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Abstract—In semigraphs, the role of a node in an edge
is classified into two: end nodes and middle nodes. This
classification of nodes in a fuzzy semigraph, along with the
membership values, contributes to the categorization of the
degrees of nodes according to their roles. Four types of
degrees−degree, edge degree, adjacent degree, and consecutive
adjacent degree of a node, corresponding regularities, and three
types of sizes−size, crisp size, and pseudo size are introduced
for a fuzzy semigraph. An application that models a sequence
of activities and procedures to complete various tasks in a
university as a fuzzy multi-semigraph is discussed to justify
these new concepts.

Index Terms—degrees, fuzzy multi semigraph, fuzzy semi-
graph, multi semigraph, order, regularities, sizes.

I. INTRODUCTION AND PRELIMINARIES

THE first to introduce fuzzy graphs [1] as an advance-
ment of classical set theory was A. Rosenfeld. E. Sam-

pathkumar developed the concept of semigraphs to overcome
various flaws and broaden the scope of graph theory.

A. Semigraph

A semigraph [2] is a pair of sets H∗ = (N,E), where
N is a non-empty set, called the node set and E is a set
of r-tuples with distinct elements of N, for various r ≥ 2,
called the edge set satisfying the following:

(1) At most one node can be shared by any two elements
in E,

(2) Any two edges (n1, n2, ...nr) and (m1,m2, ...ms) are
equal if and only if r = s and either nj = mj or
nj = mr−j+1 for 1 ≤ j ≤ r.

If two edges in a semigraph share the same node, they are
called adjacent edges. Comparable to this, two nodes in a
semigraph are treated as adjacent if the nodes are positioned
on the same edge of the semigraph. Likewise, two nodes
are consecutively or sequentially adjacent if the semigraph
contains an edge, a sequence of nodes in which the two
nodes appear consecutively. In a semigraph, a partial edge is
a sub-edge of an edge where the edge’s consecutive nodes are
also consecutive in the sub-edge. There are different types
of semigraphs in which an r-uniform semigraph [3] is one
where each edge has cardinality r. E. Sampathkumar in [2]
has defined various degrees of a node n in a semigraph as
follows:
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(1) The number of edges with n as an end node is the
degree of n, denoted by deg(n).

(2) The number of edges where n is either an end node
or a middle node is known as the edge degree of n,
denoted by dege(n).

(3) The number of nodes that are adjacent to the node n
is the adjacent degree of n, denoted by dega(n).

(4) The number of nodes that are consecutively adjacent
to the node n is the consecutive adjacent degree of n,
denoted by degca(n).

Each of these degrees defines different types of regular
semigraphs [4]. A semigraph H∗ is Dk-regular if every node
has degree k. Similarly H∗ is EDk-regular, ADk-regular,
and CADk-regular if every node, respectively, has an edge
degree, an adjacent degree, and a consecutive adjacent degree
of k.

There are three different graphs associated to a semigraph
H∗, each having the same node set N, are the end node graph
H∗

e , the adjacency graph H∗
a , and the consecutive adjacency

graph H∗
ca, in which the edges are defined as follows [2]:

(1) Two nodes in H∗
e are adjacent if, and only if, the nodes

are the end nodes of an edge in H∗.
(2) Two nodes in H∗

a are adjacent if, and only if, the nodes
are adjacent in H∗.

(3) Two nodes in H∗
ca are adjacent if, and only if, the

nodes are consecutively adjacent in H∗.

B. Fuzzy Semigraph

Fuzzy semigraph [5] is a new concept that K. Radha and
P. Renganathan proposed by connecting the ideas of fuzzy
graphs and semigraphs. Let H∗ = (N,E) be a semigraph. A
fuzzy semigraph H defined on H∗ is a 4-tuple (N, ρ, ν, φ) in
which ρ : N → [0, 1], ν : N×N → [0, 1], and φ : E → [0, 1]
are functions satisfying the following conditions:

(1) ν(n1, n2) ≤ ρ(n1) ∧ ρ(n2) ∀ n1, n2 ∈ N,
(2) φ(e) = ν(n1, n2) ∧ ν(n2, n3) ∧ · · · ∧ ν(nr−1, nr)

≤ ρ(n1) ∧ ρ(nr)
if e = (n1, n2, . . . , nr), r ≥ 2 is an edge in H∗.

If e = (n1, n2, ..., nr), r ≥ 2 is an edge and n and m be
any nodes in a semigraph with the properties,

φ(e) = ρ(n1) ∧ ρ(nr) and ν(n,m) = ρ(n) ∧ ρ(m)

then the fuzzy semigraph is referred to as an effective
fuzzy semigraph [5]. As the nodes of ρ-membership value
zero are considered not existing and also the function ν is
defined from N × N is such that, a pair of nodes that are
not consecutively adjacent in the underlying semigraph H∗

must have the ν-membership value zero. Furthermore, in the
second condition given by

φ(e) = ν(n1, n2) ∧ ν(n2, n3) ∧ · · · ∧ ν(nr−1, nr)
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≤ ρ(n1) ∧ ρ(nr),

the right side inequality is obvious.
Considering these requirements, the definition of a fuzzy

semigraph established in [5] is modified in this paper. This
definition suggests four kinds of degrees and three kinds
of sizes. The studies of these degrees, sizes, and their
relationships are included in this paper. For more information
on concepts in fuzzy graph theory, see the references [1], [6]–
[9], and refer [10]–[13] for fundamental notions in graphs
and semigraphs.

