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Abstract—Great changes have taken place in the speed and
mode of information dissemination in the digital age. In this
paper, combined Word of mouth (WOM) and Internet word
of mouth (IWOM), we further propose a stochastic SI1I2AD
transmission model. WOM and IWOM are two channel to
influence the consumers’ decisions. We investigate the existence
and uniqueness of the solution to the stochastic differential
equations model. Then the basic reproduction numbers are
obtained, and the dynamical behaviors of the individuals are
investigated. In particular, we obtain the sufficient conditions
of two types of information dissemination exist alone and
together, respectively. Theoretical results show that greater
environmental uncertainty poses a risk to the dissemination
of product information, resulting in the disappearance of the
disseminating population, and that lower noise intensity favours
the continued presence of the product in the market. Moreover,
only when ξ, the rate at which people from WOM to IWOM,
remains low, the two modes of information diffusion could co-
exist.

Index Terms—Information dissemination, Internet word of
mouth, White noise, Dynamic analysis.

I. INTRODUCTION

T HE dual development pattern, that is, the domestic
great cycle as the main body, and the domestic and

international double cycle, has been proposed in China in
2020. This is to drive the troika of economic development:
consumption, investment and exports. Further, the utility
brought by products directly affects the behavior of potential
consumers from the perspective of the consumer theory of
microeconomic, . Timely dissemination of product informa-
tion, and then matching people’s needs is an important way
to expand the consumer market. At the same time, the advent
of the digital economy era has provided greater opportunities
for this.

Word of mouth is a traditional way of product information
dissemination, that is, through consumers’ own experience
to further share with people around them. Internet word of
mouth is a information dissemination manner in the new
era, such as e-commerce online delivery. In particular, the
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international import and export of digital products is more
about sharing product information and looking for potential
consumers through online information platforms. Product
information dissemination will have a significant impact on
consumers’ attitudes and final decisions.

In 1969 the first mathematical model of new products
was proposed by Bass [1]. After that, mathematical models
play an important role in the study about the production
dissemination of WOM, and this topic attracts the attention of
more and more scholars, [2]–[4]. Fibich considered the Bass
model and SIR model, then combined both to describe the
diffusion of the new products [5], [6]. Rodrigues and Fonseca
think that the message is viral through person-to-person
transmission and proposed the SIR model with the standard
incidence rate [7]. Jiang et al considered a S1S2IR epidemic
model to investigate the behaviors of consumers based on
the stability theory about Ordinary Differential Equations
[8]. In addition, some new useful models were derived and
proposed, such as SEIR, which are analysed by using
the Hamiltonian function [9]. [10] proposed a new SIALS
epidemiological model to describe the characteristics of the
information dissemination for the products.

As the rapid development of the digital technology, many
shopping platforms and communication platforms have been
used more frequently, such as JD.com and Twitter. The
emergence of IWOM communication has, to a certain extent,
got rid of the shackles of traditional WOM communica-
tion and broadened the communication mode of product
market [11], [12]. In 2023, Qiao and Hu [13] consid-
er the SIAD (Susceptible-Infected1-Infected2-Agreeable-
Disagreeable) model with IWOM. Moreover, there are many
uncertain factors to influence the dynamical behaviors of
the system in the real world, such as climate environment,
personal emotion, and so on [14]–[17]. And the stochastic
system has been widely concerned and studied [18]–[20].
Based on the above work and stochastic differential equa-
tions, we further propose and investigate the viral product
diffusion model with the white noise, which is defined as
follows:

dS(t) =[Λ− αS(t)I1(t)− βS(t)I2(t)− µS(t)]dt

+ σ1S(t)dB1(t),

dI1(t) =[αS(t)I1(t) + ξI1(t)I2(t)− (µ+ δ1 + δ2)I1(t)]dt

+ σ2I1(t)dB2(t),

dI2(t) =[βS(t)I2(t)− ξI1(t)I2(t)− (µ+ ε1 + ε2)I2(t)]dt

+ σ3I2(t)dB3(t),

dA(t) =[δ1I1(t) + ε1I2(t)− µA(t)]dt+ σ4A(t)dB4(t),

dD(t) =[δ2I2(t) + ε2I2(t)− µD(t)]dt+ σ5D(t)dB5(t),
(1)

