
 

 

Abstract—This research paper presents the results of two 

studies investigating human mobility patterns in the 15 largest 

Metropolitan Statistical Areas (MSAs) in the United States. It 

studied 14 daily mobility parameters aggregated at the MSA 

level, derived from four primary mobility parameters: Number 

of Visited Locations (N_LOC), Number of Unique Visited 

Locations (N_ULOC), Radius of Gyration (R_GYR), and 

Distance Traveled (D_TRAV) over a 30-day period. The first 

study was conducted on data from two large MSAs, one coastal 

and one inland (Boston and Atlanta, respectively). The aim was 

to examine associations between daily values of mobility 

parameters aggregated at the MSA level and identify those 

carrying similar or identical information. Results of factor 

analysis showed that these could be adequately described by two 

independent factors, pointing to one or two of the mobility 

parameters as sufficient to represent the whole set in analyses 

based on associations. These could either be D_TRAV, as it had 

high loadings on both factors, or N_LOC and R_GYR due to 

their high loadings on the two extracted factors. The second 

study was conducted on daily mobility datasets from the 15 

MSAs. The aim was to compare daily mobility patterns of these 

MSAs and group them based on their mobility pattern 

similarities. Factor analysis of the aggregated mean daily 

distances (D_TRAV) across different MSAs over the studied 

period classified them into two distinct groups: one 

predominantly composed of inland MSAs and the other 

primarily of coastal MSAs. Strong weekly cycle trends emerged 

in these groups. Specifically, individuals from the inland MSA 

group tended to travel the furthest on Fridays and the least on 

Sundays, whereas those from the coastal MSA group traveled 

the most on Saturdays and the least on Mondays. This weekly 

pattern was robust, with 7-day lag autocorrelations of mean 

daily parameter values ranging between 0.81 to 0.99, excluding 

the mean daily N_LOC. These findings offer a foundational 

understanding of MSA mobility patterns, paving the way for 

more detailed studies on the nuances of these patterns. 

 
Index Terms—Big data analytics, cellular network data, 

human mobility, spatial parameters. 

 

I. INTRODUCTION 

haracterizing people's mobility patterns is a fundamental 

aspect of understanding human behavior [1] [2].  
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This understanding has significantly evolved due to 

advancements in digital technologies, providing more 

detailed insights into movement patterns [3]. 

Although human mobility and overall behavior are often 

complex, analyzing mobility during daily activities such as 

work commutes, shopping, socializing, or weekend trips to 

other cities reveals distinct patterns. This enables somewhat 

reliable predictions about future mobility [4], [5]. 

Traditional approaches to collecting data on human 

movement, like surveys, are limited by their restrictive 

nature, high costs, and time-consuming processes [6], [7]. 

However, the advent and widespread adoption of mobile 

devices have revolutionized data collection methods [1], [2]. 

These devices capture intricate details about individuals' 

daily travel routines, especially in urban areas [3]. 

Consequently, this rich dataset has proven invaluable for 

developing predictive models and analyzing mobility patterns 

[8], [9]. 

The study of broad mobility patterns of large groups using 

mobile device location data is increasingly significant. It can 

directly aid various aspects of municipal management and 

government, such as urban planning, traffic management, 

disease control, environmental impact assessment, and 

service provision by public and private entities [9], [10]. The 

study of these patterns is based on the analysis of mobility 

indicators derived from aggregated mobility data of large 

groups. The quality of these studies depends on the quality of 

these mobility parameters and their correct interpretation. It 

is, therefore, crucial to study and understand the 

characteristics and interrelationships of these mobility 

indicators. 

This paper presents two studies of human mobility. The 

first study aims to examine associations between different 

aggregate mobility parameters and identify those carrying 

similar or identical information. It was conducted using 

aggregated daily mobility data for October 2020 from two 

large U.S. metropolitan statistical areas (MSAs) – Atlanta-

Sandy Springs-Roswell, GA and Boston-Cambridge-

Newton, MA-NH. These areas were chosen for their distinct 

geographies, which could affect mobility patterns. Atlanta is 

an inland city with a metropolitan area road network 

converging on the central area from all sides. In contrast, 

Boston is a coastal city with its eastern side occupied by the 

ocean, limiting roads coming into the area from the east. 

The study begins with daily MSA level means and standard 

deviations of four primary mobility parameters – the Number 

of Visited Locations (N_LOC), the Number of Unique 

Visited Locations (N_ULOC), Radius of Gyration (R_GYR), 
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and the Distance Traveled (D_TRAV). Additional mobility 

parameters are derived and considered in the study. 

The second study analyzes the daily value patterns of 

mobility parameters in the 15 MSAs with the largest 

population sizes in the United States, according to population 

estimates for the year 2020 [11]. It builds on the results of the 

first study and includes only the mobility parameters 

identified in the first study as representing groups of 

associated mobility parameters. Both studies utilize the 

methodology presented in previous work ([12],[13]). 

The overall goal of both studies is to contribute to a 

comprehensive understanding of daily movement patterns in 

these urban areas, supporting urban planners and ultimately 

helping to enhance the quality of life for residents. 

The remainder of this paper is organized as follows: 

Section II outlines works focused on human mobility patterns 

using cellular data. Section III presents the datasets used in 

the two studies. Section IV details the methodology of the 

first study. Section V presents and discusses the results of the 

first study. Section VI describes the methodology of the 

second study. Section VII presents and discusses the results 

of the second study. Section VIII contains a general 

discussion of both studies and the implications of the 

findings. Section IX outlines limitations of the studies and 

directions for future research. Finally, Section X presents the 

conclusions. 

 

II. RELATED WORK 

Data on the movement of mobile devices of residents in 

large metropolitan areas constitutes what is referred to as 

“Big Data,” i.e., extremely large datasets that are too complex 

to be processed and analyzed by traditional data-processing 

software. The analysis of Big Data has profoundly influenced 

our society, providing tools to monitor, understand, and 

predict human behavior [14]. This is particularly valuable in 

the field of mobility studies, where analyzing extensive 

datasets, including GPS and phone records, has significantly 

enhanced our understanding of movement patterns [15]–[17]. 

Various studies have highlighted the diverse nature of 

human movement. For instance, Eagle and Pentland (2009) 

identified unique “behavioral spaces” of individuals from 

their mobility data and discovered that overlapping 

behavioral spaces can identify communities [18]. Frias-

Martinez et al. (2012) used tweeting patterns and locations to 

infer land use [19], while Jiang et al. (2012) explored using 

mobility patterns of mobile devices for city transportation 

system planning [20]. These studies form the basis for models 

and methods that categorize human movement. Researchers 

have also sorted individuals by travel behavior using mobile 

device location data [21], proposed models for movement and 

migration [22], and described cities through geolocated 

tweets [23]. 

Furthermore, mobile phone data has been instrumental in 

studying the link between human behavior and socio-

economic development. Research by Eagle et al. (2010), 

Blumenstock (2018), and Pappalardo et al. (2015) established 

a strong relationship between human mobility dynamics and 

localized socio-economic factors, such as per capita income 

and poverty rates, offering invaluable insights for economic 

development mapping and understanding consumer behavior 

[24]–[26]. Additionally, Frias-Martinez et al. (2011) utilized 

mobile phone data to model the spread of the H1N1 virus in 

Mexico during the 2009 outbreak, shedding light on the 

impact of government lockdown measures [27]. 

Different methods of analyzing location data have 

furthered our understanding of consumer behavior. For 

example, Guidotti et al. (2015) identified customer groups 

based on supermarket purchase data, including patterns of 

visited stores, visit times, and purchased items [28]. 

Pappalardo et al. (2016) demonstrated that combining 

specific mobile phone usage patterns with socio-demographic 

parameters can improve socioeconomic predictions [29]. 

These studies emphasize the importance of diverse movement 

data sources in understanding consumer behavior and its 

socio-economic ties. 

Movement data has also been crucial in disease prevention, 

including COVID-19. Xia et al. (2023) emphasized the role 

of movement data in managing disease spread and developing 

early warning systems [30]. Chen et al. (2021) studied how 

human movement impacted COVID-19 spread in China [31], 

and Mungmunpuntipantip and Wiwnitkit (2020) examined 

changing movement patterns in Thailand using GPS data 

[32]. 

In understanding the geographic spread of diseases other 

than COVID-19, movement data has been significant. For 

instance, Bengtsson et al. (2015) studied the spread of 

Cholera in Haiti using mobile phone records [33], and Belik 

et al. (2011) explored the role of natural human movement 

patterns in disease transmission [34]. 

In the field of spatial analysis, researchers have used 

mobile phone data to study human movement. Kang et al. 

(2010) analyzed cell phone usage in China to derive 

movement patterns [1]. Sevtsuk et al. (2010) identified 

regular movement patterns in Rome, Italy [35], while Becker 

et al. (2011) demonstrated the potential of using call detail 

records (CDRs) to examine movement in Morristown, New 

Jersey [36]. Song et al. (2010) found that, despite variations, 

human movement can be highly predictable [4]. Liu et al. 

(2014) analyzed GPS-equipped taxis in Shanghai, revealing 

daily rhythms and stable weekly mobility patterns [37]. 

Isaacman et al. (2011) developed algorithms to identify 

important personal places using cell phone location data [38]. 

Shi et al. (2017) analyzed collective movement patterns in 

Beijing, identifying different patterns based on various 

factors [39]. Hoteit et al. (2013) highlighted the importance 

of selecting the right parameters to understand movement 

within city networks [40]. 

Recent studies have focused on understanding human 

movement using crowd-sourced mobile phone data. 

Knezevic et al. (2023) and Matloub et al. (2023) studied 

movement in the Atlanta and Houston Metropolitan areas, 

showing that human movement is highly predictable [12], 

[13]. 