C. Notations

H∗ semigraph
H fuzzy semigraph
N node set
E edge set
deg degree
dege edge degree
dega adjacent degree
degca consecutive adjacent degree
Dk k-regular
EDk k-edge regular
ADk k-adjacent regular
CADk k-consecutive adjacent regular
|X| cardinality of the set X
|e| cardinality/no.of nodes of the edge e
H∗

e end node graph associated to the semigraph H∗

H∗
a adjacency graph associated to the semigraph H∗

H∗
ca consecutive adjacency graph associated to the

semigraph H∗

II. MAIN RESULT

Definition 1: (Revised) Let H∗ = (N,E) be a semigraph.
Then a fuzzy semigraph H = (N, ρ, ν, φ) defined on H∗

consist of a node set N and functions ρ : N → [0, 1], ν :
N×N → [0, 1], and φ : E → [0, 1] that satisfy the conditions
for all n and m in N :

(1) ρ(n) > 0,
(2) ν(n,m) = 0, if n and m are not consecutively

adjacent,
(3) ν(n,m) ≤ ρ(n) ∧ ρ(m),
(4) φ(e) = ν(n1, n2) ∧ ν(n2, n3) ∧ · · · ∧ ν(nr−1, nr) if

e = (n1, n2, . . . , nr) is an edge in H∗, r ≥ 2.

The semigraph H∗ = (N,E) is called the underlying
semigraph of the fuzzy semigraph H.

The membership value of partial edges induced from that
of an edge is assigned as follows:

Definition 2: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
in which H∗ = (N,E) be the underlying semigraph. Let Y
be the set of all partial edges in H. Then the membership
value of each partial edge in H is defined using the function
κ : Y → [0, 1] such that

κ(ni, ni+1, . . . , nj−1, nj)
= ν(ni, ni+1) ∧ ν(ni+1, ni+2) ∧ · · · ∧ ν(nj−1, nj)

Where (ni, ni+1, . . . , nj−1, nj) be a partial edge of an edge
in H.

Definition 3: Let H = (N, ρ, ν, φ) be a fuzzy semigraph.
Suppose n is any node in H. Then various degrees of n are:

(1) Degree of n in H is
∑

φ(e) where the summation
is taken over all the edges e with n as an end node,
expressed as d(n).

(2) Edge degree of n in H is
∑

φ(x) where the summation
is taken over all the edges x with the node n, either as
an end node or as a middle node, expressed as de(n).

(3) Adjacent degree of n in H is
∑

κ(p) where the
summation is taken over all the partial edges p with n
as an end node, denoted as da(n).

(4) Consecutive adjacent degree of n in H is
∑

ν(n,m)
where the summation is taken over all the nodes m
which are consecutively adjacent to n in H, that is
either (n,m) or (m,n) is a partial edge in H, denoted
as dca(n). Put differently

dca(n) =
∑
n̸=m

n,m∈N

ν(n,m).

Let H = (N, ρ, ν, φ) be a fuzzy semigraph in which
H∗ = (N,E) be the underlying semigraph. Suppose the
membership value of each edge in H is one, then the de-
gree, edge degree, adjacent degree, and consecutive adjacent
degree of any node n in H coincide with the degree, edge
degree, adjacent degree, and consecutive adjacent degree of
n in H∗ respectively.

Also, these degrees are in a chain relation. For any node
n in a fuzzy semigraph H,

d(n) ≤ de(n) ≤ dca(n) ≤ da(n).

Theorem 4: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
whose underlying semigraph is H∗ = (N,E). Then

(1)
∑
n∈N

d(n) = 2
∑
e∈E

φ(e),

(2)
∑
n∈N

de(n) =
∑
e∈E

|e|φ(e).

Proof: Each edge has two end nodes. So that (1) follows
trivially.
Note that the edge degree of a node n in H gives the sum
of membership values of the edges in which the node n is
either an end node or a middle node. Since the edge degree
of end nodes is counted in

∑
d(n),∑

n∈N

de(n) =
∑
n∈N

d(n) +
∑
e∈E

(|e| − 2)φ(e),

where |e|−2 gives the number of middle nodes lying on the
edge e. Hence,∑

n∈N

de(n) =
∑
n∈N

d(n) +
∑
e∈E

|e|φ(e)− 2
∑
e∈E

φ(e)

=
∑
e∈E

|e|φ(e).

Theorem 5: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
whose underlying semigraph is H∗ = (N,E). Let C be the
set of all consecutively adjacent pairs of nodes in H∗ and
ν = c is a constant function on C. Then

(1)
∑
n∈N

da(n) +
∑
n∈N

de(n) =
∑
e∈E

|e|2φ(e),
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(2)
∑
n∈N

dca(n) +
∑
n∈N

d(n) = 2
∑
n∈N

de(n).