where S is the susceptible class of individuals tending to
purchase the products, I1 is the infected 1 class of individuals
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that have purchased the product and spread the relevant
information through IWOM, I2 is the infected 2 classe
that have purchased the product and spread the information
through WOM, A is the agreeable class of individuals that is
agreeable with the shopping, D is the disagreeable class of
individuals that is disagreeable with the shopping, Bi(t), i =
1, 2, 3, 4, 5 are the independent standard Brownian motions,
and σi(t), i = 1, 2, 3, 4, 5 are the intensity of the white
nioses. Λ is the number of immigrants in the social consumer
system. α and β are the transmission rate of S contacting
I1 and I2, respectively. µ is the removal rate of the classes.
δ1 and ε1 are the propotion of WOM information spreading
individuals and IWOM information spreading individuals
to be agreeable with the shopping production information,
respectively. δ2 and ε2 are the propotion of WOM informa-
tion spreading individuals and IWOM information spreading
individuals to be disagreeable with the shopping production
information, respectively.

In this paper, we focus on the dynamic behaviors of
Infected 1 who spread the information of products by WOM
and Infected 2 who spread by IWOM. And we improve the
model of [13] from the following:
• As more and more consumers are exposed to digital

platforms, we use bilinear incidence rate ξI1(t)I2(t) to
present the nonlinear phenomenon, which is more suitable
and realistic.
• The complex environmental noises are presented by

the Brownian motion and studied by stochastic differntial
equations.

It is organized as following. Section 2 is devoted to
the existence and uniqueness of the solution to stochastic
model (1). Dynamic behaviors are discussed and the basic
reproduction number is obtained in Section 3, where the
extinction, persistence in mean of I1 or I2, and persistence in
mean of co-infections are analysed and investigated. Finally,
the conclusion is presented in Section 4.

In this paper, we define Rn
+ = {(a1, ...an) ∈ Rn :

a1 > 0, ai > 0, i = 2, 3, ..., n}, and denote κ1 ∨ κ2 =
max{κ1,κ2} and κ1 ∧κ2 = min{κ1,κ1}. For the function
z(t) is integrable on [0,+∞), we define

1

t

∫ t

0

z(u)du = 〈z(t)〉, for t ≥ 0.

II. EXISTENCE AND UNIQUENESS OF THE GLOBALLY
POSITIVE SOLUTION TO STOCHASTIC MODEL

In this section, we discuss the existence and uniqueness of
the positive solution to model (1) by constructing the suitable
Lyapunov function.

Lemma 1. [17] Let Ñ(t) = S(t) + I1(t) + I2(t) +A(t) +
D(t), then we can obtain the positively invariant set

Γ =
{

(S(t), I1(t), I2(t), A(t), D(t)) ∈ R5
+ :

S(t) + I1(t) + I2(t) +A(t) +D(t) ≤ A

µ

}
.

(2)

Theorem 1. For any initial value
(S(0), I1(0), I2(0), A(0), D(0)) ∈ R5

+, there is a unique
positive solution (S(t), I1(t), I2(t), A(t), D(t)) of model
(1) for t ≥ 0, which will remain in R5

+ with probability one.
Proof. Firstly, we can see that there is a unique local

solution on [0, τe], because coefficients of model are locally

Lipschitz continuous on R+. Then we only need to proof
τe = +∞ for the global existence of the solution. In general,
the proofs for this part are similar, the difference is only in
constructing the appropriate Lyapunov equation.

Define a function Υ : R5
+ → R+ by

Υ(S, I1, I2, A,D) = S − 1− lnS + I1 − 1− ln I1

+ I2 − 1− ln I2 +A− 1− lnA+D − 1− lnD.

Since (u − 1 − lnu) ≥ 0 for all u > 0, then the function
Υ(S, I1, I2, A,D) is nonnegative.

