (𝑟 + 𝜔)𝑇1)) 

= 𝑃 (𝑋1 < (𝐿𝑛 (
25113294359

256211135000000
) −

 (0.0575 + (−0.0009583582)))  

= 𝑃(𝑋1 < −11.42841) 

          =  1.947979 × 10−265  

The exceedingly small probability value (close to zero) 

indicated the non-default status of the company during 

coupon value payment 𝑐1 (time 𝑇1). Therefore, the analysis 

needs to be continued for time 𝑇2  (during coupon payment 𝑐2 

and face value 𝐾). The probability of the issuing company 

facing defaults at maturity (Time 𝑇2)) was expressed using 

the following formula: 

  𝑃(𝜂 = 𝑇2) = 𝑃(𝐴𝑇2
< 𝐾1|𝐴𝑇1

> 𝐴1
∗ ) 

                     = 1 −
∫ ∫ 𝑓𝑋1,𝑋2

(𝑥1,𝑥2)𝑑𝑥1𝑑𝑥2
𝑧1

−∞
𝑧2

−∞

1−∫ 𝑓(𝑥)𝑑𝑥
𝑧

−∞

 

To calculate ∫ ∫ 𝑓(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2
𝑧1

−∞

𝑧2

−∞
, the package R, 

namely pghyp function, was used, and the following equation 

was obtained: 

  𝑃(𝜂 = 𝑇2)   = 1 −
1

1−1,947979×10−265  

                        ≈ 0 

Where 𝑧1 and 𝑧2 indicate integral limit. 

 𝑧1 = ln 
𝐴0

𝐴1
∗ + (𝑟 + 𝜔)𝑇1 = 8.035915  and 

 𝑧2 = ln 
𝐴0

𝐾1
+ (𝑟 + 𝜔)𝑇2 = 4.647428   
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The very small probability value indicates the ability of the 

company to pay the face value (𝐾) and the bond coupon (𝑐2) 

at 𝑇2. 

VI. CONCLUSION 

In conclusion, the use of the VG model in applying the 

coupon bond theory showed an extremely low probability 

value concerning maturity-based default. This result 

indicated a high level of safety for investors who considered 

bond from PT Bank CIMB Niaga Tbk. The minimal 

probability of default, closely approaching zero, stemmed 

from the substantial asset value that was capable of covering 

the bond obligations. Furthermore, PT Bank CIMB Niaga 

Tbk, being a robust banking entity, demonstrated impressive 

performance and showed a capacity to meet long-term 

financial commitments. This was evidenced by the exemplary 

corporate rating of idAAA. As a suggestion for future study, 

the equity and liabilities of companies using the VG model 

approach could be explored. Additionally, there was potential 

for the enhancement of coupon value payment spanning two 

periods. 
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