
 

  

Abstract: Breast cancer is one of the diseases that is a 

scourge for women. The diagnosis of cancer is divided into 

benign breast cancer and malignant breast cancer. Accuracy in 

determining the diagnosis of breast cancer can help in patient 

treatment. To monitor breast cancer diagnoses, this article 

proposed a Kernel PCA based Hotelling’s T2 Multivariate 

control chart. All features that are believed to affect cancer 

diagnosis are reduced with the Kernel PCA to overcome 

multicollinearity. The Kernel PCA based Hotelling’s T2 The 

multivariate chart employs the bootstrap approach, a 

nonparametric resampling method to estimate the control 

limit. A study was conducted to compare the performance of 

the control charts with logistic regression to see the superiority 

of the control chart in diagnosing the type of breast cancer. 

The accuracy of Kernel PCA based Hotelling’s T2 The 

multivariate graph is 89.63%. The logistic regression 

performance is better at classifying breast cancer diagnoses 

compared to Hotelling’s T2 since it has a bigger accuracy. 

These results make sense because the function of logistic 

regression is to classify. Whereas in Hotelling’s T2, we use the 

concept of in-control and out of control. However, to predict 

the diagnosis of breast cancer, the performance of Hotelling’s 

T2 with an accuracy value close to 90%, can be said to be good. 

 
Index Terms—breast cancer, control chart, hotelling’s T2, 

kernel PCA 

 

I. INTRODUCTION 

NE of the diseases that is a scourge for women is breast 

cancer. Based on the data from the American Cancer 

Society in 2017, more than 252,710 women with breast 

cancer have been diagnosed and approximately 16% of them 

are losing their lives because of this disease. Like other 
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cancers, breast cancer can also divide into benign breast 

cancer and malignant breast cancer. Accuracy in 

determining benign or malignant breast cancer can help with 

treatment for breast cancer patients. Advances in medical 

technology and information disclosure have made many 

medical datasets available. One of them is about breast 

cancer from the UCI machine learning repository and 

collected from the University of California, Irvine. These 

data can be equipment to develop new methods for 

determining benign or malignant breast cancer. 

PCA (Principal Component Analysis) is a multivariate 

technique that can be used to reduce variables. The PCA 

method is very useful for data with many variables and has a 

correlation between its variables. The purpose of PCA is to 

reduce the variables to fewer variables without losing the 

information contained in the original data. Hence, PCA is 

appropriate to be implemented for breast cancer data from 

the UCI machine learning repository. It is because breast 

cancer data from the UCI machine learning repository have 

ten features, such as radius (mean distances from center to 

points on the perimeter, texture (standard deviation of 

grayscale values), perimeter, area, smoothness (local 

variation in radius lengths), compactness (perimeter 2 / area 

– 1.0), concavity (severity of concave portions of the 

contour), concave points (number of concave portions of the 

contour), symmetry, and fractal dimension (“coastline 

approximation” – 1).  

The control chart is a technique that uses graphics to 

monitor the quality of a manufacturing process. The main 

purpose of the control chart is to find assignable causes of 

process variation. Assignable causes are caused by factors 

that are not part of the process. When assignable causes are 

detected, then the process is out of control. A control chart 

consists of three horizontal lines such as the lower control 

limit (LCL), the centerline, and the upper control limit 

(UCL). A process is considered in control when the data 

point falls between UCL and LCL. A data point that falls 

outside the control area is indicated as an out-control signal. 

In general, control charts are effective tools to eliminate 

process variability and estimate process parameters [1]. One 

of the much-used control charts is Hotelling's T2. Hotelling’s 

T2 assumes the data follow a multivariate normal 

distribution [2]. If the data do not follow a multivariate 

normal distribution, then the control limit of Hotelling’s T2 

can be calculated using the bootstrap approach.  