By Itô’s lemma, we could obtain

dΥ ≤
(

Λ− µN + 5µ+ δ1 + δ2 + ε1 + ε2 +
A

µ
(α ∨ β)

+
1

2

5∑
i=1

σ2
i

)
dt+

(
1− 1

S

)
σ1SdB1(t)

+

(
1− 1

I1

)
σ2I1dB2(t) +

(
1− 1

I2

)
σ3I2dB3(t)

+

(
1− 1

A

)
σ4AdB4(t) +

(
1− 1

D

)
σ5DdB5(t)

:=Kdt+

(
1− 1

S

)
σ1SdB1(t)

+

(
1− 1

I1

)
σ2I1dB2(t) +

(
1− 1

I2

)
σ3I2dB3(t)

+

(
1− 1

A

)
σ4AdB4(t) +

(
1− 1

D

)
σ5DdB5(t).

The remaining proof can be referred to Reference [17].

III. DYNAMIC ANALYSIS

In this section, we discuss the sufficient conditions for the
extinction and persistence in mean of I1(t) and I2(t) in the
stochastic model (1). Define the basic reproduction numbers
of Infect 1 and Infect 2 as following

R∗s =
βΛ

µ
(
µ+ ε1 + ε2 + 1

2σ
2
3

) ,R∗0 =
αΛ

µ
(
µ+ δ1 + δ2 + 1

2σ
2
2

) .
For the sake of simplify, let Ψ(t) denote S(t)−S(0)

t +
I1(t)−I1(0)

t + I2(t)−I2(0)
t .

A. Extinction

Theorem 2. For the unique positive solution
(S(t), I1(t), I2(t), A(t), D(t)) of model (1) for t ≥ 0,

(a). if R∗s < 1, the infected I2(t) will be extinct, and
limt→+∞〈I2(t)〉 = 0;

(b). if R∗0 < 1, the infected I1(t) will be extinct, and
limt→+∞〈I1(t)〉 = 0.

Proof. Integrating both sides of the first three equations
form 0 to t and dividing t

Ψ(t) =
S(t)− S(0)

t
+
I1(t)− I1(0)

t
+
I2(t)− I2(0)

t

=Λ− 1

t

∫ t

0

µS(v)dv − 1

t

∫ t

0

(µ+ δ1 + δ2)I1(v)dv

− 1

t

∫ t

0

(µ+ ε1 + ε2)I2(v)dv +
1

t

∫ t

0

σ1S(v)dB1(v)

+
1

t

∫ t

0

σ2I1(v)dB2(v) +
1

t

∫ t

0

σ3I2(v)dB3(v).
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Letting

M(t) =σ1

∫ t

0

S(v)dB1(v) + σ2

∫ t

0

I1(v)dB2(v)

+ σ3

∫ t

0

I2(v)dB3(v),

then we have

Ψ(t) =Λ− 1

t

∫ t

0

µS(v)dv − 1

t

∫ t

0

(µ+ δ1 + δ2)I1(v)dv

− 1

t

∫ t

0

(µ+ ε1 + ε2)I2(v)dv +
M(t)

t

=Λ− µ〈S(t)〉 − (µ+ δ1 + δ2)〈I1(t)〉

− (µ+ ε1 + ε2)〈I2(t)〉+
M(t)

t
.

In further,

〈S(t)〉 =
Λ

µ
− µ+ δ1 + δ2

µ
〈I1(t)〉

− µ+ ε1 + ε2
µ

〈I2(t)〉+
M(t)

µt
− Ψ(t)

µ

(3)

By Itô’s formula,

d ln I2(t) =
1

I2(t)
[βS(t)I2(t)− ξI1(t)I2(t)

−(µ+ ε1 + ε2)I2(t) + σ3I2(t)dB3(t)] dt− 1

2
σ2
3dt

= βS(t)− ξI1(t)−
(
µ+ ε1 + ε2 +

1

2
σ2
3

)
+ σ3dB3(t).

