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Abstract—This paper concentrates on addressing fractional
inequalities for exponential type convex functions. By means
of exponential-type convexity, we firstly establish Hermite–
Hadamard (HH) type inequalities for fractional integrals with
exponential kernels. Secondly, based on the discovered frac-
tional identity by separating [a, b] to n equal subintervals, and
the fact that the twice derivative in absolute value is exponential
type convex, we present multipoint-based HH inequalities,
which cover the trapezoid- and Bullen-type inequalities for
n = 1 and 2, correspondingly. During the period, some
numerical examples with graphs are provided to show the
validity of the deduced inequalities.

Index Terms—Convex functions, fractional integrals,
Hermite–Hadamard inequalities, multipoint-based inequalities

I. INTRODUCTION

FRACTIONAL calculus, the branch of calculus studying
integrals and derivatives of non integer order, has gained

increasing popularity and interest in recent years. Because
the classical calculus cannot model the entirety of real-world
phenomena, researchers have investigated various types of
fractional integrals. Riemann–Liouville (RL) fractional in-
tegrals [1], [2], [3], multiplicative-RL fractional integrals
[4], k-RL fractional integrals [5], Hadamard-type k-fractional
integrals [6], conformable fractional integrals [7], [8], and
Katugampola fractional integrals [9] are just a few of the
options available. These fractional operators are applied
in different disciplines such as the medical sciences [10],
physics [11], economy [12], engineering sciences [13], etc.
For other applications associated with this topic, please see
[14], [15], [16], [17] and the references cited therein.

Recently, Ahmad et al. [18] introduced a class of fractional
integrals with exponential kernels for the first time. And
they used these integrals to prove the fractional variants
of Hermite–Hadamard (HH) type inequalities. Inspired by
the ideas of this article, the scholars explored various of
inequalities with the assistance of the fractional integrals.
For instance, considering the first- and second-order dif-
ferentiable functions, Wu et al. [19] studied the left and
right side of the fractional HH-type inequalities. Further,
Yuan et al. [20] deduced the parameterized fractional integral
inequalities, which unified the midpoint-, Simpson-, Bullen-,
and trapezoid-type inequalities. In Ref. [21], the authors gave
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some estimations of the upper bound of Ostrowski-type frac-
tional inequalities through convex functions. And Rashid et
al. [22] derived the fractional HH-, HH–Fejér- and Pachpatte-
type inequalities for exponentially convex functions. Making
use of the Mercer concept, Butt et al. [23] constructed
fractional versions of HH-, HH–Fejér-, and Pachpatte-type
inequalities for harmonically convex functions. In 2023,
Botmart et al. [24] addressed the midpoint- and HH–Fejér-
type inequalities via convexity and harmonically convexity,
respectively. By introducing the interval-valued fractional in-
tegrals with exponential kernels, Zhou et al. [25] established
the fractional integral inclusions. For more information about
fractional integrals with exponential kernels, one can refer
to [26], [27], [28], [29] and [30]. In this study, we focus on
investigating the multipoint-based inequalities with relation
to fractional integrals having exponential kernels.

In 2021, İşcan et al. [31] presented the general integer-
order inequalities for functions whose first derivatives in
absolute value are convex. And the established inequalities
involve multiple points, which transform into the trapezoid-
and Bullen-type inequalities for the parameter n = 1
and 2, separately. For simplicity, we call these kinds of
inequalities as the multipoint-based HH inequalities. Based
on the multipoint-based HH identity proved by İşcan et al.
in Ref. [31], Yıldız et al. [32] further discussed integer-order
integral inequalities for s-convex functions. And Erden et al.
[33] constructed Newton’s like inequalities of integer-order
integrals including multiple points. Moreover, by means of
RL fractional integrals, Ekinci and Özdemir [34] considered
fractional variants of the multipoint-based HH inequalities
for once-differentiable convex functions. In 2023, utiliz-
ing functions whose second derivatives absolute values are
exponential type convex, Yıldız and Yergöz [35] obtained
multipoint-based integer-order inequalities. However, there
are comparatively few investigations regarding multipoint-
based inequalities for the class of twice-differentiable func-
tions, especially in the setting of the fractional integral opera-
tors. Taking inspiration from the foregoing work, it becomes
obvious that exploiting fractional integral having exponential
kernels in tandem with twice-differentiable exponential type
convex functions can yield new multipoint-based inequalities.

The paper unfolds as follows. We recollect preliminary
information for related concepts and fractional integrals
in Sec. II. In Sec. III, by leveraging fractional integrals
with exponential kernels, we prove the HH-type inequali-
ties for exponential type convex functions. In Sec. IV, we
derive a fractional integral identity by separating [a, b] to
n equal subintervals. Taking advantage of the identity, we
establish multipoint-based fractional inequalities for twice-
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differentiable exponential type convex functions. Meanwhile,
we give examples to illustrate the obtained inequalities more
intuitively.

II. PRELIMINARIES

This section states some necessary definitions, theorems
and related fractional integral results, which are used in this
paper. Here and further, let I ⊆ R be a real interval and I◦

be the interior of I . The definition of convexity is represented
as follows:

Definition 2.1: [36] A function g : I → R is said to be
convex, if

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y)

holds for every x, y ∈ I and t ∈ [0, 1].
The HH inequality, which is famous in scientific literature,

has a significant place in analysis mathematics. It is stated
that if g : I → R is a convex function on the interval I , then

g

(
a+ b

2

)
≤ 1

b− a

∫ b

a

g(τ)dτ ≤ g(a) + g(b)

2

holds for any a, b ∈ I with a < b. This prominent inequality
gives estimates for the mean value of a continuous convex
function.

Bullen [37] proved the following inequality, which is
known as the Bullen’s inequality for convex functions,

1

b− a

∫ b

a

g(τ)dτ ≤ 1

2

[
g

(
a+ b

2

)
+
g(a) + g(b)

2

]
.

In [38], Kadakal and İşcan proposed a class of exponential
type convex functions.

Definition 2.2: [38] A nonnegative function g : I → R is
said to be exponential type convex, if the coming inequality

g(tx+ (1− t)y) ≤
(
et − 1

)
g(x) +

(
e1−t − 1

)
g(y)

holds for every x, y ∈ I and t ∈ [0, 1].
In the same paper, they used this class of functions to

prove a variant of HH inequality.
Theorem 2.1: [38] Let g : [a, b] → R be an exponential

type convex function. If the function g ∈ L1 ([a, b]), then the
following HH-type inequality is given

1

2
(
e

1
2 − 1

)g(a+ b

2

)
≤ 1

b− a

∫ b

a

g(τ)dτ

≤ (e− 2)(g(a) + g(b)). (1)

Using the twice-differentiable functions, Alomari et al.
[39] presented the following identity, which is related to the
right part of HH inequality.

Lemma 2.1: [39] Let g : I → R be a twice-differentiable
function on I◦, where a, b ∈ I with a < b. If the function
g′′ ∈ L1 ([a, b]), then the subsequent identity holds

g(a) + g(b)

2
− 1

b− a

∫ b

a

g(τ)dτ

=
(b− a)2

2

∫ 1

0

t(1− t)g′′(ta+ (1− t)b)dt.

To establish multipoint-based integer-order HH inequali-
ties, Yıldız and Yergöz [35] employed the equality below.