In summary, analyzing large datasets, particularly from 

mobile phones, has been crucial in understanding the links 

between human motion, socio-economic development, and 

well-being [1]. This knowledge has led to the development of 

models, prediction techniques, and profiling methods. It has 

also been instrumental in controlling the spread of diseases, 

including COVID-19, and has advanced our understanding of 

city planning, transportation, and spatial analysis. While past 
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studies have identified consistent movement patterns, 

showing that individuals tend to stay mostly in a few places, 

a comprehensive set of mobility parameters for thoroughly 

describing city movement and understanding people's 

routines is still lacking. Moreover, the absence of 

comparative studies across different regions and populations 

underscores the need for additional research and collaborative 

efforts in this field. 

 

III. DATA DESCRIPTION 

The two research studies presented in this paper utilized 

commercially accessible datasets comprising high-precision 

GPS coordinates obtained from cellular devices. 

The first study utilized location information from 

individual mobile phones in the Atlanta-Sandy Springs-

Roswell, GA, and Boston-Cambridge-Newton, MA-NH 

Metropolitan Statistical Areas (MSAs). The second study 

used location information from individual mobile phones 

within the fifteen most populous MSAs in the United States, 

according to population estimates from the United States 

Census Bureau for the year 2020 [11]. The data for both 

studies are from October 2020. 

Table I presents the population size, the count of unique 

mobile devices from which data were included in the datasets, 

and the number of binned locations incorporated in these 

studies. It also indicates which data were used in each of the 

two presented studies. The data are geographically binned 

using Uber's H3 Hexagonal Hierarchical Spatial Index [41]. 

The number of locations listed in Table I is based on the h8 

resolution level, corresponding to an approximate hexagonal 

bin radius of 531 meters. The data preparation procedure used 

in these studies follows the data preprocessing steps outlined 

in [13], selecting unique mobile devices. This approach 

ensures the inclusion of only those devices that appear in the 

dataset every day of the month and record a minimum of 24 

location entries per day, or at least one every hour. 

For enhanced readability, MSAs in this paper are referred 

to by the primary part of their name. For example, Atlanta-

Sandy Springs-Roswell, GA is simply referred to as the 

Atlanta MSA. 

IV. STUDY 1 METHODOLOGY 

The objective of the first study is to explore associations 

between various mobility parameters and to identify groups 

of parameters that exhibit identical or highly overlapping 

information. If certain mobility parameters are highly or 

completely correlated, it may not be necessary to include all 

of them in further analyses. Instead, one or a few 

representative parameters from each group can be selected. 

This approach can significantly streamline the analysis of 

mobility patterns while ensuring that the essential mobility 

information encapsulated within these parameters is 

preserved. 

A. Study 1 Mobility Parameters 

The methodology presented in [13] is utilized to preprocess 

the raw data and evaluate the mobility parameters considered 

in this study. Following the data preprocessing stage, four 

primary mobility parameters are evaluated for each of the two 

studied Metropolitan Statistical Areas (MSAs): 

• Number of visited locations (N_LOC): This parameter 

represents the count of visited hexagonal bins over a 

given time scale. 

• Number of unique visited locations (N_ULOC): 

N_ULOC denotes the count of unique hexagonal bins 

visited over a given time scale. 

• Radius of gyration (R_GYR): R_GYR quantifies the size 

of an individual's mobility area. It is defined as the 

largest distance of an individual from their mobility 

center of mass. 

• Distance traveled (D_TRAV): D_TRAV refers to the 

total linear distance traveled by an individual at a given 

time scale. 

The individuals are considered to have visited a location if 

they spend more than 15 minutes within the area associated 

with that location. 

After following steps presented in [13], the resultant 

datasets contained means and standard deviations of the four 

primary studied mobility parameters for each day in the 

month of October 2020, resulting in a total of 8 different 

mobility parameters available for analysis (daily means and 

daily standard deviations for each of the 4 primary 

parameters). These 8 parameters were then combined to 

derive additional mobility parameters: 

 
 

TABLE I 

 POPULATION, UNIQUE PHONES, AND BINNED LOCATIONS IN TOP 15 US MSAS 

Included in 

Study 1? 

Included in 

Study 2? Metropolitan Statistical Area (MSA) 
Population 

(2020) 

Unique 

Phones 
Population % Locations 

 Yes New York-Newark-Jersey City, NY-NJ  20,140,470 278,742 1.90% 31,511 

 Yes Los Angeles-Long Beach-Anaheim, CA  13,200,998 74,074 1.04% 10,964 

 Yes Chicago-Naperville-Elgin, IL-IN  9,618,502 147,635 1.53% 25,113 

 Yes Dallas-Fort Worth-Arlington, TX  7,637,387 173,883 2.28% 29,723 

 Yes Houston-Pasadena-The Woodlands, TX  7,122,240 142,132 1.62% 26,276 

 Yes Washington-Arlington-Alexandria, DC-VA-MD-WV  6,385,162 71,652 2.00% 22,176 

 Yes Philadelphia-Camden-Wilmington, PA-NJ-DE-MD  6,245,051 87,404 0.56% 16,767 

Yes Yes Atlanta-Sandy Springs-Roswell, GA  6,089,815 115,796 1.41% 32,029 

 Yes Miami-Fort Lauderdale-West Palm Beach, FL  6,138,333 86,494 1.38% 12,341 

 Yes Phoenix-Mesa-Chandler, AZ  4,845,832 70,848 1.40% 20,294 

Yes Yes Boston-Cambridge-Newton, MA-NH  4,941,632 51,309 1.46% 12,780 

 Yes Riverside-San Bernardino-Ontario, CA  4,599,839 31,313 0.68% 20,176 

 Yes San Francisco-Oakland-Fremont, CA  4,749,008 23,100 0.49% 6,285 

 Yes Detroit–Warren–Dearborn, MI  4,392,041 71,119 1.26% 13,988 

 Yes Seattle-Tacoma-Bellevue, WA  4,018,762 50,544 1.12% 13,432 
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• Coefficients of Variation (CV): The coefficients of 

variation are calculated by dividing the standard 

deviation for a particular day with the mean for that 

specific day. This calculation presents the daily variation 

in D_TRAV, N_LOC, N_ULOC, and R_GYR as 

proportions of the mean, rather than in raw units of 

measurement or counts. Coefficients of variance are 

calculated for each of the four studied parameters. 

• Travel Path Shape: This parameter is calculated by 

dividing the mean distance traveled for a particular day 

with the radius of gyration for that specific day. This 

calculation helps determine if travel paths tend to more 

closely resemble a straight line than a circular shape. 

Higher values of the shape of travel parameter indicate 

that the path is more circular around the mobility center 

of mass. 

• Average Distance Between Locations: This parameter is 

calculated by dividing the mean distance traveled by the 

number of locations visited. This calculation shows the 

average distance covered between each visited location. 

In total, this has resulted in 14 different mobility parameters 

used in this study. 

 

B. Statistical Analyses 

The primary objective of this study is to investigate the 

associations between analyzed mobility parameters in the two 

Metropolitan Statistical Areas (MSAs). Initial insights into 

their relationships were obtained by calculating correlations 

between the daily values of the 14 mobility parameters 

(details not presented in this paper). 

Subsequently, an exploratory factor analysis was 

conducted on these parameters within each MSA. This 

technique is utilized to identify clusters of highly correlated 

mobility parameters. The process involves identifying 

parameters with high loadings on common factors, 

suggesting their potential to provide similar information and 

yield analogous results in analyses. The factor analysis was 

performed using the principal axis factoring method, coupled 

with a varimax orthogonal rotation for the final factor 

solution. Horn’s parallel analysis was applied to determine 

the number of factors to be extracted [43]. 

This analysis was conducted separately on datasets from 

each of the two MSAs. One dataset was used to identify the 

factor structure of the mobility parameters, while the other 

served for cross-validation. This approach ensured 

verification of whether the observed factor structure (or a 

similar one) was present in both MSAs, thereby confirming 

that the patterns were not unique to a single MSA. 

 

V. STUDY 1 RESULTS AND DISCUSSION 

An inspection of the correlation matrices between the daily 

values of the 14 mobility parameters within each of the two 

MSAs showed a strong correlation among most parameters. 

However, the complexity and size of these matrices render 

them impractical for interpretation or presentation within a 

research paper. To address this, an exploratory factor analysis 

was conducted on the mobility parameters within each MSA. 

The results are detailed in Tables II and III, which display 

the association structures of the daily values of the 14 

mobility parameters in the Atlanta and Boston MSAs, 

respectively. Factor loadings below 0.40 were deemed low 

and are not displayed for clarity. 

Fig. 1 presents a scree plot comparing the eigenvalues of 

factors extracted from the Atlanta MSA dataset's mobility 

parameters against those from a simulated dataset in Horn’s 

parallel analysis. Given the similarity, the scree plot from the 

Boston dataset is not included. 

 
TABLE II 

ATLANTA MSA MOBILITY PARAMETERS' FACTOR ANALYSIS RESULTS 

Parameter Factor 1 Factor 2 Uniqueness 

Mean D_TRAV 0.83 0.56 0.00 

SD of D_TRAV 0.85 0.47 0.05 

Mean N_LOC 0.96  0.03 

SD N_LOC 0.52  0.72 

Mean N_ULOC 0.86 0.48 0.04 

SD N_ULOC 0.91  0.10 

Mean R_GYR  0.98 0.01 

SD of R_GYR  0.88 0.11 

D_TRAV CV -0.81 -0.59 0.00 

N_LOC CV -0.91  0.06 

N_ULOC CV  -0.80 0.30 

R_GYR CV -0.95  0.09 

Travel Path Shape 0.88 -0.44 0.04 

Average Distance 

Between Locations 

0.42 0.82 0.16 

  

 

TABLE III 

BOSTON MSA MOBILITY PARAMETERS' FACTOR ANALYSIS RESULTS 

Parameter Factor 1 Factor 2 Uniqueness 

Mean D_TRAV 0.71 0.70 0.00 

SD of D_TRAV 0.55 0.81 0.05 

Mean N_LOC 0.95  0.01 

SD N_LOC 0.88  0.22 

Mean N_ULOC 0.87 0.48 0.01 

SD N_ULOC 0.90  0.16 

Mean R_GYR  0.96 0.00 

SD of R_GYR  1.00 0.00 

D_TRAV CV -0.86 -0.50 0.01 

N_LOC CV -0.91  0.06 

N_ULOC CV -0.44 -0.73 0.27 

R_GYR CV -0.89  0.14 

Travel Path Shape 0.49 -0.87 0.00 

Average Distance 

Between Locations 

 0.92 0.08 

 

The analyses indicate that in both MSAs, the 14 mobility 

parameters group into two distinct factors. The first factor 

shows very high loadings on seven parameters in both MSAs, 

encompassing means and standard deviations of the number 

of locations and unique locations, as well as coefficients of 

variation of the radius of gyration and distance traveled. The 

second factor primarily comprises mean and standard 

deviation of radius of gyration, the coefficient of variance of 

the number of unique locations, and the average distance 

between locations. Travel path shape exhibits a positive 

correlation with the first factor and a negative one with the 

second, though the relative magnitudes of these correlations 

differ between the two MSAs. 

