
Analyzing Newton’s Method for Solving Algebraic
Equations with Complex Variables: Theory and

Computational Analysis
Ammar Al-Shorman, Mahmood Shareef Ajeel, Kamel Al-Khaled

Abstract—In this work, we give a thorough examination of
Newton’s technique. We show that certain places outperform
others in terms of where a good initial approximation may be
made to assure convergence. Furthermore, to assure quicker
and better convergence, certain criteria must be imposed on
the function, such as dealing with additional terms from the
Taylor series to achieve a technique comparable to Newton’s
method, but with a degree of convergence greater than two. We
compare the use of Newton’s technique for solving equations
with a single variable to the solution of equations with many
variables. While we widen our discussion to include the solution
to complex-valued functions, our primary focus is on locating
the roots of unity. Some new theories have been proven which
is an addition to this topic, and their results are shown in the
examples at the end of the paper. We investigate the incorrect
choice of the starting approximation for the nth root of unity
in the complex plane. When utilizing Newton’s technique on a
complex plane, we employ various stunning fractal graphs to
explain the features and behavior of the roots of interest.

Index Terms—Approximate solutions, Newton’s method,
Complex roots, Fractals.

I. INTRODUCTION

BECAUSE of its usefulness in many mathematical appli-
cations, solving equations, whether linear or nonlinear,

is recognized as one of the fundamentals of mathematics.
One of the simplest is solving nonlinear equations with a
single variable. Although solving nonlinear equations might
be tough, it is not difficult to acquire by grasping the
geometric meaning of it. The same is true for one-variable
nonlinear polynomials. However, analytical solutions are not
always possible in this case, especially when the degree of
the equation exceeds five. Furthermore, there are so many
nonlinear equations in a multi-dimensional variable that
finding solutions is challenging, if not impossible. It is worth
mentioning that for situations for which we have answers,
they provide complicated and lengthy computations, which
are not wanted by the readers. As science progresses and the
hunt for mathematical models for more complicated issues
intensifies, we end up with equations that are frequently
non-linear and difficult to solve. To handle such issues, we
frequently employ iterative numerical algorithms that rapidly
converge to an accurate solution. We describe various well-
known iterative methods for solving nonlinear equations
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in this work, such as Fixed-Point Iteration and Newton’s
approach. In fact, we primarily focus on Newton’s approach
and have made certain improvements to several of its applica-
tions. Newton’s approach is popular because it has a quicker
rate of convergence than other classic iterative procedures,
as long as the function is properly behaved towards the root
and the initial guess is well established. Newton’s approach,
depending on the beginning point, can be convergent or
divergent, and it is indeterminate for critical points (i.e. points
that make the first derivative zero). The approach detects
stable and unstable cyclic values and is sensitive to the
beginning point. As a result, Newton’s dynamic behavior
technique is highly rich, see for example [1], and [2]. The
literature contains several adjustments and improvements to
Newton’s technique [3]–[6]. We’d like to highlight some of
the most recent discoveries in the use of Newton’s approach.
We show that certain places outperform others in terms of
where a good initial approximation may be made to assure
convergence. Furthermore, we highlight a number of earlier
investigations [7]–[11], that investigated the use of Newton’s
technique and its rate of convergence. In this study, we
look at both the pace at which the approach converges
and the asymptotic error. More Taylor series terms will be
considered to obtain a variation of Newton’s technique with
a degree of convergence greater than 2. Newton’s approach
is recognized to be successful in higher dimensions for
solving nonlinear systems of equations [12], It has also been
employed in earlier investigations [13]–[15], and numerous
nice and intriguing outcomes were obtained. The similarities
between single-variable and multi-variable difficulties are a
major focus of this research. Newton’s technique is known
to have a generalization in more than one dimension, where
we may solve a system consisting of two or more equations
by substituting the first derivative with a Jacobian. Because
complex roots are known to exist in pairs, we may consider
generalizing Newton’s one-dimensional approach to obtain
zeros for algebraic equations in a complex system. More
than a century ago, the English mathematician Arthur Cayley
examined this subject for the first time [16], and this issue is
currently being researched, e.g, in [17] and [18]. A detailed
discussion of the relaxed Newton’s approach may be found
in [19], using relaxed Newton’s, we can see various basins
of attraction for the solution of a cubic problem. [20] in-
vestigated the ensuing dynamics when Newton’s approach is
applied to an exponential function. It was also demonstrated
that the basins of attraction of roots have a finite area when
Newton’s technique is employed to compute the complex
plane product of a polynomial and an exponential function.
In [21], the dynamical systems of trigonometric functions
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are investigated, with an emphasis on tan(z) and the fractal
picture formed by iterating the Newton map, ft(z) of tan(z).
[3] discusses the global dynamics of Newton’s approach to
discovering the roots of a polynomial p(z) in one variable.
The behavior of Newton iteration for cubic polynomials is
described by the results of [22], [23]. In [24], Newton’s
approach produced an intriguing and unexpected result when
used to a simple polynomial z3 − 1 = 0 in the complex
plane. The investigation was carried out numerically and
formally to determine how a basic Newton’s method damping
algorithm alters the gravitational basins contained in complex
polynomials. Recently, a new iterative method is presented
of fifth-order for solving non-linear equations [25]. For the
significance of the denominator in Newton’s method, Wu
[26] suggested a second-order converging method for solving
f(x) = 0 in weak conditions. In [27], authors demonstrate
that the secant method with Aitken Extrapolation outper-
forms the Newton-Raphson method in terms of accuracy and
convergence rate. A modified regularized Newton method
for minimizing a convex function was introduced in [28].
A novel iterative method for solving nonlinear algebraic
equations presented in [29].