(4)
Integrating equation (4) and dividing by t, we have

ln I2(t)

t
− ln I2(0)

t

= β
1

t

∫ t

0

S(v)dv − ξ 1

t

∫ t

0

I1(v)dv

−
(
µ+ ε1 + ε2 +

1

2
σ2
3

)
+

1

t

∫ t

0

σ3dB3(v)

≤β〈S(t)〉 −
(
µ+ ε1 + ε2 +

1

2
σ2
3

)
+

1

t

∫ t

0

σ3dB3(v).

Submitting equation (3) into the above equation,

ln I2(t)

t
− ln I2(0)

t

≤ βΛ

µ
− β(µ+ δ1 + δ2)

µ
〈I1(t)〉

− β(µ+ ε1 + ε2)

µ
〈I2(t)〉+

βM(t)

µt
− βΨ(t)

µ

−
(
µ+ ε1 + ε2 +

1

2
σ2
3

)
+

1

t

∫ t

0

σ3dB3(v)

(5)

Letting t→ +∞,

β(µ+ ε1 + ε2)

µ
lim

t→+∞
〈I2(t)〉

≤ lim
t→+∞

ln I2(0)

t
− lim

t→+∞

ln I2(t)

t
+
βΛ

µ
− lim

t→+∞
β

Ψ(t)

µ

− β(µ+ δ1 + δ2)

µ
lim

t→+∞
〈I1(t)〉+ lim

t→+∞

βM(t)

µt

−
(
µ+ ε1 + ε2 +

1

2
σ2
3

)
+ lim

t→+∞

1

t

∫ t

0

σ3dB3(v)

By the strong law of the large numbers for the continuous
local martingale and the bounded of the individuals, we can
have

lim
t→+∞

ln I2(0)

t
− lim

t→+∞

ln I2(t)

t
+ lim

t→+∞

βM(t)

µt

− lim
t→+∞

β
Ψ(t)

µ
+ lim

t→+∞

1

t

∫ t

0

σ3dB3(v) = 0 a.s..

(6)

Therefore

lim
t→+∞

〈I2(t)〉

≤ µ

β(µ+ ε1 + ε2)

≤ µ

β(µ+ ε1 + ε2)

[
βΛ

µ
−
(
µ+ ε1 + ε2 +

1

2
σ2
3

)]
This implies I2(t) will be extinct eventually when R∗s < 1.

By Itô’s formula,

d ln I1(t)

=
1

I1(t)
[αS(t)I1(t) + ξI1(t)I2(t)

−(µ+ δ1 + δ2)I1(t) + σ2I1(t)dB2(t)] dt− 1

2
σ2
2dt

= αS(t) + ξI2(t)−
(
µ+ δ1 + δ2 +

1

2
σ2
2

)
+ σ2dB2(t).

(7)
Integrating equation (7) and dividing by t, we have

ln I1(t)

t
− ln I1(0)

t

=α
1

t

∫ t

0

S(v)dv + ξ
1

t

∫ t

0

I2(v)dv

−
(
µ+ δ1 + δ2 +

1

2
σ2
2

)
+

1

t

∫ t

0

σ2dB2(v)

≤α〈S(t)〉+ ξ〈I2(t)〉

−
(
µ+ δ1 + δ2 +

1

2
σ2
2

)
+

1

t

∫ t

0

σ2dB2(v).

Submitting the equation (3) into the above equation,

ln I1(t)

t
− ln I1(0)

t

=
αΛ

µ
− α(µ+ δ1 + δ2)

µ
〈I1(t)〉

− α(µ+ ε1 + ε2)

µ
〈I2(t)〉+

αM(t)

µt
− αΨ(t)

µ

+ ξ〈I2(t)〉 −
(
µ+ δ1 + δ2 +

1

2
σ2
2

)
+

1

t

∫ t

0

σ2dB2(v).

Be similar with the equation (6), we kown

ln I1(t)

t
− ln I1(0)

t

=
αΛ

µ
−
(
µ+ δ1 + δ2 +

1

2
σ2
2

)
− α(µ+ δ1 + δ2)

µ
〈I1(t)〉

−
(
α(µ+ ε1 + ε2)

µ
− ξ
)
〈I2(t)〉.