Interestingly, both the mean and standard deviation of 

distance traveled show high or substantial loadings on both 

factors in both MSAs. Notably, the standard deviation of the 

number of locations visited and the coefficient of variation of 

the number of unique locations visited demonstrate the 

highest level of uniqueness in both MSAs. This suggests that 
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these parameters share the least variance with the others. Yet, 

even these uniqueness values are relatively low, indicating a 

shared variance among most mobility parameters. In fact, the 

two extracted factors account for 87.9% of the variance in the 

Atlanta MSA dataset and 92.8% in the Boston MSA dataset. 

 

 
Fig. 1. Atlanta MSA Scree Plot (Horn's Parallel Analysis). 

 

Overall, the findings from the first study reveal that the 

examined individual mobility parameters are not unique 

when compared to others; they are strongly interrelated. 

Linear modeling could accurately predict each parameter 

from the others, suggesting that all mobility parameters may 

not be necessary for further analyses of mobility patterns. 

Instead, one parameter representing each of the two factors 

could be sufficient. The best candidates would be those with 

zero uniqueness. Additionally, mean distance, which also has 

zero uniqueness and exhibits relatively high (in Boston) or 

substantial (in Atlanta) loadings on both factors, could be 

considered for analysis. 

 

VI. STUDY 2 METHODOLOGY 

The aim of the second study was to analyze the daily value 

patterns of mobility parameters in the 15 largest MSAs in the 

United States, selected based on population estimates for the 

year 2020.  

 

A. Study 2 Mobility Parameters 

The results of Study 1 strongly indicated that analyzing all 

mobility parameters, especially when examining pattern data, 

is not necessary. Building on the findings of Study 1, this 

study focuses only on data related to: 

• Mean daily distance traveled, as this mobility 
parameter showed substantial loadings on both 

factors identified in Study 1. 

• Mean daily number of locations, representing 

mobility parameters with high loadings on factor 1. 

• Mean daily radius of gyration, representing mobility 

parameters with high loadings on factor 2. 

An exception to this approach was made for the initial 

calculation of descriptive statistics, where all mobility 

parameters from Study 1 were utilized. This was done to 

provide readers with a comprehensive view of the values of 

these parameters across different MSAs, presented in their 

specific units of measurement. 

B. Statistical Analyses 

This study used the following statistical procedures: 

• Deviation from the Theoretical Normal Distribution: 

Measures of vertical and horizontal deviation, namely 

skewness and kurtosis, are analyzed to assess the extent 

of deviation from the ideal normal distribution. The size 

of these deviations is evaluated in accordance with one 

of the common rules of thumb: deviations of 

approximately ±1 are deemed small and are, therefore, 

considered to not constitute substantial deviations from 

the theoretical normal distribution [42]. 

• Comparing Means of Daily Values of Mobility 

Parameters: The means of mobility parameters’ daily 

values across diverse MSAs are compared using repeated 

measures analysis of variance (repeated measures 

ANOVA). 𝜂2 is used as a measure of effect size. The 

statistical significance threshold employed in this study 

is 0.05. 

• Exploratory Factor Analysis among MSAs: Exploratory 

factor analysis was used to create soft categories of 

MSAs based on covariance of daily mobility patterns 

across MSAs. The factor analysis is applied to the same 

mobility parameters, measured in different MSAs on the 

same days. The data for this operation consist of selected 

mobility parameters across all MSAs, with each MSA's 

data on a single mobility parameter serving as one 

variable, and the different recording days being 

represented as entities/cases. Anderson-Rubin factor 

scores [44] of extracted factors are generated, 

subsequently used for further comparison to represent 

the generalized tendencies of the MSA group associated 

with that particular factor. 

• Comparison of Mobility Parameters on Different Days 

of the Week: Mean values of factor scores that represent 

factors derived from daily mobility parameters of MSAs 

for different days of the week are compared using one-

way ANOVA. Eta squared ( 𝜂2 )is used as a measure of 

effect size. 

• Pairwise Comparison of Means: Following analysis of 

variance, pairwise comparisons of means are conducted 

using t-test with Bonferroni correction for probability 

inflation [45]. All statistical significances of pairwise 

comparisons include the Bonferroni correction. Cohen’s 

d values are used as effect size measures in these 

comparisons and interpreted in accordance with the 
recommendations given by Cohen [46].  

• Examination of Autocorrelations: Correlations between 

a parameter and its lagged values (lag 7 and lag 1) are 

calculated, serving to examine the observations about 

weekly cycle trends. Autocorrelations are derived by 

pairing parameter values with their own values at future 

time points that differ for a fixed number of units. Here, 

the values are matched with the values of the same 

parameter on the corresponding weekday of the ensuing 

week, thereby validating the weekly cycle. This is 

contrasted with lag 1 autocorrelation, i.e., correlations of 
parameter values on each day, paired with their values on 

the following day, aiming to determine whether the 

weekly cycle is stronger than mere day-to-day changes. 
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VII. STUDY 2 RESULTS AND DISCUSSION 

A. Differences between MSAs and Mobility Parameter 

Distribution Shapes 

Table IV shows values of mean, standard deviation, 

skewness, and kurtosis for each mobility parameter evaluated 

during the period from October 1, 2020, to October 30, 2020, 

derived from the datasets. Mean values of included 

Metropolitan Statistical Areas (MSAs) are compared using 

repeated measures ANOVA, with eta squared (𝜂2) serving as 

a measure of effect size. 

 
TABLE IV 

DESCRIPTIVE STATISTICS AND ANOVA RESULTS FOR DIFFERENT MSAS 

Mean Daily D_TRAV (km)  Mean SD of Daily D_TRAV (km) 