In this paper, we will look at Newton’s technique for
functions defined in the complex plane, with a focus on
finding roots for f(z) = zn − 1. To discover a solution to
f(z) = 0 for some complex number z as z = x + iy, we
will be able to define f(z) = 0 as F (x1, x2) = 0, where
the real and imaginary portions of f(z) = 0 are f1(x1, x2)
and f2(x1, x2) in real, then, in two dimensions, we employ
Newton’s approach. We shall investigate some of the root
qualities, such as symmetry. On the other hand, what we
will do later is separate the real from the imaginary parts of
the equation expressed in complex space, build a system of
nonlinear equations, and then solve the resultant system using
Newton’s technique. Let us consider the complex valued
functions: f(z) = zn − 1 = 0, where z is the combination
of two real numbers, written as z = x + iy, so we get,
f(x+iy) = (x+iy)n−1 = 0. This leads to the development
of a system of algebraic equations, in which we utilize
Newton’s technique in two dimensions after simplification.
We demonstrate that while both strategies yield the same
amount of iterations, one way has benefits over the other. The
zone of attraction for Newton’s technique shows amazing
fractal behavior in the complex plane. Because of their attrac-
tive symmetric nature, fractal pictures created by Newton’s
approach will be studied. Furthermore, we discuss certain
odd behavior of Newton’s iterations at specific locations. Our
purpose is to explain ideas through the use of images and
tables created with Mathematica.

II. IMPROVEMENTS TO NEWTON’S METHOD

Newton’s approach is widely known to be dependent on
the initial approximation x0. In certain circumstances, we
may begin with an estimate and the procedure may not lead
to the precise root. The following is an example of a graph
that fails to converge:

y = tan−1(x).

This is because this function has a single root at x = 0,
where f ′(0) = 1, and as we travel away from both sides

of the root, the slope reduces and the tangent line does not
lead to zero. To demonstrate, if we start with x0 = 1.5, the
tangent line will pass through the x−axis, yielding our new
approximation x1 = −1.69404. We observe that the distance
between the new approximation x1 and the real zero will be
bigger than the distance between the actual zero and the first
approximation x0. Also, if we start with x1 = −1.69404,
we get the new approximation x2 = 2.32113 and note that
the actual zero distance from the new approximation x2 will
be greater than the distance from the current value x1. For
f(x) = tan−1(x), assume that the region R = [−xc, xc], we
consider three cases,

• If we choose the initial approximation x0 = xc, then
Newton’s method will produce the cycle x1 = −xc,
x2 = xc, x3 = −xc, ....

• If we choose the initial approximation x0, such that
|x0| < xc, then Newton’s method converges to the root
x = 0.

• If we choose the initial approximation x0, such that
|x0| > xc, then Newton’s method diverges.

Now, we analyze the iteration function from equation (14) to
find the point xc when f(x) = tan−1(x). Suppose x0 = xc,
then x1 = −xc, so,

−xc = xc −
f(xc)

f ′(xc)
,

hence,

2xc =
tan−1(xc)

1
1+(xc)2

,

therefor,
(1 + (xc)

2)tan−1(xc)− 2xc = 0.

When we use Mathematica to solve for xc, we obtain
xc = 1.39174. As a result, if we start with xc = 1.39174,
Newton’s approach will provide approximations xc and −xc

in an alternating pattern. The approach will converge for
|x0| < 1.39174 and diverge for |x0| > 1.39174 for any
starting approximation x0. In the following theory, we will
show that it can locate an area around the root, also known as
a region in the basin of attraction. (1), where we can choose
any initial approximation and Newton’s technique will ensure
convergence for the roots.

Definition 1: (Basin of Attraction) If r is a root of f(x),
the basin of attraction of r, is the set of all numbers x0, such
that iterative method’s starting at x0 converges to r.