(8)
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If α(µ+ ε1 + ε2) ≥ µξ,

lim
t→+∞

〈I1(t)〉 ≤

µ

α(δ1 + µ+ δ2)

[
αΛ

µ
−
(
δ1 + µ+ δ2 +

1

2
σ2
2

)]
≤ µ

α(δ1µ+ +δ2)
(
δ1 + µ+ δ2 + 1

2σ
2
2

) (R∗0 − 1),

that implies I1(t) will extinct eventually when R∗0 < 1. �

Remark 1. From the formula of R∗0 and R∗s , we can
find that the environmental factor will make effects on the
dynamical behaviors of the system, and the individuals who
spread the information will disappear if the intensity of the
environmental noise is large enough.

B. Persistence in mean of I1(t) or I2(t)

In this subsection, the sufficient conditions for the persis-
tence of I1(t) or I2(t) of the stochastic SI1I2AD model (1)
are investigated.

Theorem 3. For the unique positive solution
(S(t), I1(t), I2(t), A(t), D(t)) of model (1) for t ≥ 0,
we can obtain the following.

(A1). (a). R∗0 < 1 and α(µ+ ε1 + ε2) < µξ;
(b). R∗s > 1 and R∗0 < 1.
If conditions (a) is satisfied, then I2(t) will persist in mean
with

lim inf
t→+∞

〈I2(t)〉 ≥
µ

[α(µ+ ε1 + ε2)− µξ]
(
µ+ δ1 + δ2 + 1

2σ
2
2

) (R∗0 − 1),

If conditions (b) is satisfied, then I2(t) will persist in mean
with

lim inf
t→+∞

〈I2(t)〉 ≥
µ

β(µ+ ε1 + ε2)
(
µ+ ε1 + ε2 + 1

2σ
2
3

) (R∗s − 1)

(A2). (c). R∗0 > 1 and α(µ+ ε1 + ε2) < µξ;
(d). R∗0 > 1 and R∗s < 1.
If one of the conditions (c) and (d) is satisfied, then I1(t)
will persist in mean with

lim inf
t→+∞

〈I1(t)〉 ≥
µ

α(µ+ δ1 + δ2)
(
µ+ δ1 + δ2 + 1

2σ
2
2

) (R∗0 − 1)

Proof. Case (a). From equation (6), let t→ +∞ and we
can have

α(µ+ δ1 + δ2)

µ
lim

t→+∞
〈I1(t)〉 =

αΛ

µ
− (µ+ δ1 + δ2

+
1

2
σ2
2

)
− α(µ+ ε1 + ε2)− µξ

µ
lim

t→+∞
〈I2(t)〉.

(9)

If α(µ+ ε1 + ε2) < µξ,

lim
t→+∞

〈I2(t)〉 =

µ

α(µ+ ε1 + ε2)− µξ

[
αΛ

µ
−
(
µ+ δ1 + δ2 +

1

2
σ2
2

)]
− µ

α(µ+ ε1 + ε2)− µξ
α(µ+ δ1 + δ2)

µ
lim

t→+∞
〈I1(t)〉

≥ µ

α(µ+ ε1 + ε2)− µξ

[
αΛ

µ
−
(
µ+ δ1 + δ2 +

1

2
σ2
2

)]
≥ µ

[α(µ+ ε1 + ε2)− µξ]
(
µ+ δ1 + δ2 + 1

2σ
2
2

) (R∗0 − 1),

which implies that I2(t) will persist in mean, when R∗0 < 1.
Case (b). We have

d ln I2(t) = βS(t)− ξI1(t)−
(
µ+ ε1 + ε2 +

1

2
σ2
3

)
+ σ3dB3(t)

(10)

by (4), which describes Itô’s formula of the function ln I2(t).
Since R∗0 < 1, the I1(t) will extinct. From Theorem 3 we
can have

lim
t→+∞

I1(t) = 0 a.s..