Proof: Given ν(n,m) = c, for any pair (n,m) in C,
where c is a constant need not be an integer.
For each node n in an edge e, there are |e| − 1 partial edges
with n as an end node. Hence each edge e in H contributes
|e|(|e| − 1)c to the sum of adjacent degrees of the nodes in
H, thus∑

n∈N

da(n) =
∑
e∈E

|e|(|e| − 1)c =
∑
e∈E

|e|2c−
∑
e∈E

|e|c.

That is, ∑
n∈N

da(n) +
∑
e∈E

|e|c =
∑
e∈E

|e|2c∑
n∈N

da(n) +
∑
e∈E

|e|φ(e) =
∑
e∈E

|e|2φ(e).

Then by Theorem 4∑
n∈N

da(n) +
∑
n∈N

de(n) =
∑
e∈E

|e|2φ(e),

which proves (1).
On every edge, there is only one node consecutively adjacent
to each of the two end nodes and two nodes consecutively
adjacent to each middle node, so that an edge e in H
contributes (2|e|−2)c to the sum of the consecutive adjacent
degree of each node in H. That is∑

n∈N

dca(n) =
∑
e∈E

(2|e| − 2)c

= 2
∑
e∈E

|e|c− 2
∑
e∈E

c

= 2
∑
e∈E

|e|φ(e)− 2
∑
e∈E

φ(e)

Then by Theorem 4∑
n∈N

dca(n) = 2
∑
n∈N

de(n)−
∑
n∈N

d(n)∑
n∈N

dca(n) +
∑
n∈N

d(n) = 2
∑
n∈N

de(n).

Notice that in counting consecutive adjacent degrees of all
the nodes, we count each 2-partial edge exactly twice.

Theorem 6: Let H = (N, ρ, ν, φ) be a fuzzy semigraph.
Then ∑

n∈N

dca(n) = 2×
∑
n̸=m

n,m∈N

ν(n,m).

Corollary 7: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
whose underlying semigraph H∗ = (N,E) is an r-uniform.
Let C be the set of all consecutively adjacent pairs of nodes
in H∗ and the function ν is constant on C with constant
value c, need not be an integer. Then

(1)
∑
n∈N

d(n) = 2|E|c,

(2)
∑
n∈N

de(n) = r|E|c,

(3)
∑
n∈N

da(n) = r(r − 1)|E|c,

(4)
∑
n∈N

dca(n) = 2(r − 1)|E|c.

A fuzzy graph is a 2-uniform fuzzy semigraph, in such
case Corollary 7 gives∑

d(n) =
∑

de(n) =
∑

da(n) =
∑

dca(n)

where the summation is taken over all the nodes n in H.
Following the definition of the order of a fuzzy graph, the

order of a fuzzy semigraph can be defined as follows:
Definition 8: Let H = (N, ρ, ν, φ) be a fuzzy semigraph

whose underlying semigraph H∗ is (N,E). Then the order,
expressed as O(H) of the fuzzy semigraph H is

O(H) =
∑
n∈N

ρ(n).

Also considering the variety of adjacencies, we can define
three types of sizes on a fuzzy semigraph H-the crisp size
CS(H), the size S(H) and the pseudo size PS(H), as
follows:

CS(H) =
∑
e∈E

φ(e),

S(H) =
∑
n̸=m

n,m∈N

ν(n,m) and

PS(H) =
∑
e∈E

|e|.

An immediate bound for O(H) for a fuzzy semigraph
H = (N, ρ, ν, φ),

|N |

( ∧
n∈N

ρ(n)

)
≤ O(H) ≤ |N |

( ∨
n∈N

ρ(n)

)
.

Another lower bound for order of H in terms of edge
membership value is given in Theorem 9, where the set En

denotes the collection of all edges e in E where the node n
lies on e.

Theorem 9: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
whose underlying semigraph is H∗ = (N,E). Then

O(H) ≥
∑
n∈N

∨
e∈En

φ(e).

Proof: Let e = (n1, n2, . . . , nr) be an edge in the fuzzy
semigraph H. Since φ(e) ≤ ρ(n1) ∧ ρ(n2) ∧ · · · ∧ ρ(nr).
Thus ρ(ni) ≥ φ(e), for 1 ≤ i ≤ r. So that for any n ∈ N,

ρ(n) ≥
∨

e∈En

φ(e).

Hence
O(H) =

∑
n∈N

ρ(n) ≥
∑
n∈N

∨
e∈En

φ(e).

The following bounds of crisp size are obvious for a fuzzy
semigraph H = (N, ρ, ν, φ),

(1) CS(H) ≤ S(H),

(2) |E|

(∧
e∈E

φ(e)

)
≤ CS(H) ≤ |E|

(∨
e∈E

φ(e)

)
.

Theorem 10: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
in which H∗ = (N,E) is the underlying semigraph. Then

CS(H) ≤ |E|
∨
n∈N

ρ(n)
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and ∧
e∈E

φ(e)

(∑
e∈E

(|e| − 1)

)
≤ S(H)

≤
∨
n∈N

ρ(n)

(∑
e∈E

(|e| − 1)

)
.

Proof: Each edge e = (n1, n2, . . . , nr) in H satisfies
the condition

φ(e) ≤ ρ(n1) ∧ ρ(n2) ∧ · · · ∧ ρ(nr).