Lemma 2.2: [35] Assume that g : I → R is a contin-
uously differentiable function on I◦, where a, b ∈ I with
a < b and n ∈ Z+. If the function g′′ ∈ L1 ([a, b]), then the
coming identity is valid

n−1∑
i=0

1

2n

 g
(

(n−i)a+ib
n

)
+g
(

(n−i−1)a+(i+1)b
n

) − 1

b− a

∫ b

a

g(τ)dτ

=
n−1∑
i=0

(b− a)2

2n3

∫ 1

0

t(1− t)

× g′′
(
t (n−i)a+ib

n + (1− t) (n−i−1)a+(i+1)b
n

)
dt. (2)

Ahmad et al. [18] proposed the following fractional inte-
grals with exponential kernels.

Definition 2.3: [18] Let the function g ∈ L1 ([a, b]) and
the order α ∈ (0, 1). The fractional integrals with exponential
kernels, denoted by Iαa+g and Iαb−g, respectively, are defined
as the coming expressions:

Iαa+g(x) =
1

α

∫ x

a

exp

(
−1− α

α
(x− τ)

)
g(τ)dτ, x > a,

and

Iαb−g(x) =
1

α

∫ b

x

exp

(
−1− α

α
(τ − x)

)
g(τ)dτ, x < b.

From Definition 2.3, we can also readily observe that

lim
α→1
Iαa+g(x) =

∫ x

a

g(τ)dτ, lim
α→1
Iαb−g(x) =

∫ b

x

g(τ)dτ.

Ahmad et al. [18] also established a fractional HH-type
inequality below.

Theorem 2.2: [18] Assume that the function g : [a, b]→
(0,+∞) is convex. If the function g ∈ L1 ([a, b]), then the
subsequent inequality for fractional integrals with exponen-
tial kernels is obtained

g

(
a+ b

2

)
≤ 1− α

2
(

1− e− 1−α
α (b−a)

)[Iαa+g(b) + Iαb−g(a)
]

≤ g(a) + g(b)

2
.

In the case of twice-differentiable convex functions, Wu
et al. [19] proved the succeeding identity.

Lemma 2.3: [19] Let g : [a, b] → R be a twice-
differentiable function on (a, b). If the function g′′ ∈
L1([a, b]), then the following fractional integral equality can
be derived

1− α
2(1− e−ρ)

[
Iαa+g(b) + Iαb−g(a)

]
− g(a) + g(b)

2

=
(b− a)2

2ρ(1− e−ρ)

×
∫ 1

0

(
e−ρt + e−ρ(1−t) − 1− e−ρ

)
g′′(ta+ (1− t)b)dt,

where
ρ =

1− α
α

(b− a).

In 2021, Kadakal et al. [40] provided the improved power-
mean integral inequality.

Theorem 2.3: [40] Suppose that f and g are both real
functions defined on [a, b]. If q ≥ 1, and |f |, |f ||g|q ∈
L1([a, b]), then the following inequality holds
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∫ b

a

|f(τ)g(τ)|dτ

≤ 1

b− a



(∫ b
a

(b− τ)|f(τ)|dτ
)1− 1

q

×
(∫ b

a
(b− τ)|f(τ)||g(τ)|qdτ

) 1
q

+
(∫ b

a
(τ − a)|f(τ)|dτ

)1− 1
q

×
(∫ b

a
(τ − a)|f(τ)||g(τ)|qdτ

) 1
q


.

We conclude this section by reviewing the beta function,
which is defined by

β(µ, ν) =

∫ 1

0

tµ−1(1− t)ν−1dt, µ, ν > 0.

III. FRACTIONAL HH-TYPE INEQUALITIES

With the assistance of fractional integrals with exponential
kernels, this section establishes the HH-type inequalities for
exponential type convex functions.

Theorem 3.1: Let g : [a, b]→ [0,+∞) be an exponential
type convex function. For α ∈ (0, 1) \ { b−a

1+b−a}, if the
function g ∈ L1([a, b]), then one can acquire the following
fractional integral inequality

1

2
(
e

1
2 − 1

)g(a+ b

2

)

≤ 1− α
2(1− e−ρ)

[
Iαa+g(b) + Iαb−g(a)

]
≤ Φ1(ρ)

g(a) + g(b)

2
, (3)

where

Φ1(ρ) =
1

(ρ2 − 1) (1− e−ρ)

×
[ (

ρ2 + ρ
) (
e−ρ − e1−ρ)− 2e−ρ

+
(
ρ2 − ρ

)
(e− 1) + 2

]
, ρ 6= 0, 1.

Proof: Using the property of the exponential type con-
vex function g, we have that

g

(
x+ y

2

)
≤
(
e

1
2 − 1

)
g(x) +

(
e

1
2 − 1

)
g(y).

Taking advantage of the change of variables x = ta+(1−t)b
and y = tb+ (1− t)a, we get that

g

(
a+ b

2

)
≤
(
e

1
2 − 1

)
g(ta+ (1− t)b)

+
(
e

1
2 − 1

)
g(tb+ (1− t)a). (4)

Multiplying both sides of the inequality (4) by e−ρt, and
integrating the resulting inequality with respect to t over

[0, 1], we obtain that

1− e−ρ

ρ
(
e

1
2 − 1

)g(a+ b

2

)

≤
∫ 1

0

e−ρtg(ta+ (1− t)b)dt

+

∫ 1

0

e−ρtg(tb+ (1− t)a)dt

=
1

b− a

[ ∫ b
a
e−

1−α
α (b−u)g(u)du

+
∫ b
a
e−

1−α
α (u−a)g(u)du

]
=

α

b− a
[
Iαa+g(b) + Iαb−g(a)

]
,

which yields that

1

2
(
e

1
2 − 1

)g(a+ b

2

)
≤ 1− α

2(1− e−ρ)
[
Iαa+g(b) + Iαb−g(a)

]
.

This finishes the proof of the first inequality in (3).
For the proof of the second inequality in (3), we note that

if the function g is exponential type convex, then for every
t ∈ [0, 1], we have that

g(ta+ (1− t)b) ≤
(
et − 1

)
g(a) +

(
e1−t − 1

)
g(b),

and

g(tb+ (1− t)a) ≤
(
et − 1

)
g(b) +

(
e1−t − 1

)
g(a).

By adding the above two inequalities, we get that

g(ta+ (1− t)b)) + g(tb+ (1− t)a)

≤
(
et + e1−t − 2

)
(g(a) + g(b)). (5)

Multiplying both sides of the inequality (5) by e−ρt, and
integrating the resulting inequality regarding t over [0, 1],
we obtain that∫ 1

0

e−ρt
[
g(ta+ (1− t)b)) + g(tb+ (1− t)a)

]
dt

≤ (g(a) + g(b))

∫ 1

0

e−ρt
(
et + e1−t − 2

)
dt,

that is
α

b− a
[
Iαa+g(b) + Iαb−g(a)

]
≤
(
ρ2 + ρ

) (
e−ρ − e1−ρ)− 2e−ρ +

(
ρ2 − ρ

)
(e− 1) + 2

ρ3 − ρ
× (g(a) + g(b)). (6)

Both sides of the inequality (6) are multiplied by ρ
2(1−e−ρ)

simultaneously, and we acquire that

1− α
2(1− e−ρ)

[
Iαa+g(b) + Iαb−g(a)

]
≤
(
ρ2 + ρ

) (
e−ρ − e1−ρ)− 2e−ρ +

(
ρ2 − ρ

)
(e− 1) + 2

2 (ρ2 − 1) (1− e−ρ)
× (g(a) + g(b)).