There is much research regarding detecting or diagnosing 

phenomena using control charts. Das and Sugal conducted 

research on the identification of hot and cold spots in the 
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genome of Mycobacterium tuberculosis using Shewhart 

control charts [3]. Ahsan et al. created an intrusion detection 

system using the bootstrap resampling approach of 

Hotelling’s 
2T  control chart based on successive difference 

covariance matrix [4]. Rogerson and Yamada [5] proposed a 

multivariate cumulative sum approach to detect changes in 

spatial patterns and applied it to county-level breast cancer 

data in the Northeastern United States. The results of the 

comparison suggested that the multivariate chart performed 

well. 

Some control charts have the assumption that they rely on 

normal distribution to establish control limits. The bootstrap 

method is a nonparametric technique that can be used to set 

control limits without considering the parametric 

distribution assumptions of the observed data [6]–[8]. 

Taking into account the effectiveness of the control chart to 

detect and diagnose, we propose the use of the PCA control 

chart [9] to diagnose the type of breast cancer. Furthermore, 

the performance of the PCA control chart was compared 

with logistic regression to see the superiority of the control 

chart in diagnosing the type of breast cancer. 

II. MATERIAL AND METHOD 

A. Principal Component Analysis 

Principal Component Analysis (PCA) is a method to 

significantly reduce variables. PCA can reduce the 

dimensions of the observational data but does not lose 

significant information in the data. The problem with using 

PCA is to find the eigenvalues and eigenvectors [7]. 

PCA is a basis transformation to diagonalize an estimate 

of the covariance matrix of the data kx , 1,...,k = , 

N

kx  , 
1

0k

k

x
=

=  defined as 

1

1 T

j j

j

C x x
=

=          (1) 

The principal component is referred to as the new 

coordinates on the basis of the eigenvectors, which are 

orthogonal projections to the eigenvectors. 

B. Kernel PCA 

Assume for now that the data is mapped to a centralized 

feature space 1( ),.., ( )x x  , i.e., 
1

( ) 0kk
x

=
 = . To 

perform PCA for the covariance matrix 

( ) ( )
1

1 T

j j

j

C x x
=

=         (2) 

Find the eigenvalues 0   and eigenvectors  \ 0V F  

that satisfy V CV = .  Substituting, note that all solutions V 

lies in the range 1( ),.., ( )x x  . This implies that an 

equivalent system can be considered. 

( )( ) ( )( )k Kx V X CV   =    for all 1,...,k =   (3) 

And there exist coefficients 1,...,   such that  

( )
1

i i

i

V x
=

=          (4) 

by substitution and defined the matrix with an x  matrix K 

by 

( ) ( )( ):ij i jK x x=         (5) 

obtained 

K =         (6) 

for non-zero eigenvalues. 

The normalized solution 
k  belongs to the non-zero 

eigenvalues by requiring the corresponding vector F  to be 

normalized, i.e., ( ) 1k kV V =  obtained. 

( ) ( )( ) ( ) ( )
, 1

1 k k k k k k

i j i j k

i j

x x K      
=

=   =  =  (7) 

 

For principal component extraction, the projection of the test 

point image ( )x  to the eigenvectors 
kV  in F is calculated 

according to 

( )( ) ( ) ( )( )
1

k k

i i

i

V x x x
=

 =        (8) 

In the ( )ix  explicit form they are only needed in the dot 

product. Therefore, it is possible to use a kernel function to 

calculate the product of this point without actually running 

the map   [10] for multiple kernel choices ( ),k x y , it can 

be shown by the method of functional analysis that there is a 

map   into some point product space F (possibly infinite 

dimensions) so calculate k the product of the point in F. 

Kernels that have been used successfully in support vector 

machines [11]–[13] include the polynomial kernel. 

( ) ( ),
d

k x y x y=           (9) 

Radial basis functions ( ) ( )( )2 2, exp / 2k x y x y = − − , 

and sigmoid kernel ( ) ( )( ), tanh ,k x y x y= +  . It can be 

shown that polynomial kernels of degree d correspond to a 

map   into a feature space which is spanned by all 

products of d entries of an input pattern, e.g., for the case of 

2, 2N d= =  [6].  

( ) ( )( )
2 2 2 2 2

1 1 2 2 1 2 1 1 2 2 1 2, , , , , ,
T

x y x x x x x x y y y y y y =    (10) 

 

 
Fig. 1.  Basic idea of Kernel PCA: by using a non-linear kernel function 

 

Figure 1 suggests that we can analyze the data using all 

possible combinations of pixel values (d-th order products). 