Theorem 1: Let f : R → R be continuously differentiable
in open interval I ∈ R. Assume that there exists x∗ ∈ R,
and r, β > 0, such that [x∗ − r, x∗ + r] ⊆ I , f(x∗) =
0, f ′(x∗) exists with | 1

f ′(x∗)
| ≤ β, and f ′ ∈ Lipγ([x∗ −

r, x∗ + r]). Then, there exists ϵ > 0, such that for any initial
approximation x0 ∈ [x∗ − r, x∗ + r] the sequence x1, x2,
x3,... generated by,

xk = xk−1 −
f(xk−1)

f ′(xk−1)
, k = 1, 2, 3, ...

is well defined, converges to x∗, and obeys,

|xk − x∗| ≤ β · γ · |xk−1 − x∗|2, k = 1, 2, 3, ... (1)

Proof: We choose ϵ > 0 so that f ′(x) ̸= 0, for any
x ∈ (x∗ − ϵ, x∗ + ϵ), and then show that, since the local
error in the affine model [30] used to produce each iterate of
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Newton’s method is at most O(|xk −x∗|2), the convergence
is quadratic. Let

ϵ = min{r, 1

2βγ
}. (2)

We show by induction on k that at each step (1) holds, and
also that,

|xk − x∗| ≤
1

2
|xk−1 − x∗|,

and so,

xk ∈ (x∗ − ϵ, x∗ + ϵ). (3)

Now, we first show that f ′(x0) ̸= 0. From |xk−x∗| ≤ ϵ, the
Lipschitz continuity of f ′ at x∗, and by (2), it follows that,

|f
′(x0)− f ′(x∗)

f ′(x∗)
| ≤ | 1

f ′(x∗)
||f ′(x0)− f ′(x∗)|

≤ β · γ · |x0 − x∗| ≤ β · γ · ϵ ≤ 1

2
.

Thus, by the perturbation relation (3.1.20) [30], f ′(x0) ̸= 0,
and,

| 1

f ′(x0)
| ≤

| 1
f ′(x∗)

|
1− | 1

f ′(x∗)
[f ′(x0)− f ′(x∗]|

≤ 2 · | 1

f ′(x∗)
| ≤ 2 · β. (4)

Therefore, x1 is well defined, and,

x1 − x∗ = x0 − x∗ −
f(x0)

f ′(x0)

=
1

f ′(x0)
[f(x∗)− f(x0)− f ′(x0)(x∗ − x0)].

Notice that the term in brackets is just the difference between
f(x∗) and the affine model Mc(x) evaluated at x∗. Therefore,
using lemma (4.1.12) in [30] and (4), we get,

|x1 − x∗| ≤ | 1

f ′(x0)
| · |[f(x∗)− f(x0)− f ′(x0)(x∗ − x0)]|

≤ 2 · β · γ
2
· |x0 − x∗|2 = β · γ · |x0 − x∗|2.

This proves (1), and since |x0−x∗| ≤ 1
2·β·γ , so, |x1−x∗| ≤

1
2 |x0−x∗|. Which shows (3), and completes the case k = 0.
The proof of the induction step proceeds identically.
Now, for y = tan−1(x), the interval calculated by
the theorem (1), is [−0.927664, 0.927664]. This means
that, if we start by any initial approximation x0 ∈
[−0.927664, 0.927664], the equation (1) is satisfied, and the
sequence generated by Newton’s method will be converging
to the root ”0”.

Remark 1: We previously showed that the basin of attrac-
tion for tan−1(x) is (−1.39174, 1.39174). But if we apply
the theorem (1), the number of iterations of Newton’s method
to reach the root is less.

III. CUBIC NEWTON’S METHOD

Newton’s method has a maximum quadratic convergence
rate. In this section, we’ll look at how employing more
terms than Taylor’s series accelerates the Newton method’s
convergence. Suppose that f ∈ C3[a, b]. Let x0 ∈ [a, b] be
closed to the root r. Consider the 2nd Taylor’s polynomial
for f(x) about x0,

f(x) ≈ f(x0) + (x− x0) · f ′(x0) +
(x− x0)

2

2!
· f ′′(x0)+

(x− x0)
3

3!
· f ′′′(ξ(x)) (5)

where ξ(x) lies between x and x0. Now, since f(r) = 0,
equation (5) becomes after simplification,

f(x0)+r·f ′(x0)−x0 ·f ′(x0)+(
r2

2
−r·x0+

x2
0

2
)·f ′′(x0) ≈ 0.

(6)
Solving for r, we get,

r ≈ x0 −
f ′(x0)

f ′′(x0)
±

√
(f ′(x0))2 − 2 · f(x0) · f ′′(x0)

f ′′(x0)
(7)

This establishes a parallel with Newton’s approach, which
begins with an initial approximation x0 and for n ≥ 1 creates
the series xn that is equal to:

xn−1−
f ′(xn−1)

f ′′(xn−1)
±
√
(f ′(xn−1))2 − 2 · f(xn−1) · f ′′(xn−1)

f ′′(xn−1)
,

(8)
provided that f ′′(xn−1) ̸= 0, and (f ′(xn−1))

2 ≥ 2 ·
f(xn−1) · f ′′(xn−1). The next theory (2), will discuss how
to increase the order of convergence for Newton’s method.