Thus, the proof of Theorem 3.1 is completed.
Remark 3.1: In Theorem 3.1, if we take α → 1, i.e.,

ρ = 1−α
α (b− a)→ 0, then we have that

lim
α→1

1− α
2 (1− e−ρ)

=
1

2(b− a)
,
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and

lim
ρ→0

Φ1(ρ) = 2(e− 2).

Thus, the inequality (3) is transformed to the inequality (1).
The fractional HH-type inequality involving midpoint can

be represented as follows.
Theorem 3.2: Let g : [a, b]→ [0,+∞) be an exponential

type convex function. For α ∈ (0, 1) \ { b−a
1+b−a}, if the

function g ∈ L1([a, b]), then the following fractional integral
inequality is given

1

2
(
e

1
2 − 1

)g(a+ b

2

)

≤ 1− α
2
(
1− e− ρ2

) [Iα
( a+b2 )

−g(a) + Iα
( a+b2 )

+g(b)

]
≤ Φ2(ρ)

g(a) + g(b)

2
, (7)

where

Φ2(ρ) =
1

(ρ2 − 1)
(
1− e− ρ2

)
×
[

2
(
ρ2 − 1

)
e−

ρ
2 − 2ρ2e

1−ρ
2

+
(
ρ2 − ρ

)
(e− 1) + 2

]
, ρ 6= 0, 1.

Proof: Since the function g is exponential type convex
on [a, b], for x, y ∈ [a, b], we have that

g

(
x+ y

2

)
≤
(
e

1
2 − 1

)
g(x) +

(
e

1
2 − 1

)
g(y).

For x = t
2a+ 2−t

2 b and y = 2−t
2 a+ t

2b, we obtain that

1(
e

1
2 − 1

)g(a+ b

2

)

≤ g
(
t

2
a+

2− t
2

b

)
+ g

(
2− t

2
a+

t

2
b

)
. (8)

Multiplying both sides of the inequality (8) by e−
ρ
2 t, then

integrating the obtained result concerning t over [0, 1], we
get that

2
(
1− e−

ρ
2

)
ρ
(
e

1
2 − 1

) g(a+ b

2

)

≤
∫ 1

0

e−
ρ
2 tg

(
t

2
a+

2− t
2

b

)
dt

+

∫ 1

0

e−
ρ
2 tg

(
2− t

2
a+

t

2
b

)
dt

=
2

b− a

[ ∫ b
a+b
2
e−

1−α
α (b−u)g(u)du

+
∫ a+b

2

a
e−

1−α
α (u−a)g(u)du

]

=
2α

b− a

[
Iα
( a+b2 )

−g(a) + Iα
( a+b2 )

+g(b)

]
,

which deduces that
1

2
(
e

1
2 − 1

)g(a+ b

2

)

≤ 1− α
2
(
1− e− ρ2

) [Iα
( a+b2 )

−g(a) + Iα
( a+b2 )

+g(b)

]
.

This completes the proof of the first part of inequality (7).

To prove the second part of the inequality (7), employing
the exponential-type convexity of the function g, for every
t ∈ [0, 1], it follows that

g

(
t

2
a+

2− t
2

b

)
≤
(
e
t
2 − 1

)
g(a) +

(
e

2−t
2 − 1

)
g(b),

and

g

(
2− t

2
a+

t

2
b

)
≤
(
e

2−t
2 − 1

)
g(a) +

(
e
t
2 − 1

)
g(b).

By adding the above two inequalities, we get that

g

(
t

2
a+

2− t
2

b

)
+ g

(
2− t

2
a+

t

2
b

)
≤
(
e
t
2 + e

2−t
2 − 2

)
(g(a) + g(b)). (9)

Multiplying both sides of the inequality (9) by e−
ρ
2 t, and

integrating the resultant inequality regarding t over [0, 1],
we acquire that∫ 1

0

e−
ρ
2 t

[
g

(
t

2
a+

2− t
2

b

)
+ g

(
2− t

2
a+

t

2
b

)]
dt

≤ (g(a) + g(b))

∫ 1

0

e−
ρ
2 t
(
e
t
2 + e

2−t
2 − 2

)
dt,

that is

2α

b− a

[
Iα
( a+b2 )

−g(a) + Iα
( a+b2 )

+g(b)

]
≤

4
(
ρ2 − 1

)
e−

ρ
2 − 4ρ2e

1−ρ
2 + 2

(
ρ2 − ρ

)
(e− 1) + 4

ρ3 − ρ
× (g(a) + g(b)). (10)

Both sides of the inequality (10) are multiplied by ρ

4
(

1−e−
ρ
2

)
at the same time, and we have that

1− α
2
(
1− e− ρ2

) [Iα
( a+b2 )

−g(a) + Iα
( a+b2 )

+g(b)

]
≤

2
(
ρ2 − 1

)
e−

ρ
2 − 2ρ2e

1−ρ
2 +

(
ρ2 − ρ

)
(e− 1) + 2

2 (ρ2 − 1)
(
1− e− ρ2

)
× (g(a) + g(b)).

Thus, the proof of Theorem 3.2 is finished.
Remark 3.2: In Theorem 3.2, if we take α → 1, i.e.,

ρ = 1−α
α (b− a)→ 0, then we have that

lim
α→1

1− α
2
(
1− e− ρ2

) =
1

b− a
,

and

lim
ρ→0

Φ2(ρ) = 2(e− 2).

Thus, the inequality (7) changes into the inequality (1).

IV. MULTIPOINT-BASED FRACTIONAL INEQUALITIES

For twice-differentiable functions, this section firstly for-
mulates a fractional integral identity by separating [a, b] to
n equal subintervals. On the basis of the integral identity,
and the fact that the twice derivative in absolute value
is exponential type convex, we address multipoint-based
HH inequalities. In the meantime, numerical examples are
provided to show the validity of the deduced inequalities as
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well. Before giving the subsequent results, we introduce the
following notation:

% =
ρ

n
=

(b− a)(1− α)

nα
, α ∈ (0, 1), n ∈ Z+, a < b.

We need the following lemma.
Lemma 4.1: Let g : [a, b] → R be a twice-differentiable

function on (a, b), n ∈ Z+ and i ∈ N. If the function g′′ ∈
L1([a, b]), then the following identity for fractional integrals
with exponential kernels holds

n−1∑
i=0

1

2n

[
g(ω(i)) + g(ω(i+ 1))− 1− α

1− e−%
Ψg(I;α, i)

]

=
n−1∑
i=0

(b− a)2

2n3%(1− e−%)

×
∫ 1

0

[ (
1 + e−% − e−%t − e−%(1−t)

)
×g′′

(
tω(i) + (1− t)ω(i+ 1)

) ]dt, (11)

where
ω(i) = a+

i

n
(b− a),

and

Ψg(I;α, i) = Iαω(i)+g(ω(i+ 1)) + Iαω(i+1)−g(ω(i)).