So for all ε1 and t large, 0 ≤ I1(t) < ε1. Substituting
equation (3) into equation(10),

ln I2(t)

t
− ln I2(0)

t
≥ βΛ

µ
− β(δ1 + µ+ δ2) + µξ

µ
ε1

− β(µ+ ε1 + ε2)

µ
〈I2(t)〉+

βM(t)

µt
− βΨ(t)

µ

−
(
µ+ ε1 + ε2 +

1

2
σ2
3

)
+

1

t

∫ t

0

σ3dB3(v).

(11)

Then let t → +∞, by the strong law of the large numbers
for the continuous local martingale and using equation (6),

β(µ+ ε1 + ε2)

µ
lim inf
t→+∞

〈I2(t)〉

≥βΛ

µ
−
(
µ+ ε1 + ε2 +

1

2
σ2
3

)
− β(µ+ ε1 + ε2)

µ
ε1.

(12)

For ε1 small enough,

lim inf
t→+∞

〈I2(t)〉 ≥
µ

β(µ+ ε1 + ε2)
(
µ+ ε1 + ε2 + 1

2σ
2
3

) (R∗s − 1).

That implies that I1(t) will persist in mean, when R∗s > 1
and R∗0 < 1.

Case (c). Based on equation (9), we can also have

lim inf
t→+∞

〈I1(t)〉 ≥

µ

α(δ1 + µ+ δ2)

[
αΛ

µ
−
(
δ1 + µ+ δ2 +

1

2
σ2
2

)]
≥ µ

α(δ1 + µ+ δ2)
(
δ1 + µ+ δ2 + 1

2σ
2
2

) (R∗0 − 1),

which implies that I1(t) will persist in mean, when R∗0 > 1.
Case (d). From equation (7), we have that

d ln I1(t) =αS(t) + ξI2(t)−
(
µ+ δ1 + δ2 +

1

2
σ2
2

)
+ σ2dB2(t).

(13)
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Since R∗s < 1, I2(t) will extinct. From Theorem 3 we can
have

lim
t→+∞

〈I2(t)〉 = 0 a.s..

So for all ε2 and t large, 0 ≤ I2(t) < ε2. Under the condition
of α(µ+ε1+ε2) > µξ, substituting equation (3) into equation
(10),

ln I1(t)

t
− ln I1(0)

t

≥αΛ

µ
− α(µ+ δ1 + δ2)

µ
〈I1(t)〉

− α(µ+ ε1 + ε2)− µξ
µ

ε2 +
αM(t)

µt
− αΨ(t)

µ

−
(
µ+ δ1 + δ2 +

1

2
σ2
2

)
+

1

t

∫ t

0

σ2dB2(v).

Be Similar with equation (12), and let ε2 small enough,

lim inf
t→+∞

〈I1(t)〉 ≥
µ

α(µ+ δ1 + δ2)
(
µ+ δ1 + δ2 + 1

2σ
2
2

) (R∗0 − 1),

Under the condition of α(µ+δ1+δ2) > µξ, I2(t) will persist
in mean, when R∗s < 1 and R∗0 > 1. �

Remark 2. From the above theorem, we can see that the
value of transport rate ξ can have an important impact on
the dynamics of the information dissemination. This implies
that if the transport rate ξ from I2 to I1 is small enough,
the infected 2 can be persist to spread the information of the
production, although the infected 1 are extinct.

Remark 3. By the theoretical proof of Theorem 1, Theo-
rem 2 and Theorem 3, we can obtain that R∗0 and R∗s are the
basic reproduction numbers of the infected 1 and infected 2,
respectively. That also implies, the smaller the intensity of the
environmental noise, the better the spread of the information.

C. Persistence in mean of co-infections

Theorem 4. For the unique positive solution
(S(t), I1(t), I2(t), A(t), D(t)) of model (1) for t ≥ 0,
if α(µ+ ε1 + ε2) > µξ, R∗0 > 1 and R∗s > 1, we can obtain
that I1(t) and I2(t) will be persist together with

lim inf
t→+∞

[〈I1(t)〉+ 〈I2(t)〉] ≥
(
µ+ δ1 + δ2 + 1

2σ
2
2

)
(R∗0 − 1)

(Λ1 ∨ Λ2)

+

(
µ+ ε1 + ε2 + 1

2σ
2
2

)
(R∗s − 1)

(Λ1 ∨ Λ2)
.