Theorem 2: Suppose f ∈ C3[a, b]. If r ∈ [a, b], such that
f(r) = 0, f ′′(r) ̸= 0, (f ′(r))2 ≥ 2·f(r)·f ′′(r), and f ′(r) ≥
0. Then, for starting the initial approximation close to r,
Newton’s method for n ≥ 1 generates an xn given by,

xn−1−
f ′(xn−1)

f ′′(xn−1)
+

√
(f ′(xn−1))2 − 2 · f(xn−1) · f ′′(xn−1)

f ′′(xn−1)
,

(9)
will Converge to root ”r”, with an order of convergence 3.

Proof: The proof is based on analyzing Newton’s
method as the functional iteration scheme xn = g(xn−1),
for n ≥ 1, with,

g(x) = x− f ′(x)

f ′′(x)
+

√
(f ′(x))2 − 2 · f(x) · f ′′(x)

f ′′(x)
. (10)

Assume f(r) = 0, f ′(r) ≥ 0, f ′′(r) ̸= 0, and (f ′(r))2 ≥
2f(r)f ′′(r).

Claim: g′(r) = 0 and g′′(r) = 0.
Proof of claim. If we calculate g′(r), g′′(r), and substitute

x = r, we get,

g′(r) =
f (3)(r)f ′(r)

f ′′(r)2
−

f (3)(r)
√
f ′(r)2

f ′′(r)2
.

Easy calculation we can calculate g′′(r), and by the given
f ′(r) ≥ 0, we have g′(r) = g′′(r) = 0, hence, the proof of
claim is done. Now, if g(xn) around r, and min(xn, r) <
ξn < max(xn, r), then,

xn − r = g(xn−1)− g(r) = g′(r)(xn−1 − r)

+g′′(r)
(xn−1 − r)2

2!
+ g′′′(ξn−1)

(xn−1 − r)3

3!
, (11)
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and since, g′(r) = 0, g′′(r) = 0, for xn−1 ̸= r, we have,

(xn − r)

(xn−1 − r)3
=

g′′′(ξn−1)

3!
.

Hence, by theorem (2.3) in [31], the iterative value xn when
n ≥ 1 is given by,

xn−1−
f ′(xn−1)

f ′′(xn−1)
+

√
(f ′(xn−1))2 − 2 · f(xn−1) · f ′′(xn−1)

f ′′(xn−1)
,

(12)
which is order of convergence 3, if g′′′(r) ̸= 0.

A. Numerical Example

We offer an example with analytical answers to demon-
strate the efficiency and rate of convergence of the cubic
Newton’s technique, which we compare to the classic New-
ton’s method’s rate of convergence. We apply our numerical
iterative methods with tolerance 5× 10−4 and maximum 20
iterations.

Example.1. Consider the function

f(x) = x3 − 2x− 1. (13)

The root of this function is x = −0.618034. We obtain the
following tables by using the original Newton’s technique
and the cubic Newton’s method on f(x) = x3 − 2x − 1,
with an initial approximation of x0 = 0.35, to achieve the
root x = −0.618034, and calculating the asymptotic error
constant in both ways.

TABLE I
RATE OF CONVERGENCE FOR ORIGINAL NEWTON’S METHOD IN THE

CALCULATION FOR ROOTS OF f(x) = x3 − 2x− 1.

Original Newton’s Method
n xn f(xn) asymptotic error

constant ”s”
0 0.35 -1.65713
1 -0.665084 0.0359771 0.725192
2 -0.611626 -0.00554931 2.0123
3 -0.617948 -0.0000735944 1.99831
4 -0.618034 −1.37543 ∗ 10−8 2.00163
5 -0.618034 −4.44089 ∗ 10−16

6 -0.618034 0

TABLE II
RATE OF CONVERGENCE FOR CUBIC NEWTON’S METHOD IN THE

CALCULATION FOR ROOTS OF f(x) = x3 − 2x− 1.

Cubic Newton’s Method
n xn f(xn) asymptotic error

constant ”s”
0 0.35 -1.65713
1 -0.34996 -0.342941 2.57728
2 -0.600332 -0.0156949 2.98577
3 -0.618028 −5.54113 ∗ 10−6 2.95846
4 -0.618034 −3.33067 ∗ 10−16

5 -0.618034 0

The numerical findings show that the original New-
ton’s technique quadratically converges to the zero x =
−0.618034, with an approximate asymptotic error constant
s = 2.00163. The cubic Newton’s technique, on the other
hand, converges cubically to x = 0.618034 with an approx-
imate asymptotic error constant of s = 2.95846.