MSA Mean SD Skewness Kurtosis MSA Mean SD Skewness Kurtosis 

Atlanta 61.88 5.7 -0.44 0.36  Atlanta 66.57 3.31 -0.91 1.28 

Boston 45.51 4.74 1.05 0.76  Boston 53.62 2.95 1.14 0.86 

Chicago 48.53 4.69 0.23 0.02  Chicago 59.15 2.57 -0.46 0.72 

Dallas 62.8 6.15 -0.02 -1.08  Dallas 68.67 3.62 -0.38 -0.89 

Detroit 52.62 5.1 -0.33 -0.18  Detroit 57.64 2.87 -0.69 0.36 

Houston 62.83 5.19 0.01 -0.76  Houston 68.82 2.83 -0.23 -0.76 

Los Angeles 42.68 3.41 0.75 -0.85  Los Angeles 52.57 2.06 1.04 0.08 

Miami 47.12 4.14 -0.69 0.39  Miami 55.58 2.66 -1.05 0.86 

New York 44.91 4.68 0.81 0.69  New York 57.16 3.54 0.98 0.31 

Philadelphia 45.2 4.89 0.78 0.01  Philadelphia 51.67 2.46 0.54 -0.44 

Phoenix 56.46 5.2 -0.54 -0.04  Phoenix 65.34 3.15 -0.78 0.15 

Riverside 49.57 3.81 -0.19 -0.66  Riverside 61.73 2.24 -0.18 -0.45 

San Francisco 37.44 3.08 0.96 -0.22  San Francisco 49.44 1.7 0.34 -0.97 

Seattle 43.32 3.74 -0.53 0.05  Seattle 54.69 2.57 -1.2 1.14 

Washington 46.52 5.09 0.66 0.14  Washington 58.14 2.87 0.28 0.07 

F 323.48     F 448.81    

𝜼𝟐 0.92     𝜼𝟐 0.94    

Sig. <0.01     Sig. <0.01    

Mean Daily N_LOC  Mean Daily SD of N_LOC 

MSA Mean SD Skewness Kurtosis  MSA Mean SD Skewness Kurtosis 

Atlanta 5.61 0.35 -0.58 0.77  Atlanta 4.24 0.1 2.88 10.89 

Boston 5.1 0.31 0.12 -0.84  Boston 3.91 0.06 -0.33 -0.26 

Chicago 5.17 0.32 -0.44 0.41  Chicago 4 0.06 -1.07 1.34 

Dallas 5.69 0.36 -0.56 -0.02  Dallas 4.19 0.07 -0.64 -0.09 

Detroit 5.26 0.34 -0.78 0.66  Detroit 3.96 0.07 -0.64 -0.03 

Houston 5.66 0.32 -0.76 0.79  Houston 4.17 0.06 -0.91 0.86 

Los Angeles 4.87 0.23 0.38 -0.92  Los Angeles 3.81 0.04 -0.65 -0.13 

Miami 5.25 0.31 -0.77 0.55  Miami 3.98 0.07 -1.26 1.17 

New York 5.17 0.34 -0.49 0.19  New York 4.03 0.06 -0.68 -0.15 

Philadelphia 5.12 0.34 -0.3 -0.57  Philadelphia 3.93 0.06 -0.94 0.14 

Phoenix 5.2 0.31 -0.58 0.5  Phoenix 3.89 0.08 -0.96 0.8 

Riverside 4.82 0.23 -0.13 -0.23  Riverside 3.85 0.06 -0.77 0.74 

San Francisco 4.56 0.21 0.64 -0.88  San Francisco 3.77 0.05 -0.8 0.84 

Seattle 4.75 0.25 -0.96 0.98  Seattle 3.95 0.07 -1.25 1.66 

Washington 4.79 0.32 -0.42 0.13  Washington 3.94 0.07 -1.61 1.92 

F 128.96     F 331.08    

𝜼𝟐 0.82     𝜼𝟐 0.92    

Sig. <0.01     Sig. <0.01    

Mean Daily N_ULOC  Mean Daily SD of N_ULOC 

MSA Mean SD Skewness Kurtosis  MSA Mean SD Skewness Kurtosis 

Atlanta 3.15 0.2 0.02 0.49  Atlanta 1.91 0.11 -0.22 0.68 

Boston 2.84 0.18 0.53 -0.43  Boston 1.7 0.08 0.14 -0.49 

Chicago 2.9 0.19 0.14 -0.37  Chicago 1.78 0.09 -0.49 0.4 

Dallas 3.16 0.21 0.06 -0.83  Dallas 1.91 0.11 -0.26 -0.48 

Detroit 2.95 0.2 -0.12 -0.42  Detroit 1.77 0.1 -0.49 0.08 

Houston 3.17 0.19 0.12 -0.46  Houston 1.91 0.1 -0.27 -0.22 

Los Angeles 2.79 0.15 0.74 -0.96  Los Angeles 1.73 0.07 0.26 -0.69 

Miami 3.03 0.18 -0.21 0.01  Miami 1.89 0.1 -1.02 1.24 

New York 2.92 0.2 0.02 -0.07  New York 1.8 0.08 -0.22 -0.42 

Philadelphia 2.86 0.2 0.27 -0.67  Philadelphia 1.71 0.09 -0.31 -0.57 

Phoenix 2.97 0.18 0.04 -0.21  Phoenix 1.85 0.1 -0.62 0.53 

Riverside 2.75 0.14 0.41 -0.63  Riverside 1.7 0.07 -0.39 0.31 

San Francisco 2.62 0.14 0.89 -0.66  San Francisco 1.66 0.07 0.53 -0.69 

Seattle 2.7 0.15 -0.14 -0.31  Seattle 1.74 0.09 -0.78 0.94 

Washington 2.74 0.2 0.31 -0.38  Washington 1.74 0.1 -0.65 0.54 

F 119.34     F 172.9    

𝜼𝟐 0.8     𝜼𝟐 0.86    

Sig. <0.01     Sig. <0.01    

Mean Daily R_GYR (km)  Mean Daily SD of R_GYR (km) 

MSA Mean SD Skewness Kurtosis  MSA Mean SD Skewness Kurtosis 

Atlanta 12.56 1.08 0.94 0.16  Atlanta 14.09 1.21 0.8 -0.5 

Boston 9.46 1.33 1.16 0.45  Boston 11.74 1.72 1.03 -0.35 

Chicago 10.06 1.12 1.17 0.55  Chicago 12.74 1.4 0.95 -0.39 

Dallas 12.72 1.34 0.9 -0.13  Dallas 14.57 1.44 0.64 -1.06 

Detroit 10.58 0.98 1.11 0.15  Detroit 11.64 0.93 0.88 -0.56 

Houston 12.61 1.2 1.02 -0.14  Houston 14.52 1.47 0.64 -1.31 
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Mean Daily R_GYR (km) (Continued)  Mean Daily SD of R_GYR (km) (Continued) 

MSA Mean SD MSA Mean  MSA Mean SD MSA Mean 

Los Angeles 8.94 0.9 1.01 -0.09  Los Angeles 11.33 1.23 0.86 -1 

Miami 9.52 0.76 1.12 0.39  Miami 12.1 1.29 0.94 -0.57 

New York 9.4 1.39 0.93 -0.46  New York 13.2 2.14 0.82 -1 

Philadelphia 9.27 1.17 1.19 0.68  Philadelphia 10.79 1.29 0.89 -0.85 

Phoenix 11.42 0.93 1.02 -0.45  Phoenix 13.74 1.2 0.73 -0.86 

Riverside 11.19 0.97 0.93 -0.33  Riverside 16.97 2.07 0.63 -0.7 

San Francisco 7.97 0.84 1.02 0.06  San Francisco 10.24 0.88 0.86 -0.94 

Seattle 9.18 0.78 1.17 0.47  Seattle 11.68 0.92 0.99 -0.14 

Washington 9.89 1.25 1.21 0.43  Washington 12.53 1.35 0.93 -0.64 

F 295.91     F 323.42    

𝜼𝟐 0.91     𝜼𝟐 0.92    

Sig. <0.01     Sig. <0.01    

Mean Daily D_TRAV CV  Mean Daily N_LOC CV 

MSA Mean SD Skewness Kurtosis  MSA Mean SD Skewness Kurtosis 

Atlanta 1.08 0.05 0.42 0.6  Atlanta 0.76 0.04 1.14 1.69 

Boston 1.18 0.06 -0.4 -0.44  Boston 0.77 0.04 0.1 -0.67 

Chicago 1.22 0.07 -0.22 -0.26  Chicago 0.78 0.04 0.61 0.55 

Dallas 1.1 0.05 -0.12 -1.08  Dallas 0.74 0.04 0.81 0.12 

Detroit 1.1 0.06 0.41 -0.05  Detroit 0.75 0.04 1.13 1.46 

Houston 1.1 0.05 0.06 -0.68  Houston 0.74 0.03 0.92 0.63 

Los Angeles 1.24 0.05 -0.5 -1.07  Los Angeles 0.78 0.03 -0.37 -0.93 

Miami 1.18 0.05 0.7 0.55  Miami 0.76 0.03 0.72 0.35 

New York 1.28 0.06 0.38 0.76  New York 0.78 0.04 0.88 1.52 

Philadelphia 1.15 0.07 -0.4 -0.05  Philadelphia 0.77 0.04 0.36 -0.52 

Phoenix 1.16 0.06 0.61 0.15  Phoenix 0.75 0.03 0.72 0.61 

Riverside 1.25 0.05 0.39 -0.56  Riverside 0.8 0.03 0.01 -0.83 

San Francisco 1.33 0.06 -0.92 -0.18  San Francisco 0.83 0.03 -0.54 -0.71 

Seattle 1.27 0.06 0.15 -0.43  Seattle 0.83 0.03 0.73 0.31 

Washington 1.26 0.07 -0.42 -0.07  Washington 0.82 0.04 0.24 0.07 

F 199.17     F 69.69    

𝜼𝟐 0.87     𝜼𝟐 0.71    

Sig. <0.01     Sig. <0.01    

Mean Daily N_ULOC CV  Mean Daily R_GYR CV 

MSA Mean SD Skewness Kurtosis  MSA Mean SD Skewness Kurtosis 

Atlanta 0.61 0.01 0.37 0.22  Atlanta 1.12 0.06 1.65 2.51 

Boston 0.6 0.02 0.08 -0.54  Boston 1.24 0.05 1.11 0.25 

Chicago 0.62 0.01 -0.62 -0.34  Chicago 1.27 0.06 1.68 2.87 

Dallas 0.61 0.01 0.13 0.07  Dallas 1.15 0.05 1.46 1.24 

Detroit 0.6 0.01 -0.53 -0.63  Detroit 1.1 0.06 1.79 2.81 

Houston 0.6 0.01 -0.1 -0.1  Houston 1.15 0.05 1.92 2.49 

Los Angeles 0.62 0.01 -0.16 -0.99  Los Angeles 1.27 0.05 1.38 1.53 

Miami 0.62 0.01 0.05 -0.43  Miami 1.27 0.08 1.36 1.13 

New York 0.62 0.02 0.24 0.57  New York 1.4 0.07 1.57 1.87 

Philadelphia 0.6 0.01 -0.47 0.27  Philadelphia 1.17 0.06 1.27 0.7 

Phoenix 0.62 0.01 0.3 -0.79  Phoenix 1.2 0.07 1.6 1.84 

Riverside 0.62 0.01 -0.32 -0.98  Riverside 1.51 0.1 1.35 0.63 

San Francisco 0.64 0.01 -0.3 -0.59  San Francisco 1.29 0.05 -0.22 -0.84 

Seattle 0.65 0.01 -0.46 0.03  Seattle 1.27 0.06 1.79 2.54 

Washington 0.64 0.02 -0.79 -0.27  Washington 1.27 0.07 1.4 1.93 

F 104.98     F 292.42    

𝜼𝟐 0.78     𝜼𝟐 0.91    

Sig. <0.01     Sig. <0.01    

Mean Daily Travel Path Shape  Mean Daily Average Distance Between Locations (km) 

MSA Mean SD Skewness Kurtosis  MSA Mean SD Skewness Kurtosis 

Atlanta 4.93 0.34 -1.16 -0.23  Atlanta 11.02 0.49 -0.11 0.68 

Boston 4.84 0.32 -1.08 -0.16  Boston 8.91 0.51 1.38 1.27 

Chicago 4.84 0.31 -1.31 0.47  Chicago 9.37 0.39 1.09 0.61 

Dallas 4.95 0.35 -1.23 0.1  Dallas 11.02 0.51 1.08 0.18 

Detroit 4.98 0.31 -1.43 0.77  Detroit 9.98 0.39 0.69 0.08 

Houston 5 0.37 -1.26 0.1  Houston 11.09 0.43 1.19 0.36 

Los Angeles 4.79 0.26 -1.27 0.16  Los Angeles 8.75 0.34 1.26 0.76 

Miami 4.96 0.36 -1.16 -0.05  Miami 8.97 0.32 -0.28 0.09 

New York 4.82 0.35 -1.15 0.01  New York 8.69 0.55 1.12 -0.09 

Philadelphia 4.89 0.32 -1.32 0.62  Philadelphia 8.81 0.45 1.51 1.56 

Phoenix 4.95 0.31 -1.24 0.22  Phoenix 10.83 0.43 0 -0.73 

Riverside 4.44 0.28 -1.13 0.04  Riverside 10.28 0.34 0.19 -0.25 

San Francisco 4.71 0.24 -1.27 0.15  San Francisco 8.2 0.33 1.1 0.72 

Seattle 4.73 0.28 -1.22 0  Seattle 9.1 0.35 0.24 -0.22 

Washington 4.72 0.28 -1.25 0.4  Washington 9.69 0.48 1.52 1.43 

F 161.95     F 603.24    

𝜼𝟐 0.85     𝜼𝟐 0.96    

Sig. <0.01     Sig. <0.01    
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A review of Table IV suggests that the distribution of the 

majority of assessed parameters closely aligns with a 

theoretical normal distribution, as most skewness and 

kurtosis values lie within the ±1 range [42]. Noteworthy 

deviations are observed in the shapes of daily travel paths, 

which demonstrate considerable negative asymmetry, and 

daily average distances between locations, which are 

normally distributed for 6 MSAs and positively skewed for 9 

MSAs. 