Proof: Considering the right side of the identity (11),
we can write that∫ 1

0

[ (
1 + e−% − e−%t − e−%(1−t)

)
×g′′

(
tω(i) + (1− t)ω(i+ 1)

) ]dt

= − n

b− a

[ (
1 + e−% − e−%t − e−%(1−t)

)
×g′
(
tω(i) + (1− t)ω(i+ 1)

) ] ∣∣∣∣∣
1

0

+
n%

b− a

∫ 1

0

[ (
e−%t − e−%(1−t)

)
×g′
(
tω(i) + (1− t)ω(i+ 1)

) ]dt

=
n2%

(b− a)2

(
1− e−%

) [
g(ω(i)) + g(ω(i+ 1))

]
− n2%2

(b− a)2

×
∫ 1

0

[ (
e−%t + e−%(1−t)

)
×g
(
tω(i) + (1− t)ω(i+ 1)

) ]dt. (12)

Making use of the substitution x = tω(i) + (1− t)ω(i+ 1)
for the integral above, we get that∫ 1

0

(
e−%t + e−%(1−t)

)
g
(
tω(i) + (1− t)ω(i+ 1)

)
dt

=
n

b− a

∫ ω(i+1)

ω(i)

(
e−

1−α
α (ω(i+1)−x)

+e−
1−α
α (x−ω(i))

)
g(x)dx

=
nα

b− a

[
Iαω(i)+g(ω(i+ 1)) + Iαω(i+1)−g(ω(i))

]
. (13)

Putting the identity (13) into the identity (12), we have that∫ 1

0

[ (
1 + e−% − e−%t − e−%(1−t)

)
×g′′

(
tω(i) + (1− t)ω(i+ 1)

) ]dt

=
n2% (1− e−%)

(b− a)2

×


g(ω(i)) + g(ω(i+ 1))

− 1−α
1−e−%

[
Iαω(i)+g(ω(i+ 1))

+Iαω(i+1)−g(ω(i))

]  . (14)

Multiplying both sides of the identity (14) by (b−a)2

2n3%(1−e−%) ,
we obtain that

1

2n


g(ω(i)) + g(ω(i+ 1))

− 1−α
1−e−%

[
Iαω(i)+g(ω(i+ 1))

+Iαω(i+1)−g(ω(i))

] 
=

(b− a)2

2n3%(1− e−%)

×
∫ 1

0

[ (
1 + e−% − e−%t − e−%(1−t)

)
×g′′

(
tω(i) + (1− t)ω(i+ 1)

) ]dt.

Consequently, we have that

n−1∑
i=0

1

2n


g(ω(i)) + g(ω(i+ 1))

− 1−α
1−e−%

[
Iαω(i)+g(ω(i+ 1))

+Iαω(i+1)−g(ω(i))

] 
=
n−1∑
i=0

(b− a)2

2n3%(1− e−%)

×
∫ 1

0

[ (
1 + e−% − e−%t − e−%(1−t)

)
×g′′

(
tω(i) + (1− t)ω(i+ 1)

) ]dt.

This completes the proof.
Remark 4.1: In Lemma 4.1, if we take α→ 1, i.e., % =

(b−a)(1−α)
nα → 0, then we have that

lim
α→1

1− α
1− e−%

=
n

b− a
, (15)

and

lim
%→0

1 + e−% − e−%t − e−%(1−t)

%(1− e−%)
= −t2 + t. (16)

Thus, the equality (11) reduces to the equality (2).
Corollary 4.1: Consider Lemma 4.1, we can get the

subsequent results.
(1) For n = 1, we have Lemma 2.3.
(2) For n = 2, we have the coming Bullen-type equality for
fractional integrals with exponential kernels:

1

2

[
g

(
a+ b

2

)
+
g(a) + g(b)

2

]

− 1− α
4(1− e− ρ2 )

 Iαa+g (a+b
2

)
+ Iα

( a+b2 )
−g(a)

+Iα
( a+b2 )

+g(b) + Iαb−g
(
a+b

2

) 
=

(b− a)2

8ρ(1− e− ρ2 )

×
∫ 1

0


(
1 + e−

ρ
2 − e−

ρ
2 t − e−

ρ
2 (1−t))

×
[
g′′
(
ta+ (1− t)a+b

2

)
+g′′

(
ta+b

2 + (1− t)b
) ]

dt,

which is a new Bullen-type identity.
For brevity, we will use the subsequent notation in the

sequel:

Ξ(g; [a, b], n)

:=
n−1∑
i=0

1

2n

[
g(ω(i)) + g(ω(i+ 1))− 1− α

1− e−%
Ψg(I;α, i)

]
.

In particular, for n = 1, we have that

Ξ(g; [a, b], 1)

:=
g(a) + g(b)

2
− 1− α

2(1− e−ρ)
[
Iαa+g(b) + Iαb−g(a)

]
,
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and for n = 2, we have that

Ξ(g; [a, b], 2)

:=
1

2

[
g

(
a+ b

2

)
+
g(a) + g(b)

2

]

− 1− α
4
(
1− e− ρ2

)
 Iαa+g (a+b

2

)
+ Iα

( a+b2 )
−g(a)

+Iα
( a+b2 )

+g(b) + Iαb−g
(
a+b

2

)  .
By means of Lemma 4.1, we derive the following multipoint-
based fractional integral inequality.

Theorem 4.1: Assume that all conditions in Lemma 4.1
are satisfied. For α ∈ (0, 1) \ { b−a

n+b−a}, if the function
|g′′| is exponential type convex on [a, b], then the following
inequality is valid

|Ξ(g; [a, b], n)|

≤
n−1∑
i=0

(b− a)2∆1(%)

2n3%(1− e−%)
[
|g′′(ω(i))|+ |g′′(ω(i+ 1))|

]
, (17)

where

∆1(%) =
1

% (1− %2)

×

 (2%3 + %2 − %− 2
)
e−%

−
(
%3 + %2

)
e1−% −

(
%3 − %2

)
e

+2%3 − %2 − %+ 2

 , % 6= 0, 1.

Proof: From Lemma 4.1, we deduce that

|Ξ(g; [a, b], n)|

≤
n−1∑
i=0

(b− a)2

2n3%(1− e−%)

×
∫ 1

0

[ ∣∣1 + e−% − e−%t − e−%(1−t)
∣∣

×
∣∣g′′(tω(i) + (1− t)ω(i+ 1)

)∣∣ ]dt. (18)

Since 1 + e−% − e−%t − e−%(1−t) ≥ 0 for any t ∈ [0, 1],
and the function |g′′| is exponential type convex on [a, b],
we acquire that∫ 1

0

[ ∣∣1 + e−% − e−%t − e−%(1−t)
∣∣

×
∣∣g′′(tω(i) + (1− t)ω(i+ 1)

)∣∣ ]dt

≤
∫ 1

0


(
1 + e−% − e−%t − e−%(1−t)

)
×
[

(et − 1) |g′′(ω(i))|
+
(
e1−t − 1

)
|g′′(ω(i+ 1))|

] dt. (19)

Direct computation deduces that∫ 1

0

(
1 + e−% − e−%t − e−%(1−t)

) (
et − 1

)
dt

=

∫ 1

0

(
1 + e−% − e−%t − e−%(1−t)

) (
e1−t − 1

)
dt

=
1

% (1− %2)

×
[ (

2%3 + %2 − %− 2
)
e−% −

(
%3 + %2

)
e1−%

−
(
%3 − %2

)
e+ 2%3 − %2 − %+ 2

]
. (20)

A combination of the inequalities (18), (19) and identity (20)
yields the desired result. Thus, the proof is done here.

Remark 4.2: In Theorem 4.1, if we take α → 1, i.e.,
% = (b−a)(1−α)

nα → 0, then we have that

lim
%→0

∆1(%)

%(1− e−%)
=

17

6
− e. (21)

Using the results (15) and (21), the inequality (17) is trans-
formed to∣∣∣∣∣
n−1∑
i=0

1

2n

[
g(ω(i)) + g(ω(i+ 1))

]
− 1

b− a

∫ b

a

g(x)dx

∣∣∣∣∣
≤
n−1∑
i=0

(b− a)2

2n3

(
17

6
− e
)[
|g′′(ω(i))|+ |g′′(ω(i+ 1))|

]
,

which is recorded by [35, Theorem 3.1].
Corollary 4.2: Consider Theorem 4.1, we can get the

following results.
(1) For n = 1, we have the subsequent fractional trapezoid-
type inequality:

|Ξ(g; [a, b], 1)| ≤ (b− a)2∆1(ρ)

2ρ(1− e−ρ)
[
|g′′(a)|+ |g′′(b)|

]
.