IV. TWO-DIMENSIONAL NEWTON’S METHOD

In sections (I), (II) and (III), we reviewed various strategies
for solving nonlinear equations. Some of these approaches
may also be used to solve nonlinear equation systems. In this
part, we will go over some specifics of Newton’s approach
to solving two-variable systems of equations. We previously
investigated Newton’s method’s iterative formula for solving
nonlinear equations with a single variable f(x) = 0, which
is provided by the following relationship:

xn = xn−1 −
f(xn−1)

f ′(xn−1)
, n ≥ 1. (14)

The Newton iteration approach may be expressed as follows
for the general case of a system of n nonlinear equations
with n unknowns:

x(k) = x(k−1) − J(x(k−1))−1F (x(k−1)), k ≥ 1, (15)

where
x = (x1, x2, x3, ..., xn)

T ,

F (x) = (f1(x), f2(x), f3(x), . . . , fn(x))
T ; fj : Rn → R

, and J(x) is Jacobian matrix of F (x).
Remark 2: For the n-dimensional Newton’s method to

converge to the root, an initial guess near the root should
be chosen, and the Jacobian should be singular.
Consider the following nonlinear equation system:

f1(x1, x2, x3, . . . , xn) = 0
f2(x1, x2, x3, . . . , xn) = 0
f3(x1, x2, x3, . . . , xn) = 0

...
fn(x1, x2, x3, . . . , xn) = 0

Now, when we apply the Newton iteration approach to this
system in the general case, we obtain,
x
(k)
1

x
(k)
2
...

x
(k)
n

 =


x
(k−1)
1

x
(k−1)
2

...
x
(k−1)
n

− (16)



∂f1(x
(k−1))

∂x1
... ∂f1(x

(k−1))
∂xn

∂f2(x
(k−1))

∂x1
... ∂f2(x

(k−1))
∂xn

· · ·
∂fn(x

(k−1))
∂x1

... ∂fn(x
(k−1))

∂xn



−1 
f1(x

(k−1))

f2(x
(k−1))
...

fn(x
(k−1))


If we assume n = 2, we have a two-dimensional system
that necessitates a system of two equations in two variables,
each using a function of the kind fj(x1, x2), j = 1, 2.
Each of the functions represents a three-dimensional surface.
And each equation fj(x1, x2) = 0, j = 1, 2, represents the
intersection of the x1x2-plane with the surface, which is a
curve on the x1x2-plane. As a result, the intersection (s)
of these curves, which indicate the system’s solution, are of
importance to us. To solve a 2×2 system with two variables,
we begin with an initial approximation (x1(0), x2(0)) and
draw a tangent plane to the surface at (x1(0), x2(0)), then
take the intersection of the tangent plane with the x1x2-plane,
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which gives a line or curve. Now, two tangent planes will
generate two lines or curves on the x1x2 plane, and their
intersection will be the next Newton’s method approximation.
This is a geometric analysis of a two-dimensional case.
For mathematical analysis, let’s use the following system of
equations, (

f1(x1, x2)
f2(x1, x2)

)
=

(
0
0

)
. (17)

First, we want to find the tangent planes to the two sur-
faces f1(x1, x2), f2(x1, x2). We get it from the first Taylor
polynomials for a function of two variables around our initial
approximation (x

(1)
0 , x

(2)
0 ), which gives us two functions. We

express the intersection of these surfaces with the x1x2-plane
as the following system of linear equations, which represent
the two lines on the x1, x2-plane:

f1(x1, x2) ≈ f1(x
(0)
1 , x

(0)
2 ) + (x1 − x

(0)
1 )

∂f1(x
(0)
1 , x

(0)
2 )

∂x1

+(x2 − x
(0)
2 )

∂f1(x
(0)
1 , x

(0)
2 )

∂x2
= 0

f2(x1, x2) ≈ f2(x
(0)
1 , x

(0)
2 ) + (x1 − x

(0)
1 )

∂f2(x
(0)
1 , x

(0)
2 )

∂x1

+(x2 − x
(0)
2 )

∂f2(x
(0)
1 , x

(0)
2 )

∂x2
= 0.