This approach, when combined with a kernel function, 

captures more complex relationships between the data points 

compared to standard PCA for all occurrences of 

( ) ( )( )x y  . 

C. The Hotelling’s 2T  control chart 

The most common multivariate quality control methods 

are based on Hotelling’s 2T  statistics. This 2T  statistic is 
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equivalent to the square of the Mahalanobis distance, and 

the calculation is based on the classical sample mean vector 

and the classical sample variance-covariance matrix. In 

Phase I, historical data sets from observations are analyzed 

to determine whether a process is in control and to estimate 

process parameters under control, control limits, and to 

identify and eliminate multivariate outliers. In phase II, 

estimates and control limits are used to examine data 

obtained during the industrial process to detect deviations 

from the parameter estimates. 

The Hotelling’s 2T  control chart is a widely used 

statistical tool and is considered the most common 

multivariate control chart to monitor multivariate variability 

in industrial processes. let ( )1 2, , , , , ,..., , ,
t

ij ij ijpX X X=X to 

show a vector p x 1 that represents the characteristic p of the 

j-th observations in the i-th subgroup, i = 1, 2,. ., m and j = 

1, 2,. . , n, where n is the size of the subgroup and m is the 

number of subgroups. assume that 'ijX s  is independent and 

identically distributed and follows a multivariate normal 

distribution with the mean vector μ  and the variance-

covariance matrix Σ  when the process is in control. If the 

value of the process parameter is unknown, data from the 

initial m subgroups are collected when the process is 

believed to be in control. Then, the unbiased estimates of the 

mean vector μ  and the variance-covariance matrix Σ , 

respectively, are given by the following. 

1

1 m

i

i

x X
m =

=  and 
1

1 m

i

j

S S
m =

=       (11) 

where 
iX denotes the mean vector for the i-th subgroup, and 

iS  denotes the unbiased estimate of the variance-covariance 

matrix for the i-th subgroup. That is, 

1

1 n

i ij

j

X X
n =

=  and ( )( )
1

1

1

n
t

i ij i ij i

j

S X X X X
n =

= − −
−

      (12) 

The Hotelling’s 2T  control chart is constructed using 

these estimated parameters [14]. As mentioned above, the 

control chart is first used to retrospectively test whether the 

process was in control when initial subgroups of m were 

drawn (Phase I). After the initial control has been 

established, the control chart can be used to monitor the 

process online, that is, the values of subgroup averages are 

plotted one at a time on the chart as each new subgroup is 

obtained (Phase II). In this paper, we consider phase I. The 

statistic plotted on the Hotelling’s 2T  control chart for each 

initial subgroup is calculated as follows. 

( ) ( )2 1t

i i iT n x x S x x−= − − , 1,2,3...,i m=    (13) 

The UCL of this control chart is given as follows. 

( )( )

( )
2 , 1

1 1

1
p mn m pT

p m n
UCL F

mn m p
− − +

− −
=

− − +
   (14) 

where 
1, 2,v vF   is the ( )1

th
−  percentile point of the F 

distribution with 1v  and 2v  degrees of freedom, and   is 

the desired false alarm probability for each subgroup. The 

lower control limit (LCL) is usually set to zero. 

D. Logistic regression 

Assume that there is one independent variable, X, and one 

dependent variable, Y, that have two categories. Let 

( ) ( ) ( )1 1 0x P Y X x P Y X x= = = = − = = . The logistic 

regression model can be written as follows. 

( )
( )

( )
0 1 1

0 1 1

exp

1 exp

X
x

X

 


 

+
=

+ +
       (15) 

The extended model applies to multiple binary logistic 

regression. 

( )
( )

( )
0 1 1 2 2

0 1 1 2 2

exp ...

1 exp ...

k k

i

k k

X X X
x

X X X

   


   

+ + + +
=

+ + + + +
   (16) 

The 0 1, ,..., k    are the parameters for the model. The 

estimation for the parameters is determined by the 

maximum likelihood estimation. The first step to estimate 

the parameter is to define the likelihood function. Assume 

there are 1 2, ,..., NY Y Y  binomial random variables. As the 

observations are assumed to be independent, the likelihood 

function for these binomial random variables can be seen in 

the following formula. 