(2) For n = 2, we have the coming fractional Bullen-type
inequality:

|Ξ(g; [a, b], 2)|

≤
(b− a)2∆1

(
ρ
2

)
8ρ
(
1− e− ρ2

) [|g′′(a)|+ 2

∣∣∣∣g′′(a+ b

2

)∣∣∣∣+ |g′′(b)|
]
,

where ∆1(·) is defined in Theorem 4.1.
To illustrate the result of Theorem 4.1 more intuitively, we

provide an example with graphs.
Example 4.1: Consider the function g(x) = x4 + x2

on the interval (−∞,+∞), the corresponding |g′′(x)| =
12x2 + 2 is nonnegative convex. Due to the fact that every
nonnegative convex function is exponential type convex
function, see [38], we know that the function |g′′(x)| is also
exponential type convex. If we take a = 0, b = 1, n = 1,
α ∈ (0, 1) \ {0.5}, then all hypotheses in Theorem 4.1 are
met. Obviously, we have % = (b−a)(1−α)

nα = 1−α
α . The left

part of the inequality (17) can be recorded as

|L1(α)| =

∣∣∣∣∣∣∣
1− 1−α

2α

(
1−e−

1−α
α

)
×
∫ 1

0

(
e−

1−α
α (1−x) + e−

1−α
α x
) (
x4 + x2

)
dx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

(1−α)4
(

1−e−
1−α
α

)
×
[ (

17α4 + 5α3 − α2 + 3α
)
e−

1−α
α

−47α4 + 37α3 − 17α2 + 3α

]
∣∣∣∣∣∣∣∣ .

The right part of the inequality (17) can be written as

R1(α) =
8α

(1− α)
(

1− e− 1−α
α

)∆1

(
1− α
α

)
.

For variable α ∈ (0, 0.5) ∪ (0.5, 1), we plot the graphical
depiction of the functions L1(α), R1(α) and −R1(α) in Fig.
1, respectively. It is not laborious to observe that −R1(α) <
L1(α) < R1(α), which agrees with the outcome stated in
Theorem 4.1.

With the aid of the Hölder’s integral inequality, we propose
the succeeding theorem.

Theorem 4.2: Assume that all conditions in Lemma 4.1
are satisfied. For p, q ∈ (1,∞) with p−1 + q−1 = 1, if the
function |g′′|q is exponential type convex on [a, b], then one
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Fig. 1: An example to the inequality (17) in Theorem 4.1

can attain the following inequality

|Ξ(g; [a, b], n)|

≤
n−1∑
i=0

(b− a)2(e− 2)
1
q

2n3
(∆(%, p))

1
p

×
[
|g′′(ω(i))|q + |g′′(ω(i+ 1))|q

] 1
q , (22)

where

∆(%, p) =

∫ 1

0

(
1 + e−% − e−%t − e−%(1−t)

% (1− e−%)

)p
dt, % 6= 0.

Proof: From Lemma 4.1 and the Hölder’s integral
inequality, we deduce that

|Ξ(g; [a, b], n)|

≤
n−1∑
i=0

(b− a)2

2n3%(1− e−%)

×
∫ 1

0

[ ∣∣1 + e−% − e−%t − e−%(1−t)
∣∣

×
∣∣g′′(tω(i) + (1− t)ω(i+ 1)

)∣∣ ]dt

≤
n−1∑
i=0

(b− a)2

2n3%(1− e−%)

×
(∫ 1

0

∣∣∣1 + e−% − e−%t − e−%(1−t)
∣∣∣p dt

) 1
p

×
(∫ 1

0

∣∣g′′(tω(i) + (1− t)ω(i+ 1)
)∣∣qdt) 1

q

. (23)

In accordance with the exponential-type convexity of |g′′|q ,
we get that

∫ 1

0

∣∣g′′(tω(i) + (1− t)ω(i+ 1)
)∣∣qdt

≤ |g′′(ω(i))|q
∫ 1

0

(
et − 1

)
dt

+ |g′′(ω(i+ 1))|q
∫ 1

0

(
e1−t − 1

)
dt

= (e− 2)
[
|g′′(ω(i))|q + |g′′(ω(i+ 1))|q

]
. (24)

Noticing that 1+e−%−e−%t−e−%(1−t) ≥ 0 for any t ∈ [0, 1],
and applying the inequality (24) to the inequality (23), we
obtain the desired outcome. Thus, the proof is completed.

Remark 4.3: In Theorem 4.2, if we take α → 1, i.e.,
% = (b−a)(1−α)

nα → 0, using the results (15) and (16), then
the inequality (22) turns into

∣∣∣∣∣
n−1∑
i=0

1

2n

[
g(ω(i)) + g(ω(i+ 1))

]
− 1

b− a

∫ b

a

g(x)dx

∣∣∣∣∣
≤
n−1∑
i=0

(b− a)2(e− 2)
1
q

2n3
β

1
p (p+ 1, p+ 1)

×
[
|g′′(ω(i))|q + |g′′(ω(i+ 1))|q

] 1
q ,

which is given by [35, Theorem 3.4].
We present the succedent theorem, which is related to the

power-mean integral inequality.
Theorem 4.3: Assume that all conditions in Lemma 4.1

are satisfied. For α ∈ (0, 1) \ { b−a
n+b−a}, if the function

|g′′|q is exponential type convex with q ∈ (1,+∞), then
the following inequality is given

|Ξ(g; [a, b], n)|

≤
n−1∑
i=0

(b− a)2

2n3%(1− e−%)
(∆2(%))

1− 1
q (∆1(%))

1
q

×
[
|g′′(ω(i))|q + |g′′(ω(i+ 1))|q

] 1
q , (25)

where

∆2(%) =
%+ %e−% + 2e−% − 2

%
, % 6= 0,

and ∆1(%) is the same as in Theorem 4.1.
Proof: Utilizing Lemma 4.1, the power-mean integral

inequality, and the exponential-type convexity of |g′′|q , we
have that

|Ξ(g; [a, b], n)|

≤
n−1∑
i=0

(b− a)2

2n3%(1− e−%)

×
∫ 1

0

( ∣∣1 + e−% − e−%t − e−%(1−t)
∣∣

×
∣∣g′′(tω(i) + (1− t)ω(i+ 1)

)∣∣ )dt
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≤
n−1∑
i=0

(b− a)2

2n3%(1− e−%)

×
(∫ 1

0

∣∣∣1 + e−% − e−%t − e−%(1−t)
∣∣∣dt)1− 1

q

×
[∫ 1

0

( ∣∣1 + e−% − e−%t − e−%(1−t)
∣∣

×
∣∣g′′(tω(i) + (1− t)ω(i+ 1)

)∣∣q )dt

] 1
q

≤
n−1∑
i=0

(b− a)2

2n3%(1− e−%)

×


∫ 1

0

 (1 + e−% − e−%t − e−%(1−t)
)

×
( (

e1−t − 1
)
|g′′(ω(i+ 1))|q

+ (et − 1) |g′′(ω(i))|q
) dt


1
q

×
[∫ 1

0

(
1 + e−% − e−%t − e−%(1−t)

)
dt

]1− 1
q

. (26)

Direct computation yields that∫ 1

0

(
1 + e−% − e−%t − e−%(1−t)

)
dt

=
%+ %e−% + 2e−% − 2

%
. (27)

Making use of the identities (20) and (27) in the inequality
(26), we obtain the desired outcome. Thus, the proof is
accomplished.