The intersection of these lines gives us the new approxi-
mation point (x(1)

1 x
(1)
2 ). Now, by solving these two equations

using MATHEMATICA with respect to x1 and x2, we call x1

and x2 by x
(1)
1 and x

(1)
2 , respectively, and rewrite equations

as matrix form, we obtain,

x
(1)
1

x
(1)
2

 =

x
(0)
1

x
(0)
2

−


f1· ∂f2∂x1

−f2· ∂f1∂x1
∂f2
∂xx

· ∂f1
∂x1

− ∂f2
∂x1

· ∂f1
∂x2

f2· ∂f1∂x1
−f1· ∂f2∂x1

∂f2
∂xx

· ∂f1
∂x1

− ∂f2
∂x1

· ∂f1
∂x2

 , (18)

where, each of the f1, f2,
∂f1
∂x1

, ∂f1
∂x2

, ∂f2
∂x1

, and ∂f2
∂x2

is eval-
uated at (x

(0)
1 , x

(0)
2 ). On the other hand, if we take n = 2

in equation (16), in this case, we apply Newton’s method in
2-dimensions and start with an initial guess (x

(0)
1 , x

(0)
2 ), so

that it is close to the root (x1, x2), and find the inverse and
simplify, we get,

x
(1)
1

x
(1)
2

 =

x
(0)
1

x
(0)
2

−


f1· ∂f2∂x1

−f2· ∂f1∂x1
∂f2
∂xx

· ∂f1
∂x1

− ∂f2
∂x1

· ∂f1
∂x2

f2· ∂f1∂x1
−f1· ∂f2∂x1

∂f2
∂xx

· ∂f1
∂x1

− ∂f2
∂x1

· ∂f1
∂x2

 , (19)

where, each of the f1, f2,
∂f1
∂x1

, ∂f1
∂x2

, ∂f2
∂x1

, and ∂f2
∂x2

is evaluated
at (x

(0)
1 , x

(0)
2 ). By comparing the equation of (18) to the

equation of (19), we notice that we got the same result, which
means that in both (18) and (19) equations we get the same
new approximation point (x(1)

1 , x
(1)
2 ). Also, we note that in

terms of how the new approximation is found, it is clear that
there are some parallels between the one-dimensional and
two-dimensional cases.

V. COMPLEX NEWTON’S METHOD

In previous sections, we looked at Newton’s method for
solving equations in one variable or systems of nonlinear
equations in two dimensions, and all of the roots we dis-
cussed are real. Equations can have complex roots, but we do
know that complex roots occur in pairs if the coefficients of a
polynomial equation are real, with each pair being a complex
conjugate of the other. We shall explore and apply Newton’s
technique to several difficult plane functions. We’ll look at
the well-known zn − 1 = 0 problem. Let’s first analyze the
following problem,

f(z) = z3 − 1. (20)

This function has three roots of unity at, 1,− 1
2 ± i

√
3
2 . Now,

in order to solve the equation (20), we substitute z = x+ iy,
and we get,

(x+ iy)3 − 1 = 0.

After simplifying, we obtain,

(x3 − 3xy2 − 1) + i(3x2y − y3) = 0. (21)

If we separate the real and imaginary parts of the equation
(21) and convert to system 2× 2, we get,[

x3 − 3xy2 − 1
3x2y − y3

]
=

[
0
0

]
. (22)

By looking at the system (22), we note that this system can
be solved by the same method as the system (17). On the
other hand, if we want to solve the equation (20), we can
use Newton’s method in the complex plane, which is given
by the following,

zn = zn−1 −
f(zn−1)

f ′(zn−1)
, n ≥ 1. (23)

We aim to see if solving the equation (20) by Newton’s
method, and solving the system (22) by equations (18), give
the same result. Let’s begin, if we apply Newton’s method
on the function f(z) = z3 − 1, when z0 = 3, and z0 = i,
we get,

TABLE III
NEWTON’S METHOD IN THE CALCULATION FOR ROOTS OF

f(z) = z3 − 1.

n znstart”3” f(zn) zn start ”i” f(zn)
0 3 26 i -1-i
1 2.03704 7.4527 -0.33333+0.66667i -0.59259-0.07407i
2 1.43836 1.9758 -0.58222+0.92444i 0.2933+0.1501i
3 1.12002 0.7050 -0.5088+0.8682i 0.019+0.020i
4 1.01240 0.0377 -0.5001+0.8660i 0
5 1.00015 0 -0.5+0.866i 0
6 1 0 -0.5+0.866i 0

On the other hand, we want to use equation (18) to solve
the system (22). In this case, we need values of x(0) and
y(0) until this system is resolved, but we can convert z0 = 3
into z = (3, 0), hence, x(0) = 3 and y(0) = 0. Similarly, for
z0 = i, we obtain x(0) = 0, and y(0) = 1. In the end, we get
the following numerical results,

According to Tables (III) and (IV), these two strategies
provide identical estimates at each repetition. Similarly, for
any n, these two strategies produce the exact identical ap-
proximations to the equation zn−1 = 0. Newton’s approach,
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TABLE IV
NUMERICAL RESULTS FROM THE USE OF EQUATION (18) TO SOLVE THE

SYSTEM (22).

n x(n) y(n)zn x(n) y(n) zn
0 3 0 0 1
1 2.03704 0 (2.03704,0) -

0.33333
0.66667 (-0.3333, 0.6667)

2 1.43836 0 (1.43836,0) -
0.58222

0.92444 (-0.5822, 0.9244)

3 1.12002 0 (1.12002,0) -0.5088 0.86816 (-0.5088, 0.8681)
4 1.01240 0 (1.01240,0) -0.5001 0.86598 (-0.5001, 0.8659)
5 1.00015 0 (1.00015,0) -0.5 0.86602 (-0.5, 0.8660)
6 1 0 (1,0) -0.5 0.86602 (-0.5, 0.8660)

on the other hand, provides a straightforward manner of
computing estimates because it works with a single variable.