( )
( )

( ) ( )( )
1

!
1

! !

i ii
n yN yi

i ii
i i i

n
L x x

y n y
  

−

=
= −

−
   (17) 

( )
( )

( ) ( )( )
1

!
1

! !

i ii
n yN yi

i ii
i i i

n
L x x

y n y
  

−

=
= −

−
    (18) 

Taking the natural logarithm of ( )L  , 

( )( ) ( ) ( ) ( )
1

1 ln 1
N

i i i ii
Ln L y Ln x y x  

=
= − − −        (19) 

Differentiating ( )L   with respect to 0 1, ,..., k   . Set the 

result of this differentiation equal to zero. This result is not a 

closed form formula, so we require iterative methods to get 

the estimated coefficients, for example, the Iterative 

Weighted Least Squares method. 

E. Breast Cancer 

Breast cancer is one of the most common cancers in 

women worldwide, accounting for about 570,000 deaths in 

2015. More than 1.5 million women (25% of all women 

with cancer) are diagnosed with breast cancer every year 

worldwide. In America, an estimated 30% of all new cancer 

cases (252,710) among women were breast cancer in 2017 

[15]. Early diagnosis of the disease can lead to a good 

prognosis and a high survival rate. Mammography is a 

screening approach that is widely used in the detection of 

breast cancer and has been shown to help reduce mortality 

effectively. Other screening methods, such as magnetic 

resonance imaging (MRI), which are more sensitive than 

mammography, have also been applied and studied over the 

last decade. Although the incidence rate of breast cancer in 

America is increasing from year to year, the mortality rate is 

decreasing due to widespread early detection and continued 

medical therapy. There are many risk factors such as gender, 

aging, estrogen, family history, gene mutations, and an 

unhealthy lifestyle, which can increase the chances of 

getting breast cancer. Biological therapies have been 

developed in recent years and have been shown to be 

beneficial for breast cancer. 
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The mortality rate from breast cancer is higher in 

developing countries than in developed countries. The main 

cause of the increase in cancer deaths in developing 

countries is the lack of effective screening programs that can 

detect conditions before cancer, as well as detect cancer at 

an early stage so that treatment is carried out before cancer 

is at an advanced stage. In addition to the lack of a screening 

program, there is also a lack of knowledge, ability, and 

access for treatment. Therefore, early breast self-

examination and education on appropriate treatment for the 

community are very necessary. Appropriate public 

knowledge about breast cancer and early detection efforts is 

still lacking. There is a need to increase understanding of 

breast cancer, since early diagnosis and surgery will increase 

the chances of cure and increase life expectancy. Thus, in 

the end, it can reduce morbidity and mortality and improve 

the quality of life of patients with breast cancer. 

III. DATASET 

The data set used is a Wisconsin Breast Cancer Data Set 

from the University of Wisconsin Hospital to check the 

accuracy of the performance and evaluate the proposed 

method. The target variable is diagnostic, and the rest are 

predictor/feature variables. The features are computed from 

a digital image of a fine needle aspirate (FNA) of a breast 

mass. Information about the data set is shown in Table 1. 

 
TABLE I 

DATASET INFORMATION 

Variable Detail 

Diagnosis (Y) The diagnosis of breast 

tissues (1 = malignant,  

0 = benign) 

radius_mean (X1) mean of distances from 

center to points on the 

perimeter 

texture_mean (X2) standard deviation of gray-

scale values 

perimeter_mean (X3) mean size of the core tumor 

area_mean (X4) mean of local variation in 

radius lengths 

smoothness_mean (X5) 
 

compactness_mean (X6) mean of perimeter^2 / area - 

1.0 

concavity_mean (X7) mean of severity of concave 

portions of the contour 

concave points_mean (X8) mean for number of 

concave portions of the 

contour 

symmetry_mean (X9) 
 

fractal_dimension_mean 

(X10) 

 

IV. RESULT AND DISCUSSION 

A. Principal Component Analysis 

The data set used is a data set of breast cancer patients 

with malignant and benign tumor types, which are tumor 

types, from the Wisconsin Diagnostic Breast Cancer data 

set. Hotelling’s 2T  Control Chart and Logistic Regression is 

used to predict whether the patient is a malignant or benign 

tumor. 