Despite some parameters exhibiting distributions deviating 

beyond the ±1 range, after some tryouts, the choice was made 

to retain parametric statistics without implementing 

normalization transformations to the data. This was done 

because those initial tryouts showed that conclusions drawn 

from the results would be the same both with and without 

transformation of the data and also regardless of whether 

parametric and nonparametric procedures were applied. This 

was especially the case because most effect sizes were quite 

large (𝜂2), as can be seen in Table IV. 

The data in Table IV show notable contrasts in the mean 

daily distance traveled across MSAs. For example, in Dallas, 

Houston, and Atlanta the average daily distance travelled 

range between 61 km and 63 km, and in MSAs like San 

Francisco, Los Angeles, and Seattle, these distances are much 

shorter being 37 km, 43 km, and 43 km, respectively. 

Standard deviations of daily travel distance are consistently 

higher than mean values, indicating a considerable range in 

individual travel patterns. This suggests the presence of many 

individuals with minimal or no travel (thus reducing the 

mean) as well as a smaller subset of individuals who travel 

extensively (thus significantly increasing the standard 

deviation). 

Evaluation of the number of locations visited reveals that 

the MSAs with the most extensive and least extensive daily 

travel distances also recorded the highest and lowest average 

numbers of locations visited, respectively. A similar trend is 

noted when assessing the number of unique locations visited. 

However, the three MSAs with the smallest average daily 

number of unique locations visited are San Francisco, Seattle, 

and Washington, with Riverside and Los Angeles recording 

slightly higher values. 

Assessment of the average radius of gyration shows that 

Dallas, Houston, and Atlanta MSAs have the highest values, 

while San Francisco, Los Angeles, and Seattle MSAs have 

the lowest. In terms of the average distance between locations 

visited, data indicates that visited locations are the furthest 

apart in Houston, Dallas, and Atlanta MSAs, and the closest 

together in San Francisco, New York, and Los Angeles 

MSAs. 

The mean values of daily travel paths suggest that these 

paths are generally more linear than circular, with relatively 

low standard deviations. Among different areas, Riverside 

MSA exhibits paths most closely aligned with a linear shape, 

while Houston, Detroit, and Dallas MSAs show the most 

deviation from this shape, suggesting a more circular traffic 

infrastructure in these MSAs. 

Comparison of mean values of the studied parameters 

between the fifteen (15) MSAs using repeated measures 

ANOVA reveals that differences between MSAs are 

statistically significant in all cases and of extreme size (high 

𝜂2 values). Within each MSA, differences between parameter 

values on different days of October 2020 tend to be smaller 

than those between different MSAs. The smallest difference 

among MSAs, though still notably large, is seen when 

examining mean coefficients of variation of the daily N_LOC 

(𝜂2 = 17), while the largest difference is found when 

comparing mean values of daily average distance between 

locations (𝜂2 = 0.96). 

This suggests that the number of locations people visit 

within MSAs does not vary as significantly as the average 

distances individuals travel. The MSAs are more similar 

when considering the frequency of location visits, but they 

diverge more substantially in terms of the average distances 

covered by individuals. 

Results also indicate that the differences in mean values of 

examined mobility parameters are not universally statistically 

significant across all MSAs. The mean value of a given 

parameter in one MSA often does not differ significantly 

from that in several other MSAs, although it may stand out in 

the remaining ones. This suggests that grouping MSAs with 

similar mean values on the same days is feasible. 

 

B. Comparison of Mobility Parameters across MSAs 

Next, exploratory factor analysis was conducted to identify 

clusters of MSAs with similar patterns of daily variations in 

parameter values. Based on the results of study 1, the decision 

was made to conduct this procedure on three mobility 

parameters only – the average daily distance traveled, the 

average number of daily locations visited, and the radius of 

gyration. Explanation for this decision is presented in the 

methodology part of this study and in the results of study 1. 

The results of the exploratory factor analysis conducted on 

the mean distance traveled across different MSAs are 

presented in Table V. Additionally, Fig. 2 presents the scree 

plot that shows the results of Horn’s parallel analysis i.e., the 

eigenvalues of extracted factors alongside the eigenvalues of 

factors from a simulated matrix. It should be noted that factor 

loadings below 0.58 are not included in Table V. 

 
TABLE V 

FACTOR LOADINGS AND UNIQUENESS OF DAILY MEAN DISTANCE 

TRAVELED 

Mean Daily Distance Travelled 

MSA Factor 1 Factor 2 Uniqueness 

Atlanta 0.87  0.20 

Boston  0.92 0.12 

Chicago 0.62 0.67 0.18 

Dallas 0.82  0.08 

Detroit 0.82  0.10 

Houston 0.87  0.05 

Los Angeles 0.67 0.71 0.06 

Miami 0.89  0.19 

New York  0.98 0.02 

Philadelphia  0.84 0.07 

Phoenix 0.95  0.01 

Riverside 0.90  0.01 

San Francisco  0.72 0.16 

Seattle 0.89  0.10 

Washington  0.79 0.11 

 

As Table V shows, two factors were extracted in this 

procedure. These factors collectively account for 90% of the 

variance in daily mean distance traveled. Of that, 52.3% are 

accounted for by the first factor and 38.1% by the second. 
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MSAs with the highest loadings on the first factor (Factor 1) 

are Atlanta, Dallas, Detroit, Houston, Miami, Phoenix, 

Riverside, and Seattle. Similarly, Boston, Los Angeles, New 

York, Philadelphia, San Francisco, and Washington are 

MSAs with the highest loadings on the second factor (Factor 

2). Interestingly, Chicago and Los Angeles stand out by 

displaying moderately high loadings on both factors. 

 

 
Fig. 2. Scree plot of D_TRAV extracted factors with eigenvalues in different 

MSAs. 

 

MSAs with high loadings on Factor 1 are predominantly 

found to be inland, with the exceptions of Miami and Seattle. 

In contrast, all MSAs with high loadings on Factor 2, barring 

Chicago, are identified as coastal cities. These findings might 

illustrate the distinctive patterns of daily distance traveled 

between inland and coastal cities, allowing for a few outliers. 

When these results are compared with the average daily 

mean distance traveled, MSAs with the highest mean values 

of distance traveled, such as Dallas, Houston, and Atlanta, are 

all found to display high loadings on Factor 1. Seattle, on the 

other hand, which has one of the lowest distances traveled 

values, also displays a high loading on Factor 1. Conversely, 

San Francisco and Los Angeles, the other two low mean daily 

distance traveled MSAs, display high loadings on Factor 2, 

although Los Angeles also exhibits a significant loading on 

Factor 1. These observations might suggest that the patterns 

of daily distance traveled changes responsible for this 

grouping are not highly associated with the average size of 

daily distance traveled, considering that the factor analytic 

procedure is conducted on the correlation matrix and 

correlations are not sensitive to differences in means and 

variances. 

For the purpose of corroborating these findings, the same 

procedure is repeated on the mean daily number of locations 

visited and the mean daily radius of gyration across different 

MSAs, in light of the preceding results. 

Table VI shows the Factor loadings and uniqueness of the 

daily mean number of locations visited for various MSAs. 

Factor loadings below 0.58 are not displayed. In Fig. 3, the 

scree plot illustrates the extracted factors from the mean daily 

number of locations visited, along with the corresponding 

eigenvalues derived from a simulated matrix created under 

the framework of Horn's parallel analysis. 

Upon examining the results of factor analysis for the daily 

mean number of locations visited, it is found that the 

outcomes again consist of 2 factors. These 2 factors together 

explain 85.2% of the variance of the daily mean number of 

locations visited, specifically 51.7% and 33.4%. However, it 

is notable that the second factor demonstrates high loadings 

for the daily number of locations visited data from New York, 

Philadelphia, Boston, and Washington, while the remaining 

MSAs exhibit the highest loading on the first factor. Chicago 

exhibits equally high loadings on both factors, similar to the 

results observed for mean distances traveled. 

 
TABLE VI 

FACTOR LOADINGS AND UNIQUENESS OF DAILY MEAN N_LOC 

Mean Daily N_LOC 

MSA Factor 1 Factor 2 Uniqueness 

Atlanta 0.88  0.20 

Boston  0.87 0.21 

Chicago 0.60 0.63 0.25 

Dallas 0.82  0.14 

Detroit 0.78  0.15 

Houston 0.90  0.07 

Los Angeles 0.77  0.14 

Miami 0.83  0.26 

New York  0.92 0.07 

Philadelphia  0.90 0.04 

Phoenix 0.94  0.06 

Riverside 0.89  0.03 

San Francisco 0.65  0.34 

Seattle 0.83  0.13 

Washington  0.79 0.14 

 

 
Fig. 3. Scree plot of N_LOC extracted factors with eigenvalues in different 

MSAs. 

 

The total variance explained by these factors is somewhat 

lower compared to the analysis based on mean distances 

traveled. Consequently, the average uniqueness of source 

variables in this analysis is somewhat higher than in the one 

conducted on mean distance travel, approximately 0.15 here 

compared to 0.10 in the analysis on mean distance traveled. 

The uniqueness of mean daily numbers of locations visited 

for San Francisco, Miami, and Chicago stands out with 34%, 

26%, and 25% of unique variance, respectively. This 

indicates that patterns of daily mean numbers of unique 

locations visited in each of these three MSAs is somewhat 

more distinct than is the case with other MSAs. In contrast to 

this, daily variations in mean number of locations visited of 

Riverside, Philadelphia, New York, or Houston MSAs can 

almost perfectly be predicted from daily variations of this 

same mobility parameter of other MSAs. 