Thus

CS(H) ≤
∑
e∈E

∨
n∈N

ρ(n) = |E|
∨
n∈N

ρ(n).

Since ν(n1, n2) ≤
∨

n∈N ρ(n) for any n1, n2 ∈ N and there
are |e| − 1 consecutively adjacent pairs of nodes in an edge
e, thus

S(H) ≤
∑
e∈E

∨
n∈N

ρ(n)(|e| − 1)

=
∨
n∈N

ρ(n)

(∑
e∈E

(|e| − 1)

)
.

Also for any nodes n,m ∈ N, ν(n,m) ≥
∧

e∈E φ(e); so
that

S(H) ≥
∑
e∈E

∧
e∈E

φ(e)(|e| − 1)

=
∧
e∈E

φ(e)

(∑
e∈E

(|e| − 1)

)
.

As a consequence of the above result,

CS(H) ≤
∑
e∈E

∧
n∈Ne

ρ(n)

where the set Ne is the collection of nodes n in the edge e.
Corollary 11: Let H = (N, ρ, ν, φ) be a fuzzy semigraph

whose underlying semigraph is H∗ = (N,E). Then∧
e∈E

φ(e)

(∑
n∈N

dege(n)− |E|

)
≤ S(H)

≤
∨
n∈N

ρ(n)

(∑
n∈N

dege(n)− |E|

)
.

Proof: The Theorem 10 gives∧
e∈E

φ(e)
∑
e∈E

(|e| − 1) ≤ S(H)

≤
∨
n∈N

ρ(n)
∑
e∈E

(|e| − 1).

That is ∧
e∈E

φ(e)

(∑
e∈E

|e| − |E|

)
≤ S(H)

≤
∨
n∈N

ρ(n)

(∑
e∈E

|e| − |E|

)
.

The result follows because
∑
n∈N

dege(n) =
∑
e∈E

|e|.

Note that PS(H) =
∑
e∈E

|e|. Thus the Corollary 11 can

be restated as∧
e∈E

φ(e) (PS(H)− |E|) ≤ S(H)

≤
∨
n∈N

ρ(n) (PS(H)− |E|) ,

or ∧
e∈E

φ(e)PS(H) ≤ S(H) ≤
∨
n∈N

ρ(n)PS(H).

Many interesting relations between these parameters have
been noticed.

Theorem 12: Let H = (N, ρ, ν, φ) be an effective fuzzy
semigraph such that ρ is a constant function, where the
underlying semigraph H∗ = (N,E). Then

(1) CS(H) = |E|
|N |O(H),

(2) S(H) = CS(H)
(

PS(H)
|E| − 1

)
,

(3) S(H) = O(H)
|N | (PS(H)− CS(H)) .

Proof: Given that the fuzzy semigraph H is effective
and the function ρ is constant. Let ρ(n) = c for each node
n in H and c is a constant that need not be an integer. Then
the order of H,

O(H) =
∑
n∈N

ρ(n) = |N |c.

Then CS(H) =
∑
e∈E

φ(e) = |E|c = |E|O(H)

|N |
.

Now,
S(H) =

∑
ν(n,m),

where the summation is taken over all the nodes n and m
such that n ̸= m in H. Thus

S(H) =
∑
e∈E

(|e| − 1)c

= c
∑
e∈E

|e| − c
∑
e∈E

1 =
CS(H)

|E|
∑
e∈E

|e| − c|E|

=
CS(H)

|E|
∑
e∈E

|e| − CS(H)

=
CS(H)

|E|
PS(H)− CS(H)

= CS(H)

(
PS(H)

|E|
− 1

)
.

So that (3) holds.
Let H = (N, ρ, ν, φ) be a fuzzy semigraph. Then δ(H)

and ∆(H) are the minimum degree and maximum degree of
nodes respectively in the fuzzy semigraph H. That is

δ(H) = ∧{d(n) : n ∈ N} and

∆(H) = ∨{d(n) : n ∈ N}.

Similarly

δca(H) = ∧{dca(n) : n ∈ N} and

∆ca(H) = ∨{dca(n) : n ∈ N}
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are the minimum consecutive adjacent degree and maximum
consecutive adjacent degree of nodes respectively in the
fuzzy semigraph H.

Corollary 13: Let H = (N, ρ, ν, φ) be a fuzzy semigraph.
If cardinality of N is p, then

0 ≤ CS(H) ≤ p(p− 1)

2
∆(H), and

0 ≤ S(H) ≤ p(p− 1)

2
∆ca(H).

Theorem 14: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
such that |N | = p. Then

(1) pδ(H)
2 ≤ CS(H) ≤ p∆(H)

2 ,

(2) pδca(H)
2 ≤ S(H) ≤ p∆ca(H)

2 .

Proof: Note that CS(H) =
∑
e∈E

φ(e).

Also δ(H) ≤ d(n) ≤ ∆(H) for any node n in H. Thus∑
n∈N

δ(H) ≤
∑
n∈N

d(n) ≤
∑
n∈N

∆(H)

pδ(H) ≤ 2CS(H) ≤ p∆(H)

pδ(H)

2
≤ CS(H) ≤ p∆(H)

2
.