Remark 3: When applying Newton’s technique to the
complex-valued function f(z) = z3−1, the numerical results
show that if we start with a real initial guess, the iterative
converges to the real root of f(z), and if we start with a
complex initial guess, the iterative converges to the complex
root of f(z).

Since Newton’s way of solving the equation (20) is equal
to solving the system (22) by equation (18), we infer that
the beginning values cause the Jacobian to be singular, and
it is the same early approximations that cause Newton’s
approach to fail. So, for Newton’s application to the function
f(z) = z3 − 1, the beginning approximations that cause
Newton’s method to diverge are z0 = 0, and all the initial
approximations that, if we start with it, cause Newton’s
method iterations to go to zero. The number of these starting
places is now unlimited. Let’s have a look at some of
them. Now, if we apply Newton’s method on the function
f(z) = z3 − 1, we get,

zn = zn−1 −
(zn−1)

3 − 1

3(zn−1)2
, (24)

simplifying and renaming, we get,

l(z) =
2(z)3 + 1

3(z)2
. (25)

Now, we put l(z) = 0, and solve with respect to z, we
get,

z = {− 3

√
1

2
,

2
2
3

4
− i

2
2
3

√
3

4
,

2
2
3

4
+ i

2
2
3

√
3

4
}. (26)

These are the values that lead Newton’s iterations to go to
zero, and if we keep doing this, we get an interesting figure,
(see Figure 1).

When we look at Figure 2, we can see that all of the
black dots are the points if either is picked as the first ap-
proximation point for Newton’s iteration approach. Newton’s
approach will not work. We can observe that the nearby
points surrounding each of the roots of unity are unaffected.
Choosing a starting estimate close to one of the roots should
result in a convergent Newton’s technique. In reality, the
basins of attraction are the areas where Newton’s technique
converges for the roots of unity. Let us now display a colorful
graphic representing the basins of attraction for all the roots
of the equation z3 − 1, where each color indicates the zone
of attraction for one of the roots, (see Figure 2).

Fig. 1. The fractal image for values that lead Newton’s iterations to go to
zero.

Fig. 2. Newton’s basins of attraction for f(z) = z3 − 1 in C.

In this image, cumin represents the basin of attraction for
the root of unity 1, burgundy represents the basin of attraction
for the root of unity − 1

2 − i
√
3
2 , and dark navy represents

the basin of attraction for the root of unity − 1
2 + i

√
3
2 .

We may identify three major zones divided by lines. Each
main area is shown by a distinct hue, indicating that each
root of unity has a primary basin of attraction. The fractal
behavior occurs around a line that bisects the angle produced
by two subsequent lines having roots, which is an intriguing
discovery. This is understandable because we can expect the
complement of a fractal graph to be fractal. One interesting
observation is that the fractal behavior happens near or
around a line (we can imagine three axes through origin
around/near which all the fractal phenomena are happening
and also the pre-images are distributed near and around these
axes), which bisects the angle between two consecutive lines
that contain roots. Let’s name these fictitious axes as axes of
pre-images. This phenomenon holds for all values of n > 2.
In addition to that it seems from Fig. 2 that the axis of pre-
images can be found by rotating the root-containing line by
π radians. In actuality, the angle between two consecutive
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lines drawn from the origin to each root of zn − 1 = 0 is
2π
n . To demonstrate the concept, we’d like to provide some

photographs of the roots’ basin of attraction for the equation
zn − 1 = 0. Also, as seen in the diagrams, the angle formed
by two successive lines will equal 2π

n . Let’s take a theoretical
approach to this problem. To get the angle between two
successive lines, we may express the equation f(z) = zn−1
in polar form.

Fig. 3. Newton’s basins of attraction for f(z) = z4 − 1 in C.

Fig. 4. Newton’s basins of attraction for f(z) = z5 − 1 in C.

zn = 1 = cos(0) + i sin(0), (27)

hence,

zn = cos(0 + 2πk) + i sin(0 + 2πk), k = 0, 2, 4, ... (28)

Fig. 5. Newton’s basins of attraction for f(z) = z6 − 1 in C.

Taking nth root for equation (28) on both sides, we get,

z = (cos(2πk) + i sin(2πk))
1
n . (29)

Using De Moivre’s theorem [32], and Euler’s formula, we
obtain,

z = cos(
2πk

n
) + i sin(

2πk

n
) = e

i2πk
n , k = 0, 2, 4, ..., 2n.