A closer examination of the MSAs highly loading on the 

second factor reveals that they are all situated on the U.S. east 

coast and adjacent to one another along the north-south axis. 

On the other hand, Factor 1 MSAs are located either inland 

or on the west or southern part of the U.S., with Chicago 

being an exception, as it is located inland and exhibits 
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moderate loadings on both factors. 

The results of factor analysis for the mean daily radius of 

gyration of the MSAs under study are presented in Table VII 

and Fig. 4. Factor loadings below 0.58 are not displayed. In 

contrast to the previous analysis, Horn's parallel analysis 

indicates that all mean daily radius of gyration variables for 

the studied MSAs form a single factor, which accounts for 

86% of the variance in daily values across all MSAs. All 

MSAs have very high loadings on this factor. 

Boston, Atlanta, and Miami stand out due to their relatively 

high levels of uniqueness in their daily mean radius of 

gyration values. However, since only one factor was 

extracted in this analysis, the daily radius of gyration of 

different cities cannot be utilized to classify them into distinct 

groups. Instead, they all belong to the same group, as they are 

characterized by the same underlying factor. This means that 

daily variations in the mean radius of gyration across the 

studied MSAs tend to follow very similar patterns. 

 
TABLE VII 

FACTOR LOADINGS AND UNIQUENESS OF DAILY MEAN R_GYR 

Mean Daily R_GYR 

MSA Factor 1 Uniqueness 

Atlanta 0.85 0.28 

Boston 0.82 0.33 

Chicago 0.92 0.15 

Dallas 0.98 0.04 

Detroit 0.94 0.11 

Houston 0.99 0.03 

Los Angeles 0.99 0.02 

Miami 0.88 0.22 

New York 0.86 0.26 

Philadelphia 0.95 0.09 

Phoenix 0.92 0.15 

Riverside 0.97 0.06 

San Francisco 0.97 0.07 

Seattle 0.91 0.17 

Washington 0.96 0.09 

 

 
Fig. 4. Scree plot of R_GYR extracted factors with eigenvalues in different 

MSAs. 

 

C. Weekly Mobility Patterns 

The objective of the next set of analyses is to investigate 

potential weekly mobility patterns. For this purpose, 

Anderson-Rubin factor scores were created to represent 

factors obtained in the scope of exploratory factor analyses of 

the three mobility parameters: mean daily distance travelled, 

mean daily number of locations visited, and mean daily radius 

of gyration, presented in part B of this section. 

  

Table VIII presents the descriptive statistics of factor score 

values on different days of the week. The table includes 

means, standard deviations, standard errors of means, and 

95% confidence intervals of means for the mentioned factors. 

Upon examining the results, it is evident that differences 

between scores of factors 1 and 2 on both mean distance 

travelled and number of locations visited, can best be 

described in terms of the day of the week when they reach 

their peak and their bottom values. Specifically, Factor 1 

scores demonstrate the highest levels on Fridays and lowest 

on Sundays, whereas Factor 2 scores are the highest on 

Saturdays and the lowest on Mondays. As the week 

progresses, scores for both factors generally experience an 

increasing trend, reaching their highest values on a specific 

day and then subsequently declining on the following day, to 

reach the lowest value two days later. After that, factor score 

values start increasing again, repeating the weekly cycle. 

Consequently, these findings suggest a classification of the 

studied MSAs into two groups based on individuals’ travel 

and location visitation patterns. The first group, Factor 1 

MSAs, corresponds to MSAs where individuals tend to travel 

the most extensively and visit the highest numbers of 

locations on Fridays. In contrast, the second group, Factor 2 

MSAs, consists of areas where people tend to engage in the 

most substantial travel and visit the highest number of 

locations on Saturdays. It is also notable that the weekly 

bottom value of factor 1 is lower than the bottom value of 

factor 2. However, the weekly highest value of factor 2 is 

higher than the weekly highest value on factor 1. This 

indicates that the surge in the volume of travelling on the peak 

day is much higher in factor 2 MSAs than in factor 1 MSAs. 

On the other hand, the reduction in travelling on the day of 

the week when the volume of travel is the lowest is stronger 

in factor 1 than in factor 2 MSAs. 

A possible explanation for these findings in weekly 

mobility patterns might be differences in shopping behaviors 

among the two groups. Specifically, it is possible that 

individuals in Factor 1 MSAs conduct their shopping 

activities predominantly on Fridays, leading to multiple 

location visits on that day. Conversely, Factor 2 MSAs might 

be exhibiting shopping patterns primarily focused on 

Saturdays, resulting in a significant number of locations 

visited on Saturdays. Additionally, mean radius of gyration 

displays its highest values on Saturdays and the lowest values 

on Mondays. The values progressively increase from Monday 

to Saturday, before decreasing again on Sundays.  

It is crucial to emphasize that while these findings provide 

valuable insights into the weekly cycle trends, comprehensive 

research is necessary for a thorough understanding of the 

observed differences. Importantly, the dataset under 

examination does not provide sufficient detail to ascertain the 

precise nature of these travel patterns. Traveling on Fridays 

and Saturdays could conceivably be influenced by other 

factors, such as social interactions or recreational pursuits. In 

the absence of additional research into the motivations behind 

these mobility patterns, attributing them solely to shopping or 

any other specific activity remains speculative. 
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TABLE VIII 

DESCRIPTIVE STATISTICS OF FACTOR SCORES FOR DAILY TRAVEL AND 

VISITATION PATTERNS 

Mean Daily D_TRAV – Factor 1 Scores Stats 

Day Mean 
Standard 

Deviation 

SE of 

mean 

95% CI of mean, lower 

and upper bound 

Monday -0.32 0.23 0.11 -0.69 0.04 

Tuesday -0.12 0.20 0.10 -0.43 0.20 

Wednesday 0.14 0.09 0.04 0.00 0.29 

Thursday 0.30 0.33 0.15 -0.11 0.72 

Friday 1.27 0.49 0.22 0.66 1.87 

Saturday 0.41 0.31 0.16 -0.09 0.91 

Sunday -2.07 0.21 0.11 -2.41 -1.74 

Mean Daily D_TRAV – Factor 2 Scores Stats 

Day Mean 
Standard 

Deviation 

SE of 

mean 

95% CI of mean, lower 

and upper bound 

Monday -1.04 0.52 0.26 -1.87 -0.21 

Tuesday -0.63 0.26 0.13 -1.05 -0.22 

Wednesday -0.43 0.22 0.11 -0.77 -0.08 

Thursday -0.34 0.61 0.27 -1.09 0.42 

Friday 0.15 0.56 0.25 -0.55 0.84 

Saturday 2.04 0.31 0.16 1.55 2.54 

Sunday 0.29 0.41 0.21 -0.36 0.95 

Mean Daily N_LOC – Factor 1 Scores Stats 

Day Mean 
Standard 

Deviation 

SE of 

mean 

95% CI of mean, lower 

and upper bound 

Monday -0.28 0.37 0.19 -0.88 0.31 

Tuesday -0.13 0.27 0.14 -0.56 0.31 

Wednesday 0.11 0.26 0.13 -0.30 0.52 

Thursday 0.29 0.70 0.31 -0.58 1.16 

Friday 1.37 0.71 0.32 0.48 2.25 

Saturday 0.07 0.23 0.12 -0.30 0.44 

Sunday -1.85 0.23 0.12 -2.21 -1.48 

Mean Daily N_LOC – Factor 2 Scores Stats 

Day Mean 
Standard 

Deviation 

SE of 

mean 

95% CI of mean, lower 

and upper bound 

Monday -0.86 1.02 0.51 -2.49 0.76 

Tuesday -0.21 0.42 0.21 -0.87 0.46 

Wednesday -0.10 0.40 0.20 -0.73 0.53 

Thursday -0.13 1.17 0.53 -1.59 1.33 

Friday 0.34 1.00 0.45 -0.90 1.58 

Saturday 1.50 0.25 0.13 1.10 1.91 

Sunday -0.60 0.54 0.27 -1.46 0.26 

Mean Daily R_GYR – Factor 1 Scores Stats 

Day Mean 
Standard 

Deviation 

SE of 

mean 

95% CI of mean, lower 

and upper bound 

Monday -0.96 0.12 0.06 -1.15 -0.77 

Tuesday -0.84 0.07 0.04 -0.96 -0.73 

Wednesday -0.65 0.08 0.04 -0.78 -0.53 

Thursday -0.47 0.05 0.03 -0.56 -0.39 

Friday 0.66 0.29 0.13 0.30 1.02 

Saturday 2.05 0.10 0.05 1.89 2.21 

Sunday 0.16 0.15 0.07 -0.08 0.40 

 

Table IX displays ANOVA results comparing mean values 

for different days of the week, based on factor scores from 

Table VIII. The analysis reveals significant differences in 

factor score means across days for all factors, with high 𝜂2 

values indicating pronounced differences. However, for 

Factor 2, derived from the average daily number of visited 

locations, the effect size is significant but less pronounced.. 

D. Pairwise Comparison of Means of Days of the Week 

Pairwise comparisons of MSAs factor scores means for 

different days of the week are conducted, and the Bonferroni 

correction is used to account for the inflation of probabilities 

due to multiple comparisons. Sizes of differences between 

means are expressed using Cohen’s d-s.  

Since cases in these analyses are only the 30 days from a 

single month and these were distributed into 7 days of the 

week, differences between means needed to be quite 

substantial to reach the statistical significance threshold of 

0.05. This data limitation is exacerbated by the use of 

Bonferroni correction that further increased the magnitude of 

difference between means needed to reach the statistical 

significance threshold. 

In Table X, pairwise comparisons of mean factor scores 

across different days of the week for Factor 1 MSAs, 

extracted from average daily distances traveled, are 

presented. Bonferroni correction is applied, considering a 

family of 7 comparisons. Differences with significant 

statistical prominence are highlighted in bold. 