Since δca(H) ≤ dca(n) ≤ ∆ca(H) for any node n in H,∑
n∈N

δca(H) ≤
∑
n∈N

dca(n) ≤
∑
n∈N

∆ca(H)

pδca(H) ≤ 2S(H) ≤ p∆ca(H)

pδca(H)

2
≤ S(H) ≤ p∆ca(H)

2
.

The following are some simple observations on the rela-
tions of various parameters associated with a fuzzy semi-
graph.

For a fuzzy semigraph H = (N, ρ, ν, φ)

(1) 0 ≤ PS(H) ≤ |N |(|N | − 1).

(2)
∑
n∈N

dege(n) = PS(H).

(3) PS(H) ≥ 2, if the underlying semigraph of H is not
trivial.

(4) PS(H) = r|E|, if the underlying semigraph of H is
r-uniform.

(5)
∑
n∈N

de(n) = cPS(H), if φ is the constant function c,

where c need not be an integer.
(6) If k1 and k2 are the minimum and maximum cardinal-

ity of an edge in H then |E|k1 ≤ PS(H) ≤ |E|k2.
(7) By Theorem 4∑

n∈N

de(n) ≤
PS(H)

2

∑
n∈N

d(n).

(8) By Theorem 5∑
n∈N

da(n) +
∑
n∈N

de(n) ≤
PS(H)2

2

∑
n∈N

d(n).

A. Regular Fuzzy Semigraph

Various degrees associated with a node in a fuzzy semi-
graph excogitate various regularity concepts.

Definition 15: Let H = (N, ρ, ν, φ) be a fuzzy semigraph.
Then for a real number k, H is said to be

(1) k-regular if each node has degree k.
(2) k-edge regular if each node has an edge degree k.
(3) k-adjacent regular if each node has adjacent degree k.
(4) k-consecutive adjacent regular if each node has con-

secutive adjacent degree equal to k.

The degrees and the ρ value of nodes together play important
roles in many applications.

Definition 16: Let H = (N, ρ, ν, φ) be a fuzzy semigraph.
The total degree of a node n is thus defined as follows:

(1) The total degree of n, td(n) = d(n) + ρ(n).
(2) The total edge degree of n, tde(n) = de(n) + ρ(n).
(3) The total adjacent degree of n, tda(n) = da(n)+ρ(n).
(4) The total consecutive adjacent degree of n, denoted by

tdca(n) = dca(n) + ρ(n).

These variant degrees naturally lead to other variant regular-
ity concepts.

Definition 17: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
such that td(n) = k for all the nodes n in H and for some
constant k. Then H is called a total regular fuzzy semigraph
of total degree k or k-totally regular fuzzy semigraph.
k-totally edge regular, k-totally adjacent regular, and k-
totally consecutive adjacent regular fuzzy semigraphs are
defined similarly.

The aforementioned definitions make it abundantly evident
that the degree of regularity need not be an integer and that no
general relationship exists between regular and totally regular
fuzzy semigraphs of any kind.

The following theorems relate the concepts of various
degrees in fuzzy semigraph with those in the underlying
semigraph in certain situations.

Theorem 18: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
such that the function ρ : N → [0, 1] is constant. Then for
each n in N

(1) d(n) ≤ ρ(n)deg(n)
(2) de(n) ≤ ρ(n)dege(n)
(3) da(n) ≤ ρ(n)dega(n)
(4) dca(n) ≤ ρ(n)degca(n)

The inequality in the Theorem 18 becomes an equality if
the fuzzy semigraph is effective.

Corollary 19: Let H = (N, ρ, ν, φ) be an effective fuzzy
semigraph such that ρ is a constant function. Then for each
n in N,

(1) d(n) = ρ(n)deg(n)
(2) de(n) = ρ(n)dege(n)
(3) da(n) = ρ(n)dega(n)
(4) dca(n) = ρ(n)degca(n)

Corollary 20: Let H = (N, ρ, ν, φ) be an effective fuzzy
semigraph.

(1) Suppose the underlying semigraph of H, in which ρ
is constant, is Dk-regular, then H is kρ(n)-regular
fuzzy semigraph and ρ(n)(k+1)-totally regular fuzzy
semigraph.

(2) Suppose the underlying semigraph of H, in which ρ is
constant, is EDk-regular, then H is kρ(n)-edge regular
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fuzzy semigraph and ρ(n)(k + 1)-totally edge regular
fuzzy semigraph.

(3) Suppose the underlying semigraph of H, in which ρ
is constant, is ADk-regular, then H is kρ(n)-regular
fuzzy semigraph and ρ(n)(k+1)-totally adjacent reg-
ular fuzzy semigraph.

(4) Suppose the underlying semigraph of H, in which
ρ is constant, is CADk-regular, then H is kρ(n)-
consecutive adjacent regular fuzzy semigraph and
ρ(n)(k+ 1)-totally consecutive adjacent regular fuzzy
semigraph.

Theorem 21: Let H = (N, ρ, ν, φ) be a fuzzy semigraph.
If ρ is a constant function then the following are equivalent:

(1) H is regular fuzzy semigraph,
(2) H is totally regular fuzzy semigraph.

Conversely if (1) and (2) are equivalent then ρ is a constant
function.