Remark 4.4: In Theorem 4.3, if we take α → 1, i.e.,
% = (b−a)(1−α)

nα → 0, then we have that

lim
%→0

∆2(%)

%(1− e−%)
=

1

6
. (28)

Using the results (15), (21) and (28), the inequality (25) is
transformed to∣∣∣∣∣

n−1∑
i=0

1

2n

[
g(ω(i)) + g(ω(i+ 1))

]
− 1

b− a

∫ b

a

g(x)dx

∣∣∣∣∣
≤
n−1∑
i=0

6
1
q−1(b− a)2

2n3

(
17

6
− e
) 1
q

× (|g′′(ω(i))|q + |g′′(ω(i+ 1))|q)
1
q ,

which is presented by [35, Theorem 3.7].
Corollary 4.3: Consider Theorem 4.3, we can get the

following results.
(1) For n = 1, we have the succeeding fractional trapezoid-
type inequality:

|Ξ(g; [a, b], 1)|

≤ (b− a)2

2ρ(1− e−ρ)
(∆2(ρ))

1− 1
q (∆1(ρ))

1
q

×
[
|g′′(a)|q + |g′′(b)|q

] 1
q .

(2) For n = 2, we have the subsequent fractional Bullen-type
inequality:

|Ξ(g; [a, b], 2)|

≤ (b− a)2

8ρ
(
1− e− ρ2

) (∆2

(ρ
2

))1− 1
q
(

∆1

(ρ
2

)) 1
q

×


(
|g′′(a)|q +

∣∣g′′ (a+b
2

)∣∣q) 1
q

+
(∣∣g′′ (a+b

2

)∣∣q + |g′′(b)|q
) 1
q

 ,
where ∆1(·) and ∆2(·) are the same as in Theorems 4.1 and
4.3, respectively.

With the help of the improved power-mean integral in-
equality, the following theorem is given.

Theorem 4.4: Assume that all conditions in Lemma 4.1
are satisfied. For α ∈ (0, 1)\{ b−a

n+b−a}, if |g′′|q is exponential
type convex with q > 1, then the following inequality holds

|Ξ(g; [a, b], n)|

≤
n−1∑
i=0

(b− a)2

2n3%(1− e−%)

(
∆2(%)

2

)1− 1
q

×



[
∆3(%)|g′′(ω(i))|q

+∆4(%)|g′′(ω(i+ 1))|q

] 1
q

+

[
∆4(%)|g′′(ω(i))|q

+∆3(%)|g′′(ω(i+ 1))|q

] 1
q


, (29)

where

∆3(%)

=
1

%(%− 1)2(%+ 1)2

×



(
− 5

2%
5 + 5%3 − %2 − 1

2%− 1
)
e−%

+
(
%5 − 3%3 − 2%2

)
e1−%

+
(
%5 − 3%3 + 2%2

)
e

− 5
2%

5 + 5%3 + %2 − 1
2%+ 1

 , % 6= 0, 1,

∆4(%)

=
1

%(%− 1)2(%+ 1)2

×



(
1
2%

5 − %4 − 2%3 + 4%2 − 1
2%− 1

)
e−%

+
(
%4 + 2%3 + %2

)
e1−%

−
(
%4 − 2%3 + %2

)
e

+ 1
2%

5 + %4 − 2%3 − 4%2 − 1
2%+ 1

 , % 6= 0, 1,

and ∆2(%) is identical to that in Theorem 4.3.
Proof: In the light of Lemma 4.1, the improved power-

mean integral inequality, and the exponential-type convexity
of |g′′|q , we have that

|Ξ(g; [a, b], n)|

≤
n−1∑
i=0

(b− a)2

2n3%(1− e−%)

×
∫ 1

0

[ ∣∣1 + e−% − e−%t − e−%(1−t)
∣∣

×
∣∣g′′(tω(i) + (1− t)ω(i+ 1)

)∣∣ ]dt
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≤
n−1∑
i=0

(b− a)2

2n3%(1− e−%)

×

{[∫ 1

0

(1− t)
(

1 + e−% − e−%t − e−%(1−t)
)

dt

]1− 1
q

×
[∫ 1

0

(
(1− t)

(
1 + e−% − e−%t − e−%(1−t)

)
×
∣∣g′′(tω(i) + (1− t)ω(i+ 1)

)∣∣q )
dt

] 1
q

+

[∫ 1

0

t
(

1 + e−% − e−%t − e−%(1−t)
)

dt

]1− 1
q

×
[∫ 1

0

(
t
(
1 + e−% − e−%t − e−%(1−t)

)
×
∣∣g′′(tω(i) + (1− t)ω(i+ 1)

)∣∣q )dt

] 1
q

}

≤
n−1∑
i=0

(b− a)2

2n3%(1− e−%)

×

{[∫ 1

0

(1− t)
(

1 + e−% − e−%t − e−%(1−t)
)

dt

]1− 1
q

×


∫ 1

0


(1− t)
×
(
1 + e−% − e−%t − e−%(1−t)

)
×

 (
e1−t − 1

)
×|g′′(ω(i+ 1))|q
+ (et − 1) |g′′(ω(i))|q


dt


1
q

+

∫ 1

0


t
(
1 + e−% − e−%t − e−%(1−t)

)
×

 (
e1−t − 1

)
×|g′′(ω(i+ 1))|q
+ (et − 1) |g′′(ω(i))|q


dt


1
q

×
[∫ 1

0

t
(

1 + e−% − e−%t − e−%(1−t)
)

dt

]1− 1
q

}
. (30)

Direct computations yield that∫ 1

0

(1− t)
(

1 + e−% − e−%t − e−%(1−t)
)

dt

=

∫ 1

0

t
(

1 + e−% − e−%t − e−%(1−t)
)

dt

=
%+ %e−% + 2e−% − 2

2%
, (31)

∫ 1

0

(1− t)
(

1 + e−% − e−%t − e−%(1−t)
) (
et − 1

)
dt

=

∫ 1

0

t
(

1 + e−% − e−%t − e−%(1−t)
) (
e1−t − 1

)
dt

=
1

%(%− 1)2(%+ 1)2

×



(
− 5

2%
5 + 5%3 − %2 − 1

2%− 1
)
e−%

+
(
%5 − 3%3 − 2%2

)
e1−%

+
(
%5 − 3%3 + 2%2

)
e

− 5
2%

5 + 5%3 + %2 − 1
2%+ 1

 , (32)

and∫ 1

0

(1− t)
(

1 + e−% − e−%t − e−%(1−t)
) (
e1−t − 1

)
dt

=

∫ 1

0

t
(

1 + e−% − e−%t − e−%(1−t)
) (
et − 1

)
dt

=
1

%(%− 1)2(%+ 1)2

×



(
1
2%

5 − %4 − 2%3 + 4%2 − 1
2%− 1

)
e−%

+
(
%4 + 2%3 + %2

)
e1−%

−
(
%4 − 2%3 + %2

)
e

+ 1
2%

5 + %4 − 2%3 − 4%2 − 1
2%+ 1

 . (33)

Submitting identities (31), (32) and (33) to the inequality
(30), we obtain the desired result. Thus, the proof is accom-
plished.