 The most significant differences, often reaching statistical 

significance, are observed between Friday and Sunday as 

compared to other days. This suggests that the mobility 

parameters on Fridays and Sundays are notably different from 

those observed on the remaining days. 

Similarly, in Table XI, pairwise comparisons for Factor 2 

MSAs, based on average daily distances traveled, are 

displayed. The most significant disparities are observed 

between Saturday and the other days in the week. This 

indicates that the average daily distance covered on Saturdays 

is substantially greater than on the remaining days of the 

week for Factor 2 MSAs. 

Tables XII and XIII show pairwise comparisons for 

Factors 1 and 2 MSAs, respectively, derived from the average 

daily number of locations visited. Table XII reveals 

significant differences between Friday and Sunday compared 

to other days, with the greatest distinction observed between 

these two days. In Table XIII, the most substantial difference 

was observed between Monday and Saturday. 

 While many differences were noteworthy according to 

Cohen’s d values [46], only the variations between Saturdays, 

Sundays, and Mondays met the commonly accepted 

statistical significance threshold of 0.05. This suggests that in 

Factor 1 MSAs, individuals, on average, frequent the greatest 

number of locations on Fridays and the fewest on Sundays. 

Conversely, in Factor 2 MSAs, the highest number of 

locations are visited on Saturdays, and the lowest on 

Mondays.  

Table XIV presents pairwise comparisons for Factor 1 

MSAs based on the average daily radius of gyration. Upon 

applying the Bonferroni correction, it becomes evident that 

the differences between the means of nearly all days of the 

week are very large in terms of effect size, but they do not 

reach the statistically significant threshold between the first 

four days of a week. Statistically significant differences are 

observed between days in the first part of the week, on one 

side, and the last 3 days of the week (Friday, Saturday, 

Sunday), on the other, as well as among those last 3 days. 

 
TABLE IX 

ANOVA RESULTS FOR MEAN VALUES ACROSS DAYS OF THE WEEK ON 

EXTRACTED FACTORS. 

Factor score F Statistical Sig. 𝜂2 

Factor 1 mean daily D_TRAV  48.26 <0.01 0.93 

Factor 2 mean daily D_TRAV 19.92 <0.01 0.84 

Factor 1 mean daily N_LOC 17.78 <0.01 0.82 

Factor 2 mean daily N_LOC 3.74 0.01 0.49 

Factor 1 mean daily R_GYR 200.16 <0.01 0.98 
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TABLE X 

MEAN D_TRAV FACTOR 1 SCORES FOR DAYS OF THE WEEK WITH BONFERRONI CORRECTION 

Factor 1 - Mean Daily D_TRAV 

Days Weekdays Mean Difference SE of difference between means t Cohen's d Statistical Sig. (Bonferroni correction) 

Monday Tuesday -0.21 0.22 -0.95 -0.67 1.00 

 Wednesday -0.46 0.22 -2.15 -1.52 0.88 

 Thursday -0.62 0.20 -3.04 -2.04 0.12 

 Friday -1.59 0.20 -7.77 -5.21 <0.01 

 Saturday -0.73 0.22 -3.41 -2.41 0.05 

 Sunday 1.75 0.22 8.13 5.75 <0.01 

Tuesday Wednesday -0.26 0.22 -1.20 -0.85 1.00 

 Thursday -0.42 0.20 -2.04 -1.37 1.00 

 Friday -1.38 0.20 -6.77 -4.54 <0.01 

 Saturday -0.53 0.22 -2.45 -1.74 0.47 

 Sunday 1.96 0.22 9.08 6.42 <0.01 

Wednesday Thursday -0.16 0.20 -0.77 -0.52 1.00 

 Friday -1.12 0.20 -5.50 -3.69 <0.01 

 Saturday -0.27 0.22 -1.25 -0.89 1.00 

 Sunday 2.21 0.22 10.28 7.27 <0.01 

Thursday Friday -0.97 0.19 -5.01 -3.17 <0.01 

 Saturday -0.11 0.20 -0.55 -0.37 1.00 

 Sunday 2.37 0.20 11.61 7.79 <0.01 

Friday Saturday 0.85 0.20 4.18 2.80 0.01 

 Sunday 3.34 0.20 16.34 10.96 <0.01 

Saturday Sunday 2.48 0.22 11.53 8.16 <0.01 

 
TABLE XI 

MEAN D_TRAV FACTOR 2 SCORES FOR DAYS OF THE WEEK WITH BONFERRONI CORRECTION 

Factor 2 - Mean Daily D_TRAV 

Days Weekdays Mean Difference SE of difference between means t Cohen's d Statistical Sig. (Bonferroni correction) 

Monday Tuesday -0.40 0.32 -1.27 -0.89 1.00 

 Wednesday -0.61 0.32 -1.92 -1.36 1.00 

 Thursday -0.70 0.30 -2.32 -1.56 0.62 

 Friday -1.18 0.30 -3.91 -2.62 0.02 

 Saturday -3.08 0.32 -9.65 -6.83 <0.01 

 Sunday -1.33 0.32 -4.18 -2.95 0.01 

Tuesday Wednesday -0.21 0.32 -0.66 -0.46 1.00 

 Thursday -0.30 0.30 -0.99 -0.66 1.00 

 Friday -0.78 0.30 -2.58 -1.73 0.35 

 Saturday -2.68 0.32 -8.39 -5.93 <0.01 

 Sunday -0.93 0.32 -2.91 -2.06 0.16 

Wednesday Thursday -0.09 0.30 -0.30 -0.20 1.00 

 Friday -0.57 0.30 -1.89 -1.27 1.00 

 Saturday -2.47 0.32 -7.73 -5.47 <0.01 

 Sunday -0.72 0.32 -2.26 -1.60 0.71 

Thursday Friday -0.48 0.29 -1.69 -1.07 1.00 

 Saturday -2.38 0.30 -7.86 -5.27 <0.01 

 Sunday -0.63 0.30 -2.08 -1.40 1.00 

Friday Saturday -1.90 0.30 -6.27 -4.20 <0.01 

 Sunday -0.15 0.30 -0.49 -0.33 1.00 

Saturday Sunday 1.75 0.32 5.48 3.87 <0.01 

 
TABLE XII 

MEAN N_LOC FACTOR 1 SCORES FOR DAYS OF THE WEEK WITH BONFERRONI CORRECTION 

Factor 1 - Mean Daily N_LOC 

Days Weekdays Mean Difference SE of difference between means t Cohen's d Statistical Sig. (Bonferroni correction) 

Monday Tuesday -0.16 0.33 -0.47 -0.33 1.00 

 Wednesday -0.39 0.33 -1.18 -0.83 1.00 

 Thursday -0.58 0.32 -1.82 -1.22 1.00 

 Friday -1.65 0.32 -5.20 -3.49 <0.01 

 Saturday -0.35 0.33 -1.06 -0.75 1.00 

 Sunday 1.56 0.33 4.68 3.31 <0.01 

Tuesday Wednesday -0.24 0.33 -0.71 -0.50 1.00 

 Thursday -0.42 0.32 -1.32 -0.89 1.00 

 Friday -1.49 0.32 -4.70 -3.15 <0.01 

 Saturday -0.20 0.33 -0.59 -0.42 1.00 

 Sunday 1.72 0.33 5.15 3.64 <0.01 

Wednesday Thursday -0.18 0.32 -0.58 -0.39 1.00 

 Friday -1.26 0.32 -3.96 -2.66 0.01 

 Saturday 0.04 0.33 0.12 0.08 1.00 

 Sunday 1.96 0.33 5.85 4.14 <0.01 

Thursday Friday -1.07 0.30 -3.58 -2.27 0.03 

 Saturday 0.22 0.32 0.70 0.47 1.00 
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Factor 1 - Mean Daily N_LOC (Continued) 

Days Weekdays Mean Difference SE of difference between means t Cohen's d Statistical Sig. (Bonferroni correction) 

 Sunday 2.14 0.32 6.75 4.53 <0.01 

Friday Saturday 1.30 0.32 4.08 2.74 0.01 

 Sunday 3.21 0.32 10.13 6.79 <0.01 

Saturday Sunday 1.92 0.33 5.73 4.05 <0.01 

 
TABLE XIII 

MEAN N_LOC FACTOR 2 SCORES FOR DAYS OF THE WEEK WITH BONFERRONI CORRECTION 

Factor 2 - Mean Daily N_LOC 

Days Weekdays Mean Difference SE of difference between means t Cohen's d Statistical Sig. (Bonferroni correction) 

Monday Tuesday -0.66 0.57 -1.16 -0.82 1.00 

 Wednesday -0.77 0.57 -1.36 -0.96 1.00 

 Thursday -0.74 0.54 -1.37 -0.92 1.00 

 Friday -1.20 0.54 -2.24 -1.51 0.73 

 Saturday -2.37 0.57 -4.19 -2.96 0.01 

 Sunday -0.26 0.57 -0.46 -0.33 1.00 

Tuesday Wednesday -0.11 0.57 -0.20 -0.14 1.00 

 Thursday -0.08 0.54 -0.15 -0.10 1.00 

 Friday -0.55 0.54 -1.02 -0.68 1.00 

 Saturday -1.71 0.57 -3.03 -2.14 0.13 

 Sunday 0.40 0.57 0.70 0.50 1.00 

Wednesday Thursday 0.03 0.54 0.06 0.04 1.00 

 Friday -0.44 0.54 -0.81 -0.55 1.00 

 Saturday -1.60 0.57 -2.83 -2.00 0.20 

 Sunday 0.51 0.57 0.90 0.64 1.00 

Thursday Friday -0.47 0.51 -0.92 -0.58 1.00 

 Saturday -1.63 0.54 -3.04 -2.04 0.12 

 Sunday 0.48 0.54 0.89 0.60 1.00 

Friday Saturday -1.16 0.54 -2.17 -1.46 0.85 

 Sunday 0.94 0.54 1.76 1.18 1.00 

Saturday Sunday 2.11 0.57 3.73 2.64 0.02 

 
TABLE XIV 

MEAN R_GYR FACTOR 1 SCORES FOR DAYS OF THE WEEK WITH BONFERRONI CORRECTION 

Factor 1 - Mean Daily R_GYR 

Days Weekdays Mean Difference SE of difference between means t Cohen's d Statistical Sig. (Bonferroni correction) 