 

The following is the correlation matrix of the predictor 

variables as follows. 

 

 
Fig. 2.  Correlation matrix for predictor variables 

 

According to Figure 2, there is a strong linear correlation 

among several predictor variables. This will cause 

multicollinearity. Handle multicollinearity. Dimension 

reduction or variable reduction using the PCA method will 

be used. 
TABLE 2 

DEACRIPTIVE STATISTICS 

Variable Mean 
Standard 

Deviation 
Median 

X1 14.127 3.524 13.370 

X2 19.290 4.301 18.840 

X3 91.970 24.300 86.240 

X4 654.900 351.900 551.100 

X5 0.096 0.014 0.095 

X6 0.104 0.052 0.092 

X7 0.088 0.079 0.061 

X8 0.048 0.038 0.033 

X9 0.181 0.027 0.179 

X10 0.062 0.007 0.061 

 

Since the range of data between variables causes unequal 

values between variables, it is necessary to do feature 

scaling or standardization of the variables. After performing 

the feature scaling, the result obtained from PCA is as 

follows. 

 

 
Fig. 3. Scatter Plot of Linear PCA 

 

Figure 3 shows that the components PC1 and PC2, which 

is a linear combination of predictor variables, in classifying 

tumor diagnoses between malignant and benign patients, 
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have not been completely separated. For this reason, 

dimension reduction will be carried out using the Kernel 

PCA where they will be brought to a very high (nonlinear) 

dimension. The kernel function used for the Kernel PCA 

here is a radial basis function (Gaussian kernel) with 

optimized sigma parameters. 

 

 
Fig. 4. Scatter Plot of Kernel PCA 

 

Based on Figure 4 using the kernel PCA, the principal 

component formed can classify patients with benign and 

malignant tumors and is not mixed as was done by the 

previous linear PCA. Furthermore, to perform the Hotelling   

control chart, the principal components of the Kernel PCA 

are used. 

B. Hotelling’s T2 Control Chart 

Hotelling’s 2T  assuming the data follow multivariate 

normal distribution. The multivariate normal distribution 

testing of the data is shown in Table 3.  

 
TABLE 3 

DISTRIBUTION TESTING 

Data P-Value 

PCA 0.000 

Kernel PCA 0.000 

 

Based on the p-value, it shows that the data do not follow a 

multivariate normal distribution. If the data do not follow 

the multivariate normal distribution, then the control limit of 

Hotelling’s 2T can be calculate using bootstrap approach. 

Using the principal component of the PCA and the kernel 

PCA, the optimal alpha is needed to get the best results of 

Hotelling’s 2T . 

 

 
Fig. 5.  Hotelling’s T2 accuracy with Linear PCA 

 
Fig. 6.  Hotelling’s T2 accuracy with Kernel PCA 

 

Figure 6 shows that the maximum accuracy is obtained 

with an alpha that is shown in Table 4.  
 

TABLE 4 

OPTIMUM ALPHA 

Data Alpha 

PCA 0.331 

Kernel PCA 0.192 

 

Table 4 shows that the alpha optimum of Linear PCA is 

0.331 and the kernel PCA is 0.192. That alpha will be used 

for the formation of Hotelling’s 
2T  for both Linear and 

Kernel PCA. The Hotelling’s 
2T  control chart of breast 

cancer data using linear PCA and Kernel PCA is shown in 

Figure 7. 

 
Fig. 7.  Hotelling’s T2 control chart with Linear PCA 

 
Fig. 8.  Hotelling’s T2 control chart with Kernel PCA 
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According to Figure 8 the Hotelling’s 2T  capable to 

classify patients with benign and malignant breast cancer. 