Remark 4.5: In Theorem 4.4, if we take α → 1, i.e.,
% = (b−a)(1−α)

nα → 0, then we have that

lim
α→1

∆3(%)

%(1− e−%)
=

131

12
− 4e, (34)

and

lim
α→1

∆4(%)

%(1− e−%)
= 3e− 97

12
. (35)

Using the results (15), (28), (34) and (35), the inequality (29)
changes into∣∣∣∣∣

n−1∑
i=0

1

2n
[g(ω(i)) + g(ω(i+ 1))]− 1

b− a

∫ b

a

g(x)dx

∣∣∣∣∣
≤
n−1∑
i=0

(b− a)2

2n3

(
1

12

)1− 1
q

×



[ (
131
12 − 4e

)
|g′′(ω(i))|q

+
(
3e− 97

12

)
|g′′(ω(i+ 1))|q

] 1
q

+

[ (
3e− 97

12

)
|g′′(ω(i))|q

+
(

131
12 − 4e

)
|g′′(ω(i+ 1))|q

] 1
q


,

which is provided by [35, Theorem 3.14].
Remark 4.6: The upper bound of the inequality (29) is

superior to that of the inequality (25). In fact, by using
concavity of the function h : [0,+∞)→ R, h(x) = xs, 0 <
s ≤ 1, we can write the right hand-side of the inequality (29)
as follows:

n−1∑
i=0

(b− a)2

2n3%(1− e−%)

(
∆2(%)

2

)1− 1
q

×


[

∆3(%)|g′′(ω(i))|q
+∆4(%)|g′′(ω(i+ 1))|q

] 1
q

+

[
∆4(%)|g′′(ω(i))|q
+∆3(%)|g′′(ω(i+ 1))|q

] 1
q


≤ 2

n−1∑
i=0

(b− a)2

2n3%(1− e−%)

(
∆2(%)

2

)1− 1
q

×

[
∆3(%)+∆4(%)

2 |g′′(ω(i))|q

+∆3(%)+∆4(%)
2 |g′′(ω(i+ 1))|q

] 1
q

=
n−1∑
i=0

(b− a)2

2n3%(1− e−%)
(∆2(%))

1− 1
q (∆1(%))

1
q

×
[
|g′′(ω(i))|q + |g′′(ω(i+ 1))|q

] 1
q , (36)

where we use the following fact that

∆3(%) + ∆4(%) = ∆1(%).
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For a more intuitive comparison of the obtained bounds
in Theorems 4.3 and 4.4, we supply an example with tables
here.

Example 4.2: Consider the function g(x) = q2e
x
q on

(−∞,+∞) for q ∈ (1,+∞), the corresponding |g′′(x)|q =
ex is nonnegative convex, and the function |g′′(x)|q is also
exponential type convex. If we take a = 0, b = 1, n = 1, q =
2 and α ∈ (0, 1)\{0.5}, then all hypotheses in Theorems 4.3
and 4.4 are met. Obviously, we have % = (b−a)(1−α)

nα = 1−α
α .

Owing to the fact that the left-hand side of the inequality
(25) is the same as that of the inequality (29), it can be
transformed into

|L2(α)|

=

∣∣∣∣2 + 2e
1
2 − 2(1− α)

α
(

1− e− 1−α
α

)
×
∫ 1

0

(
e−

1−α
α (1−x) + e−

1−α
α x
)
e
x
2 dx

∣∣∣∣
=

∣∣∣∣∣2 + 2e
1
2 − 4(1− α)

(3α− 2)(2− α)
(

1− e− 1−α
α

)
×
[
(2− α)

(
e

3α−2
2α − 1

)
+ (3α− 2)

(
e

1
2 − e−

1−α
α

)]∣∣∣∣∣,
where α 6= 2

3 . The right-hand side of the inequality (25) in
Theorem 4.3 can be recorded as

R2(α) =
(1 + e)

1
2 α

2(1− α)
(

1− e− 1−α
α

)
×
[
∆2

(
1− α
α

)] 1
2
[
∆1

(
1− α
α

)] 1
2

.

The right-hand side of the inequality (29) in Theorem 4.4
can be written as

R3(α) =
α

2(1− α)
(

1− e− 1−α
α

) (∆2

(
1−α
α

)
2

) 1
2

×

{ [
∆3

(
1−α
α

)
+ e∆4

(
1−α
α

)] 1
2

+
[
∆4

(
1−α
α

)
+ e∆3

(
1−α
α

)] 1
2

}
.

If we take α = 1
4 , then we have that

∣∣L2

(
1
4

)∣∣ ≈ 0.094371,∣∣R2

(
1
4

)∣∣ ≈ 0.117126, and
∣∣R3

(
1
4

)∣∣ ≈ 0.116926. Clearly,
0.094371 < 0.116926 < 0.117126, which shows that the
bound provided by the inequality (29) is better than that given
by the inequality (25).

When the parameter α takes different values, we have the
following numerical results.

TABLE I: Numerical comparison of Theorem 4.3 and The-
orem 4.4 for α ∈ (0, 0.5)

values of α values of |L2(α)|
values of R2(α)
in Theorem 4.3

values of R3(α)
in Theorem 4.4

0.1 0.055920 0.069685 0.069527
0.2 0.086816 0.107816 0.107623
0.3 0.099032 0.122868 0.122664
0.4 0.103846 0.128797 0.128589

From Tables I and II, we can clearly see that the values
on the left are less than the values on the right, which
corresponds to the theoretical results given in Theorems 4.3

TABLE II: Numerical comparison of Theorem 4.3 and The-
orem 4.4 for α ∈ (0.5, 1)

values of α values of |L2(α)|
values of R2(α)
in Theorem 4.3

values of R3(α)
in Theorem 4.4

0.6 0.106885 0.132539 0.132328
0.7 0.107345 0.133106 0.132895
0.8 0.107561 0.133372 0.133160
0.9 0.107650 0.133482 0.133271

and 4.4. In particular, we observe that the values of R3(α)
are smaller than the values of R2(α), indicating that the
inequality (29) in Theorem 4.4 gives a better approximate
estimate than the inequality (25) in Theorem 4.3.

For functions whose second derivatives are bounded, we
obtain the another estimative result below.

Theorem 4.5: Assuming that every condition involved in
Lemma 4.1 is satisfied. If the function g′′ is bounded, i.e.,
m ≤ g′′(u) ≤M for all u ∈ [a, b] with m,M ∈ R, then one
can receive the following inequality

m(b− a)2

2n2%(1− e−%)
∆2(%) ≤ Ξ(g; [a, b], n)

≤ M(b− a)2

2n2%(1− e−%)
∆2(%), (37)

where ∆2(%) is the same as in Theorem 4.3.
Proof: By using the change of variables, we have that

1− α
1− e−%

[
Iαω(i)+g(ω(i+ 1)) + Iαω(i+1)−g(ω(i))

]
=

1− α
α (1− e−%)

×
∫ ω(i+1)

ω(i)

(
e−

1−α
α (ω(i+1)−x) + e−

1−α
α (x−ω(i))

)
g(x)dx

=
1− α

α (1− e−%)

×
∫ ω(i+1)

ω(i)

[ (
e−

1−α
α (x−ω(i)) + e−

1−α
α (ω(i+1)−x)

)
×g
(
ω(i) + ω(i+ 1)− x

) ]
dx

=
1− α

2α (1− e−%)

×
∫ ω(i+1)

ω(i)