Monday Tuesday -0.12 0.11 -1.11 -0.78 1.00 

 Wednesday -0.31 0.11 -2.83 -2.00 0.20 

 Thursday -0.49 0.11 -4.52 -3.19 <0.01 

 Friday -1.62 0.10 -15.76 -10.57 <0.01 

 Saturday -3.01 0.11 -27.79 -19.65 <0.01 

 Sunday -1.12 0.11 -10.33 -7.31 <0.01 

Tuesday Wednesday -0.19 0.11 -1.73 -1.22 1.00 

 Thursday -0.37 0.11 -3.41 -2.41 0.05 

 Friday -1.50 0.10 -14.60 -9.79 <0.01 

 Saturday -2.89 0.11 -26.68 -18.87 <0.01 

 Sunday -1.00 0.11 -9.23 -6.52 <0.01 

Wednesday Thursday -0.18 0.11 -1.68 -1.19 1.00 

 Friday -1.31 0.10 -12.77 -8.57 <0.01 

 Saturday -2.71 0.11 -24.96 -17.65 <0.01 

 Sunday -0.81 0.11 -7.50 -5.30 <0.01 

Thursday Friday -1.13 0.10 -11.00 -7.38 <0.01 

 Saturday -2.52 0.11 -23.27 -16.46 <0.01 

 Sunday -0.63 0.11 -5.81 -4.11 <0.01 

Friday Saturday -1.39 0.10 -13.53 -9.08 <0.01 

 Sunday 0.50 0.10 4.87 3.27 <0.01 

Saturday Sunday 1.89 0.11 17.46 12.34 <0.01 

 

E. Examination of Autocorrelations 

To validate observations of weekly patterns, 

autocorrelations between daily values of factor scores from 

the preceding analysis were calculated. Based on earlier 

findings pointing to a 7-day cyclical trend [13] and the 

findings from this study presented above, autocorrelations 

with a 7-day lag were calculated. For a clearer contrast, 1-day 

lag autocorrelations were also calculated. These findings are 

detailed in Table XV. 

TABLE XV 

AUTOCORRELATIONS OF FACTOR SCORES WITH LAG7 AND LAG1 

Factor score 
Lag7 

autocorrelation 

Lag1 

autocorrelation 

Factor 1 MSAs Mean 

Daily D_TRAV 

0.94 0.16 

Factor 2 MSAs Mean 

Daily D_TRAV 

0.81 0.33 

Factor 1 MSAs Mean 

Daily N_LOC 

0.84 0.28 

Factor 2 MSAs Mean 

Daily N_LOC 

0.38 0.29 

Factor 1 MSAs Mean 

Daily R_GYR 

0.99 0.38 
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Upon examination of Table XV, it is observed that 7-day 

lag autocorrelations are consistently much higher compared 

to the 1-day lag ones. This implies that weekly cycles offer a 

much better description of daily changes than mere day-to-

day comparisons. However, an outlier is noted in Factor 2, 

derived from the average daily number of locations visited 

(N_LOC). For this factor, the 7-day lag autocorrelation is 

noticeably subdued compared to other factors and is only 

marginally above the 1-day lag, indicating a weaker 7-day 

trend for this specific factor. 

VIII. GENERAL DISCUSSION AND IMPLICATIONS OF THE 

FINDINGS 

The presented results indicate that mobility patterns in 

different geographical areas exhibit many strong similarities. 

Notably, we found groups of regions that, despite often being 

geographically distant, demonstrate intriguing similarities in 

their daily mobility patterns. 

In terms of data reduction and efficiency, the results of 

study 1 revealed pronounced correlations between mobility 

parameters within an MSA. These correlations allow 

researchers and policymakers to focus on a smaller set of 

parameters without compromising essential information. This 

approach simplifies the analytical process and optimizes 

resource utilization. 

When examining geographic mobility traits, the 

classifications from the factor analysis provide critical 

insights. The differences, particularly between inland and 

coastal MSAs or between the east coast and other areas, 

suggest significant impacts of geographical or regional socio-

cultural and economic factors on mobility patterns. These 

insights are valuable for urban planning and infrastructural 

development. 

Moreover, the mobility data reveals a consistent weekly 

pattern, which is significant for multiple sectors: 

 

• In transportation planning, distinguishing between peak 
and non-peak days can inform public transport 

scheduling, roadwork planning, and traffic control. 

• For businesses, understanding these patterns enables 

refinement of services, operational hours, and 

promotional efforts to align with peak mobility days. 

• Governmental bodies can use this data to formulate 

policies that align with established mobility trends, 

ensuring efficient implementation and public adherence. 

 

The discovery of a singular dominant factor in the daily 

radius of gyration raises intriguing possibilities for further 

research. This includes exploring the dominant influence of 

this factor and the mechanisms behind it. 

For future research focused on health or safety, 

understanding these mobility patterns is crucial. They are key 

to enhancing efforts in disease containment, emergency 

planning, or health awareness initiatives. 

In summary, the data reveals interesting mobility patterns 

across different MSAs. These insights are essential for urban 

planners, policymakers, businesses, and researchers, and are 

particularly valuable when integrated with the broader 

objectives and context of the study. 

IX. LIMITATIONS OF THE STUDY AND FUTURE WORK 

The two studies presented in this paper provide an initial 

exploration of mobility patterns within the 15 most populous 

Metropolitan Statistical Areas (MSAs) in the U.S. However, 

there are several limitations to consider. Crucially, data for 

both studies were sourced exclusively from October 2020. 

This timeframe may not capture the full complexity of 

mobility patterns in the MSAs. Additionally, during October 

2020, the COVID-19 pandemic (2019-2023) was at a critical 

stage. Although initial stay-at-home orders were mostly 

lifted, measures for physical distancing were still in effect, 

potentially impacting mobility patterns compared to pre- or 

post-pandemic periods. 

Another limitation is the reliance on a sample of mobile 

devices from users who consented to location data collection 

via a specialized app, subject to data availability conditions. 

The sample size, ranging from 0.49% of the MSA population 

in San Francisco to 2.28% in Dallas, was small relative to the 

overall population, potentially affecting the 

representativeness of our findings. 

Future research could address these limitations and expand 

our understanding of urban mobility. Key areas for further 

investigation include examining causes of mobility pattern 

variations across different MSAs, potentially using census 

data and structural characteristics of these areas. Broadening 

the scope to include smaller cities, rural areas, and 

international locations could offer a more comprehensive 

view of global mobility patterns. 

Additionally, incorporating temporal changes due to 

seasons, holidays, and significant events would enrich our 

understanding of mobility over time. Integrating data from 

various sources like social media, transportation networks, 

and traffic monitoring systems could provide a more nuanced 

view of urban mobility. 

The influence of external factors like climate changes or 

global health events on mobility patterns also warrants 

exploration. Such insights are vital for urban planning and 

preparedness. Furthermore, the data gathered could underpin 

the development of predictive mobility models, aiding urban 

planners and policymakers. 

Exploring behavioral analytics in more depth, by aligning 

mobility data with sociological research, might uncover 

deeper motivations behind movement patterns. 

In Summary, while the two studies contribute significantly 

to urban mobility research, they open numerous avenues for 

further investigation, promising richer insights and more 

effective urban planning strategies. 

X. CONCLUSIONS 

This paper presented results of two studies of daily 

mobility based on location data from mobile phones. Study 1 

explored covariations of a series of daily mobility parameters 

within one coastal and one inland MSA. Exploratory factor 

analysis of daily values of 14 different daily mobility 

parameters within the same MSA, indicated high levels of 

covariation between many of them and yielded two factors. 

The results were repeated in both MSAs included in this 

study. They point to the conclusion that individual analyses 

for each mobility parameter are inefficient and not warranted.  

Due to this, analyses conducted in the scope of study 2 
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focused on three key mobility parameters representing the 

whole set: mean daily D_TRAV, which showed a strong 

correlation with both factors extracted from the studied set of 

mobility parameters, and Mean Daily N_LOC and R_GYR, 

each of which had particularly high loadings on the first and 

the second factor extracted in the applied factor analytic 

procedure, respectively.  

It is imperative to note that mobility parameters that load 

highly on the same factor inherently correlate with one 

another. This correlation implies not only that one parameter 

can be predicted from the others with notable accuracy, but 

also that executing separate analyses based on associations on 

individual highly correlated parameters would yield 

analogous results. 

Comparison of mean values of daily mobility parameters 

across the 15 most populous U.S. MSAs conducted in study 

2, yielded statistically significant differences between MSAs. 

Moreover, the magnitudes of these differences were 

substantial and often extreme across all parameters.  

Exploratory factor analysis of the daily mean distance 

travelled across different MSAs uncovered two primary 

factors that meet the parallel analysis criteria. Soft 

categorizations of MSAs were then created based on these 

factors: the first factor predominantly comprised inland 

MSAs, and the second mainly included coastal MSAs. A 

similar two-factor structure emerged when analyzing the 

mean daily number of locations visited, with one factor 

aligning with east coast MSAs and the other encompassing 

MSAs situated inland or in the southern or western regions of 

the U.S. Results of factor analysis of the daily radius of 

gyration points to the existence of just one dominant factor, 

accounting for most of the variance in daily differences. This 

indicates that daily variations of mean radius of gyration 

values were very similar across the 15 studied MSAs. 

Investigating further, a pronounced weekly cycle trend 

emerged. MSAs classified under Factor 1 displayed their 

longest mean travel distances on Fridays and the shortest on 

Sundays. In contrast, those with the highest loadings on 

Factor 2 travelled the furthest on Saturdays, less so on 

Sundays, with Monday being their least mobile day. A similar 

pattern was identified in the number of daily locations visited 

by both groups: Factor 1 MSAs reached their peak activity on 

Fridays and showed their lowest levels on Sundays, while 

Factor 2 MSAs reached their peak on Saturdays and showed 

the minimum of activity on Mondays. 
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