Proof: Assume that the two criteria are equivalent and
H is a k1-regular and a k2-totally regular fuzzy semigraph.
If there exist at least one pair of nodes n and m in H
such that ρ(n) ̸= ρ(m), then d(n) = k1 = d(m) and
td(n) = k1 + ρ(n) = td(m) = k1 + ρ(m). But then
ρ(n) = ρ(m), a contradiction.

Conversely, Assume that ρ is a constant function say,
ρ(n) = c, where c need not be an integer, for each node
n in H. Then d(n) = k for all n in N if, and only if,
td(n) = k + c for all n in N, which proves the result.

A similar feature applies to fuzzy semigraphs which are
edge, adjacent, or consecutive adjacent regular.

Theorem 22: Let H = (N, ρ, ν, φ) be a fuzzy semigraph.
Then ρ : N → [0, 1] is a constant function if the fuzzy semi-
graph H is both regular and totally regular fuzzy semigraph.

Proof: Let H be a k1-regular and k2-totally regular
fuzzy semigraph, for some constants k1 and k2. That is
d(n) = k1 and td(n) = k2 for any nodes n in H. Then
for each n in N,

d(n) + ρ(n) = k2

k1 + ρ(n) = k2

ρ(n) = k2 − k1

This shows ρ is a constant function.
The fuzzy semigraphs which are edge regular, adjacent

regular, or consecutive adjacent regular equally display the
aforementioned feature.

The converse of the Theorem 22 might not be ac-
curate. Take into consideration the fuzzy semigraph
H = (N, ρ, ν, φ) shown in Fig. 1. Here d(n1) = 0.7,
d(n3) = 0.6, de(n1) = 0.7, de(n3) = 0.6, da(n1) = 1,
da(n2) = 0.5, dca(n1) = 0.8, and dca(n2) = 0.5. Note that
ρ, the membership value of nodes is a constant function,
ρ(ni) = 0.6 for 1 ≤ i ≤ 4, but H is neither regular nor
totally regular fuzzy semigraph of any kind in this instance.

While considering cycles, when φ is a constant function
we noticed some regularity among middle nodes and end
nodes separately and is termed as me-regular.

Definition 23: A fuzzy semigraph H is said to be a me-
regular fuzzy semigraph if all the middle nodes have the
same degree and all the end nodes have the same degree.

n1(0.6) n2(0.6)

0.2

n3(0.6)

n4(0.6)

0.3 0.2

0.5 0.4

Fig. 1. counter example for the converse of Theorem 22.

If d(n) = k1 for all middle nodes n and d(n) = k2 for all
end nodes n in H. Then H is referred to as a (k1, k2)-me-
regular fuzzy semigraph.

Similarly one can define me-edge regular, me-adjacent reg-
ular, and me-consecutive adjacent regular fuzzy semigraphs.

Theorem 24: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
in which the underlying semigraph is an odd cycle. Then H
is a me-regular fuzzy semigraph if, and only if, the function
φ is constant.

Proof: Let H be a (l,m)-me-regular fuzzy semigraph,
for some constants l and m. Suppose e1, e2, . . . , e2r+1 are
the edges in the underlying semigraph in that order. Let
φ(e1) = k, for some constant k. Then φ(e2) = m − k,
φ(e3) = m− (m− k) = k and so on. There fore

φ(ei) =

{
k, if i is odd,
m− k if i is even.

Hence φ(e1) = φ(e2r+1) = k. Suppose n be the node in
which the edges e1 and e2r+1 are incident. Then d(n) = 2k.
which implies m = 2k and k = m

2 . Thus φ(ei) =
m
2 for all

i. This shows φ is a constant function.
Conversely, suppose that φ be a constant function, say
φ(e) = c for all edges in H. Then

d(n) =

{
0, if n is not an end node of any edge in H
2c, if n is an end node of any edge in H.

Thus H is (0, 2c)-me-regular fuzzy semigraph.
Theorem 25: Let H = (N, ρ, ν, φ) be a fuzzy semigraph

in which the underlying semigraph is an even cycle. Then
H is a me-regular fuzzy semigraph if, and only if, either
the function φ is constant or alternative edges have the same
membership value.

Proof: Let H be a (l,m)-me-regular fuzzy semigraph,
for some constants l and m. Let e1, e2, . . . , e2r be the
edges in the underlying semigraph in that order. Suppose
φ(e1) = k, then

φ(ei) =

{
k, if i is odd
m− k, if i is even.

Suppose k = m − k then φ is a constant function.
Otherwise, the alternative edges have the same membership
value.

Conversely, if φ is a constant function then from the proof
of Theorem 24, H is a (0, 2c)-me-regular fuzzy semigraph.
If each alternative edges have the same membership value,
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n1(0.5) n2(0.5)

0.3

n3(0.5)

n4(0.5)

0.3 0.3

0.3 0.3

Fig. 2. neither adjacent regular nor me-adjacent regular fuzzy semigraph

say c and d respectively, then H is a (0, c + d)-me-regular
fuzzy semigraph.

Corollary 26: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
in which the underlying semigraph is a cycle. Suppose
that H is a (m,e)-regular fuzzy semigraph. Then either
the membership value of each edge is a constant or the
alternative edges have the same membership value.