The out-of-control point predicts patients with benign breast 

cancer and the in-control point predicts patients with 

malignant breast cancer. Suitability of breast cancer 

classification using Hotelling’s 2T  shown in Table 5. 

 
TABLE 5 

CONTROL CHART PERFORMANCE 

Variables Accuracy Sensi Speci 
F1 

Score 

Balance 

Accuracy 

Linear 

PCA 
0.8348 0.9299 0.675 0.8759 0.8023 

Kernel 

PCA 
0.8963 0.9468 0.811 0.9197 0.8790 

 

Table 5 shows the Hotelling’s 2T  with Kernel PCA has 

better performance than the Hotelling’s 2T  with linear PCA, 

since the Hotelling’s 2T  with Kernel PCA has higher 

accuracy, sensitivity, specificity, F1 score and balance 

accuracy than the Hotelling’s 2T  with linear PCA. 

C. Logistic Regression 

Logistic regression is a type of regression analysis in 

statistics used for the prediction of the outcome of a 

categorical dependent variable from a set of predictor or 

independent variables. In this investigation, logistic 

regression was used as a comparison for the proposed 

method. The The logistic regression performance with linear 

PCA is shown in the confusion matrix in Table 6. 

 
TABLE 6 

LOGISTIC REGRESSION PERFORMANCE WITH LINEAR PCA 

  Benign (0) Malignant (1) Precision 

Benign (0) 343 14 0.92 

Malignant (1) 28 184 0.93 

 

The logistic regression model formed by dimension 

reduction by linear PCA can predict patients with a 

diagnosis of benign by 92% and a diagnosis of malignant by 

93%. 

 

 
Fig. 9.  Logistic regression with linear PCA 

 

Figure 9 shows the grouping results using the logistic 

regression model with the PC generated. There is a 

misclassification for benign and malignant diagnoses. The 

precision of the logistic regression model using the formed 

PCA is 92.62%. Logistic regression performance with 

kernel PCA is shown in the confusion matrix in Table 7. 

 
TABLE 7 

LOGISTIC REGRESSION PERFORMANCE WITH KERNEL PCA  

  Benign (0) Malignant (1) Precision 

Benign (0) 339 18 0.92 

Malignant (1) 30 182 0.91 

 

The logistic regression model formed by dimension 

reduction by linear PCA can predict patients with a 

diagnosis of Benign by 92% and a diagnosis of malignant by 

91%. 

Figure 10 shows the grouping results using the logistic 

regression model with the PC kernel PC. There is a 

misclassification for benign and malignant diagnoses. The 

precision of the logistic regression model using the formed 

PCA is 91.56%. 

D. Comparison of Hotelling’s 2T  with Logistic Regression 

The performance of the Hotelling’s T2 control chart and 

logistic regression is shown in Table 8. 

 
TABLE 8 

METHOD COMPARISON 

Classifier Accuracy 

Hotelling’s T2 0.8963 

Logistic Regression 0.9156 

 

Based on Table 8, the performance of logistic regression is 

better in classifying breast cancer diagnoses compared to 

Hotelling’s T2. These results make sense because the 

function of logistic regression is to classify. Whereas in 

Hotelling’s T2, we use the concept of in-control and out of 

control. However, in predicting the diagnosis of breast 

cancer, the performance of Hotelling’s T2 with an accuracy 

value close to 90% can be said to be good. 

 

 
Fig. 10.  Logistic regression with Kernel PCA 

V. CONCLUSIONS 

Hotelling’s T2 control chart using Kernel PCA performed 

better than PCA to classify benign and malignant breast 

cancer. The accuracy of Hotelling’s T2 using Kernel PCA is 

89.63%. Logistic regression performance is better at 

classifying breast cancer diagnoses compared to Hotelling’s 
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T2 since it has a bigger accuracy. These results make sense 

because the function of logistic regression is to classify. 

Whereas in Hotelling’s T2. We use the concept of in-control 

and out of control. However, in predicting the diagnosis of 

breast cancer. The performance of Hotelling’s T2, with an 

accuracy value close to 90%, can be said to be good. For 

future research, it is recommended to use the Multivariate 

Exponentially Weighted Moving Average (MEWMA) [16]. 
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