(
e−

1−α
α (x−ω(i)) + e−

1−α
α (ω(i+1)−x)

)
×
[
g(x) + g

(
ω(i) + ω(i+ 1)− x

)]
dx. (38)

Employing the identity transformation, we obtain that

g(ω(i)) + g(ω(i+ 1))

− 1− α
1− e−%

[
Iαω(i)+g(ω(i+ 1)) + Iαω(i+1)−g(ω(i))

]
= g(ω(i)) + g(ω(i+ 1))− 1− α

2α (1− e−%)

×
∫ ω(i+1)

ω(i)

[ (
e−

1−α
α (x−ω(i)) + e−

1−α
α (ω(i+1)−x)

)
×
[
g(x) + g

(
ω(i) + ω(i+ 1)− x

)] ]
dx

= − 1− α
2α (1− e−%)

×
∫ ω(i+1)

ω(i)

(
e−

1−α
α (x−ω(i)) + e−

1−α
α (ω(i+1)−x)

)
×
[
g(x) + g

(
ω(i) + ω(i+ 1)− x

)
−g(ω(i))− g(ω(i+ 1))

]
dx, (39)
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where we utilize the following fact that∫ ω(i+1)

ω(i)

(
e−

1−α
α (x−ω(i)) + e−

1−α
α (ω(i+1)−x)

)
dx

=
2α (1− e−%)

1− α
.

Since m ≤ g′′(u) ≤ M,u ∈ [a, b], for τ ∈ [ω(i), ω(i + 1)],
we obtain that∫ ω(i)+ω(i+1)−τ

τ

mdu ≤
∫ ω(i)+ω(i+1)−τ

τ

g′′(u)du

≤
∫ ω(i)+ω(i+1)−τ

τ

Mdu,

which yields that

m
(
ω(i) + ω(i+ 1)− 2τ

)
≤ g′

(
ω(i) + ω(i+ 1)− τ

)
− g′(τ)

≤M
(
ω(i) + ω(i+ 1)− 2τ

)
. (40)

Integrating the inequality (40) with respect to τ on [ω(i), x],
we obtain that∫ x

ω(i)

m
(
ω(i) + ω(i+ 1)− 2τ

)
dτ

≤
∫ x

ω(i)

[
g′
(
ω(i) + ω(i+ 1)− τ

)
− g′(τ)

]
dτ

≤
∫ x

ω(i)

M
(
ω(i) + ω(i+ 1)− 2τ

)
dτ,

that is,

M
(
ω(i)− x

)(
ω(i+ 1)− x

)
≤ g(x) + g

(
ω(i) + ω(i+ 1)− x

)
− g(ω(i))− g(ω(i+ 1))

≤ m
(
ω(i)− x

)(
ω(i+ 1)− x

)
. (41)

Multiplying the inequality (41) by
− 1−α

2α(1−e−%)

(
e−

1−α
α (x−ω(i)) + e−

1−α
α (ω(i+1)−x)

)
and

integrating the resultant inequality with respect to x on
[ω(i), ω(i+ 1)], we have that

− m(1− α)

2α (1− e−%)

×
∫ ω(i+1)

ω(i)

[ (
e−

1−α
α (x−ω(i)) + e−

1−α
α (ω(i+1)−x)

)
×
(
ω(i)− x

)(
ω(i+ 1)− x

) ]
dx

≤ − 1− α
2α (1− e−%)

×
∫ ω(i+1)

ω(i)

(
e−

1−α
α (x−ω(i)) + e−

1−α
α (ω(i+1)−x)

)
×
[
g(x) + g

(
ω(i) + ω(i+ 1)− x

)
−g(ω(i))− g(ω(i+ 1))

]
dx

≤ − M(1− α)

2α (1− e−%)

×
∫ ω(i+1)

ω(i)


(
e−

1−α
α (x−ω(i))

+e−
1−α
α (ω(i+1)−x)

)
×
(
ω(i)− x

)(
ω(i+ 1)− x

)
dx. (42)

Direct complication yields that,∫ ω(i+1)

ω(i)

[ (
e−

1−α
α (x−ω(i)) + e−

1−α
α (ω(i+1)−x)

)
×
(
ω(i)− x

)(
ω(i+ 1)− x

) ]
dx

= − 2α2

(1− α)2

×
[
b− a
n

(
1 + e−%

)
+

2α

1− α
(
e−% − 1

)]
. (43)

Employing the identities (39) and (43) into the inequality
(42), we obtain that

m(b− a)2

n2
· %+ %e−% + 2e−% − 2

%2(1− e−%)
≤ g(ω(i)) + g(ω(i+ 1))

− 1− α
1− e−%

[
Iαω(i)+g(ω(i+ 1)) + Iαω(i+1)−g(ω(i))

]
≤ M(b− a)2

n2
· %+ %e−% + 2e−% − 2

%2(1− e−%)
.

Consequently, we have that

m(b− a)2

2n2
· %+ %e−% + 2e−% − 2

%2(1− e−%)

≤
n−1∑
i=0

1

2n

[
g(ω(i)) + g(ω(i+ 1))− 1− α

1− e−%
Ψg(I;α, i)

]
≤ M(b− a)2

2n2
· %+ %e−% + 2e−% − 2

%2(1− e−%)
.

This completes the proof.
For displaying the result of Theorem 4.5 more intuitively,

we offer an example here.
Example 4.3: Let us consider the function g : [a, b] =

[1, 2]→ R defined by g(x) = 1
(ln 2)2

(
1
2

)x
. Then, the function

g′′(x) =
(

1
2

)x
is bounded on [1, 2] with m = 1

4 and M = 1
2 .

In Theorem 4.5, for n = 1 and α ∈ (0, 1), we have % =
(b−a)(1−α)

nα = 1−α
α . The left side of the double inequality

(37) can be written as

Ω1(α) =
m(b− a)2

2n2
· %+ %e−% + 2e−% − 2

%2(1− e−%)

=

(
α2 + α

)
e−

1−α
α − 3α2 + α

8(1− α)2
(

1− e− 1−α
α

) .

The right side of the double inequality (37) is as follows:

Ω2(α) =
M(b− a)2

2n2
· %+ %e−% + 2e−% − 2

%2(1− e−%)

=

(
α2 + α

)
e−

1−α
α − 3α2 + α

4(1− α)2
(

1− e− 1−α
α

) .

The middle part of the inequality (37) can be recorded as

Ω3(α) =
3

8(ln 2)2
− 1− α

2(ln 2)2α
(

1− e− 1−α
α

)
×
∫ 2

1

(
e−

1−α
α (2−x) + e−

1−α
α (x−1)

)(1

2

)x
dx.

In Fig. 2, we draw functions Ω1(α), Ω2(α) and Ω3(α) for
α ∈ (0, 1), respectively. It is obvious that Ω1(α) < Ω3(α) <
Ω2(α), which is consistent with the result given in Theorem
4.5.
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Fig. 2: An example to the inequality (37) in Theorem 4.5

V. CONCLUSIONS

In the setting of fractional integrals with exponential
kernels, the HH-type inequalities for exponential type convex
functions are presented here. And then, a fractional integral
identity by separating [a, b] to n equal subintervals is proved,
from which we construct multipoint-based HH inequalities
in the case of twice-differentiable functions.

Following the ideas and methods presented in this paper,
the researchers can address similar inequalities using other
types of fractional integrals, like the k-fractional integrals
with exponential kernels [41], and interval-valued fractional
double integrals with exponential kernels [42], which is a
new direction in future researches.
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