Note that for a fuzzy semigraph H = (N, ρ, ν, φ) the
membership values of edges and partial edges of H are
constant if the function ν is constant.

Theorem 27: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
in which the underlying semigraph is a cycle. Suppose ν is a
constant function then H is a me-regular and a consecutive
adjacent regular fuzzy semigraph.

The Theorem 27 does not necessarily produce a fuzzy
semigraph which is adjacent regular or me-adjacent regular.
Consider the fuzzy semigraph H = (N, ρ, ν, φ) given in
the Fig. 2. Here da(n1) = 0.9 and da(n4) = 0.6. Thus
H is neither adjacent regular nor me-adjacent regular fuzzy
semigraph.

Theorem 28: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
where ν is a constant function and the underlying semigraph
H∗ is a uniform cycle. Then H is a me-adjacent regular
fuzzy semigraph.

Proof: Assume that ν(n,m) = c for any consecutive
adjacent nodes n and m in H and let H∗ be an r-uniform
semigraph. Then

da(m) =

{
c(r − 1), if m is a middle node,
2c(r − 1), if m is an end node.

Thus the fuzzy semigraph H is a me-adjacent regular fuzzy
semigraph.

Theorem 29: Let H = (N, ρ, ν, φ) be a fuzzy semigraph
in which the underlying semigraph is a cycle with |N | is odd.
Then ν is a constant function if, and only if, H is consecutive
adjacency regular fuzzy semigraph.

Theorem 30: Suppose that H = (N, ρ, ν, φ) be a fuzzy
semigraph in which the underlying semigraph is a cycle with
|N | is even. Then H is consecutive adjacent regular fuzzy
semigraph if, and only if, ν is either a constant function or
the alternative edges have the same membership value.

Theorem 31: The crisp size of a k1-regular fuzzy sem-
igraph is |N |k1

2 and the size of a k2-consecutive adjacent
regular fuzzy semigraph is |N |k2

2 .

Proof: Let H = (N, ρ, ν, φ) be a k1-regular fuzzy
semigraph with the underlying semigraph H∗ = (N,E).

Then the crisp size of H is CS(H) =
∑
e∈E

φ(e). Then

∑
n∈N

d(n) = 2
∑
e∈E

φ(e) = 2CS(H)

Since H is a k1-regular fuzzy semigraph,∑
n∈N

k1 = 2CS(H)

|N |k1 = 2CS(H)

CS(H) =
|N |k1
2

.

Similarly, S(H) =
∑

ν(n,m) where the summation is taken
over all the nodes n and m such that n ̸= m in H. Since
H is k2-consecutive adjacent regular fuzzy semigraph and∑

n∈N dca(n) = 2S(H),∑
n∈N

k2 = 2S(H)

|N |k2 = 2S(H)

S(H) =
|N |k2
2

.

Corollary 32: The size of a (k1, k2)-me-regular fuzzy
semigraph H is |En|k2+|Mn|k1

2 , where |En|, |Mn| denote the
cardinality of the collection of end nodes and middle only
nodes in H respectively.

Corollary 33: The crisp size of a fuzzy semigraph H and
the size of the associated end-node fuzzy graph He are the
same. Similarly if H is an r-uniform fuzzy semigraph the
size of an adjacency fuzzy graph Ha is at most |E|

(
r(r−1)

2

)
-

times the crisp size of H, whereas the size of a consecutive
adjacency fuzzy graph Hca of such a uniform fuzzy semi-
graph H is at most |E|(r − 1) times the crisp size of H.

Theorem 34: Let H = (N, ρ, ν, φ) be a k1-totally
regular and k2-totally consecutive adjacent regular fuzzy
semigraph. Then 2CS(H) + O(H) = |N |k1 and
2S(H) + O(H) = |N |k2.

Proof: Since H is a k1-totally regular fuzzy semigraph,
td(n) = k1 for all n ∈ N. Thus d(n) + ρ(n) = k1 for all
n ∈ N. So ∑

n∈N

d(n) +
∑
n∈N

ρ(n) =
∑
n∈N

k1

2CS(H) +O(H) = |N |k1.

Similarly, since H is a k2-totally consecutive adjacent regular
fuzzy semigraph, tdca(n) = k2 for all n ∈ N. Thus
dca(n) + ρ(n) = k2 for all n ∈ N. So∑

n∈N

dca(n) +
∑
n∈N

ρ(n) =
∑
n∈N

k2

2S(H) +O(H) = |N |k2.

The following results are immediate consequences of
Theorem 34.
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Corollary 35: Let H = (N, ρ, ν, φ) be a k1-regular and
k2-totally regular fuzzy semigraph. Then

O(H) = |N |(k2 − k1).

Corollary 36: Let H = (N, ρ, ν, φ) be a k1-regular and
k2-consecutive adjacent regular fuzzy semigraph with p
number of nodes. Then the crisp size and size of H is given
by pk1

2 and pk2

2 respectively.