Proof. Let U(t) = ln I1(t)+ln I2(t). Using Itô’s formula,
the equations (10) and (13),

dU = βS(t)− ξI1(t)− (µ+ ε1 + ε2)− 1

2
σ2
3

+ αS(t) + ξI2(t)− (µ+ δ1 + δ2)− 1

2
σ2
2

+ σ2dB2(t) + σ3dB3(t).

Then by taking integral of the above equation from 0 to t

and dividing to t,

U(t)− U(0)

t
=

β〈S(t)〉 − ξ〈I1(t)〉 − (µ+ ε1 + ε2)− 1

2
σ2
3

+ α〈S(t)〉+ ξ〈I2(t)〉 − (µ+ δ1 + δ2)− 1

2
σ2
2

+ σ2
1

t

∫ t

0

dB2(v) + σ3
1

t

∫ t

0

dB3(v)

(14)

Then by putting the value of (3) in (14) we obtained

U(t)− U(0)

t
=
αΛ

µ
+ ξ〈I2(t)〉 − (µ+ δ1 + δ2)− 1

2
σ2
2

− α(µ+ δ1 + δ2)

µ
〈I1(t)〉 − α(µ+ ε1 + ε2)

µ
〈I2(t)〉

+
βΛ

µ
− (µ+ ε1 + ε2)− 1

2
σ2
3 −

β(µ+ δ1 + δ2)

µ
〈I1(t)〉

− β(µ+ ε1 + ε2)

µ
〈I2(t)〉 − ξ〈I1(t)〉+ (α+ β)(−Ψ(t))

+ (α+ β)
M(t)

µt
+ σ2

1

t

∫ t

0

dB2(v) + σ3
1

t

∫ t

0

dB3(v).

By the strong law of the large numbers for the continuous
local martingale and (6),

U(t)− U(0)

t
≥
(
µ+ δ1 + δ2 +

1

2
σ2
2

)
(R∗0 − 1)

+

(
µ+ ε1 + ε2 +

1

2
σ2
2

)
(R∗s − 1)

− (Λ1 ∨ Λ2)[〈I1(t)〉+ 〈I2(t)〉],

where

Λ1 =
α(µ+ δ1 + δ2)

µ
+
β(µ+ δ1 + δ2)

µ
+ ξ,

Λ2 =
α(µ+ ε1 + ε2)

µ
+
β(µ+ ε1 + ε2)

µ
− ξ.

Under the condition α(µ + ε1 + ε2) > µξ, we can obtain
Λ2 > 0.

Let t→ +∞,

lim inf
t→+∞

[〈I1(t)〉+ 〈I2(t)〉] ≥(
µ+ δ1 + δ2 + 1

2σ
2
2

)
(R∗0 − 1)

(Λ1 ∨ Λ2)

+
(
µ+ ε1 + ε2 + 1

2σ
2
2

)
(R∗s − 1)

(Λ1 ∨ Λ2)
.

�
Remark 4. Under some conditions, obviously, both of

WOM and IWOM can coexist, which is conductive to the
dissemination of product information, but also the most
beneficial to consumers.

IV. CONCLUSION

In this paper, we propose and investigated a stochastic
model considering Internet word of mouth (IWOM). The
existence and uniqueness of the positive solution to model
(1) is obtained by constructing suitable Lyapunov function.
Then we establish the sufficient conditions for extinction and
persistence in mean of the infected 1 and the infected 2,
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respectively. Stochastic dynamic analysis shows that if the
intensity of environmental noise σ2 and σ3 are large, it will
reduce the number of the infected who spread the product
information. This implies that external factors such as market
policies and product information changes will bring risks
to its marketing. In addition, we also found that when the
transport rate ξ is small, it can ensure the coexistence of
the two types of information transmission groups, which can
affect the consumption decisions of more people.

In future research, we will consider whether there is a time
lag in the propagation of product information. If so, what
impact will it have on the dynamic behaviors of information
dissemination?
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