B. Fuzzy Multi Semigraph

Further, the concept of a semigraph and hence that of
a fuzzy semigraph is generalized because of the following
observations:

Semigraph modeling is possible in any physical scenario
where sequential activities describe the situation. But in all
such situations, any two sequential activities may have more
than one node in common. So we have proposed (commu-
nicated article titled: Planarity Index of Fuzzy Semigraphs
[14]) a generalization of semigraph to multi-semigraph and
accordingly fuzzy semigraph to fuzzy multi semigraph simi-
lar to graph versus multi graph; any two edges in a graph can
have at most one node in common whereas in multi-graph
two edges can have more than one node in common.

A multi semigraph is a pair H∗ = (N,E) where N ̸= ϕ
is the set of nodes and the edge set E is a collection of r
- tuples, for various r ≥ 2, of distinct elements of N such
that an edge (n1, n2, . . . , nr) and (nr, nr−1, . . . , n2, n1) are
same.

Given this terminology, the semigraph defined by E.
Sampathkumar in [2] can be regarded as a simple semigraph
that requires an additional axiom namely, any two edges in
E can have at most one node in common.

Since the concept of multi-edges can be effectively inte-
grated with the theory of fuzziness, a fuzzy multi-semigraph
is defined.

Consider the multi semigraph H∗ = (N,E).
Then a fuzzy multi semigraph defined on H∗

is defined as H = (N, ρ,E1, E2) where
N ̸= ϕ and ρ : N → [0, 1] be a function and
E1 = {((n,m), ν1(n,m), ν2(n,m), . . . , νj(n,m))
|(n,m) ∈ N ×N} be a fuzzy multi subset of N ×N where
νi : N ×N → [0, 1] such that

νi(n1, n2) ≤ ρ(n1) ∧ ρ(n2) if (n1, n2) ∈ N ×N

in which i = 1, 2, . . . , j, and E2 = {(e, φ1(e),
φ2(e), . . . , φj(e))|e ∈ E} be a fuzzy multi subset of E
where φi : E → [0, 1] which satisfies

φi(e) = νi(n1, n2) ∧ νi(n2, n3) ∧ · · · ∧ νi(nr−1, nr),

∀ i = 1, 2, . . . , j

if the edge e is the r-tuple (n1, n2, . . . , nr−1, nr) and
j = max{i | φi(e) ̸= 0, e ∈ E}.

All the results examined in this article apply to fuzzy
multi-semigraphs too.

C. Application

One can associate semigraph structure with any real-life
situation where sequential activities are involved.

For example, consider the functioning of the University
of Calicut. A student who enrolled at the university and
completed his graduation successfully has to submit the ap-
plication form along with the necessary documents to obtain
the degree certificate. These documents will be received in
a particular section, and one of the assistant officers of the
section who is dealing with the certificate of that particular
programme or center will put up the file. It will pass through
a sequence of sections and officers in a particular order,
related to the verification of documents, processing, and
approval of the certificate.

The whole activity of the university thus generates a well-
structured semigraph. For the sake of undirected edges, the
sequence of activities can be considered in either direction.
Also, it may not be a simple semigraph because each edge
corresponds to a particular activity, so there can be more
nodes (that is, sections) common to two edges.

The Fig. 3 depicts a part of this semigraph, where the
loosely dashed line represents the activity of issuing a BSc
Mathematics certificate, the solid line, the densely dashed
line, the double line, and the double dotted line respectively
represent the activity of issuing the certificate of the courses
BSc Zoology, BCom, and BSc self-financing and the exam-
ination hall ticket of the course BCom.

The initial destination for the file is the Assistant Officer
(AO) in charge of the student’s respective degree programme.
The AO checks the attached documents and verifies them
with the help of the tabulation department. Thereafter, the file
will be forwarded to higher officers and the student gets the
degree certificate only after the verification and concurrence
of the Section Officer (SO), Assistant Registrar (AR), Deputy
Registrar (DR), Controller of Examination (CE), and Vice-
Chancellor (VC) or the statutory boards like the Senate and
Syndicate. Such a situation is explained in Fig. 3. Here, small
circles with no filling are used for all middle nodes, whereas
different edges are segregated using different patterns.

Now consider the various kinds of degrees that are defined
in this paper. The membership values can be assigned by
considering the situation or the problem to address. For
example, membership values for nodes can be assigned so
that the degree of each node gives a measure of the amount
of work in all the tasks where the node (which represents an
authority) is in the initial (that is, to initiate the process by
verifying the documents) or in the concluding phase of the
tasks. The edge degree of each node measures the minimum
workload of all the tasks in which the node is involved. The
consecutive adjacent degree of each node gives a measure
of its works by combining the nodes just preceding the
works and succeeding it taken by that authority (which was
represented by that node) to verify or convince the task with
a nearby authority.

III. CONCLUSION

Research on the idea of fuzzy graphs is explored in
Mathematics as well as in their applications to other fields.
This work defines various degrees and sizes of a fuzzy
semigraph; to connect these notions, an analysis of these
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Mathematics

Fig. 3. A multi-semigraph representation of the activity described in the application.

parameters is made, which helps to determine the general
properties of a fuzzy semigraph. Any real-life situation,
where a sequence of activities constitutes a task can be
depicted as a multi semigraph. By assigning appropriate
membership values, the various degrees introduced in this
paper have specific objectives. Further study of the work
aimed at putting the concept of multi-set on the node set of
a semigraph.
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