(30)
But we also know that can written z as,

z = reiθ. (31)

So, by comparing equations (30) and (31), the angle each
two consecutive lines is,

θ =
2π

n
. (32)

Remark 4: If we use Newton’s approach to solve zn−1 =
0 and choose the beginning estimate on the line that divides
the angle between two subsequent roots, all iterations will
stay on the same line until they converge to the root, if one
exists on the line.

Newton’s method iteration function for zn − 1 = 0 may
be expressed as,

g(z) = z − zn − 1

nzn−1
=

(n− 1)zn + 1

nzn−1
=

(n− 1)zn + 1

nzn
· z.
(33)

Assume z = x+iy is the initial guess. Now, z can be written
as a Euler’s form, that is,

z = r(cos(θ) + i sin(θ)) = reiθ.

So, putting z = reiθ in equation (33), we get,

g(z) =
(n− 1) · rn · einθ + 1

n · rn · einθ
· z. (34)
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Any point on the lines has r · e icπ
n , for c = 1, 2, ..., 2n. So

θ = cπ
n , and hence, the equation (34) becomes,

g(z) =
(n− 1) · rn · eicπ + 1

n · rn · eicπ
· z. (35)

Now, if c is odd, then eicπ = −1, and equation (35) becomes,

g(z) =
(n− 1) · rn · (−1) + 1

n · rn · (−1)
· z = Real number ∗ z.

(36)
If c is even, then eicπ = 1, and equation (35) becomes,

g(z) =
(n− 1) · rn · (1) + 1

n · rn · (1)
·z = Real number ∗ z. (37)

From equations (36) and (37), we can conclude that, itera-
tions do not deviate from the line that runs through the origin.
From the above, we can say that we have reached the proof
of the following theorem.

Theorem 3: Iterations do not move away from the line
if we select an initial approximation on any of the axes of
preimages of a line that has a root of zn − 1 = 0.
Before we conclude, we’ll examine at an intriguing finding
made when Newton’s technique is applied to the nth roots
of unity. We know that Newton’s approach has been much
improved. Among these enhancements is the following rela-
tionship:

xn = xn−1 −
kf(xn−1)

f ′(xn−1)
, n ≥ 1, k ∈ R. (38)

If we set k = 1, we get the classic Newton’s approach. We
wish to know the effect of the number k on the basin of
attractions for roots of unity using fractal pictures. We can
see from the fractal pictures that the greater the value of k,
the smaller the basins of attraction to the roots of unity are.
Check out the fractal figures below for confirmation:

Fig. 6. Newton’s basins of attraction were modified for f(z) = z3 − 1
when k=0.1.

Fig. 7. Newton’s basins of attraction were modified for f(z) = z3 − 1
when k=1.5.

Fig. 8. Newton’s basins of attraction were modified for f(z) = z3 − 1
when k=2.

VI. CONCLUSIONS

The convergence of Newton’s technique is generally
known to be strongly reliant on the starting approximation.
In the issue y = tan−1(x), we observed that the approach
may fail to converge for some unsatisfactory beginning
approximations. One of the aims of this research was to find
an area where, under particular conditions, if the starting
approximation is picked from it, Newton’s technique con-
verges to the root. Higher-order convergence is feasible with
Newton’s approach. We used the second Taylor polynomials
in one dimension to demonstrate that Newton’s technique
will converge cubic, with constraints that may be applied to
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the function f(x) and its derivatives. We have demonstrated
theoretically and quantitatively that the approximation ob-
tained by utilizing the first-order Taylor polynomial in two
dimensions is identical to the approximation obtained by
Newton’s technique for two variables. Finally, we looked
at Newton’s technique for functions with complex values.
We demonstrated that using Newton’s approach, for complex
z, solving f(z) = 0 is equivalent to solving the system
F (x, y) = 0, in which the real and imaginary components
of f(z) form a system of two equations f1(x, y) = 0 and
f2(x, y) = 0. We can also see that using Newton’s method
to solve f(z) = 0 simplifies the computations. Figures show
the basin of attraction of the roots produced by Newton’s
technique, from which we may deduce the following:

1) The attraction basin has fractal borders and chaotic
activity.

2) The modified Newton’s approach produces darker
basins of attraction than Newton’s method.

3) Graphs of fractal patterns show that the improved
approach is more successful since it converges to the
root faster.

4) We analyzed Newton’s method for complex valued
functions. We have shown analytically that solving
f(z) = 0 for complex z is exactly the same of solving
the system F(x; y) = 0.

5) We investigated where in the complex plane we could
get bad initial approximations for the well-known n-
th root of unity problems. We observed a fractal
distribution of points in the complex plane.

6) Finally, we discovered that if we choose an initial
approximation on any of the axes of preimages of the
origin or a line that contains a root of the function
zn − 1 = 0, the iterations do not move away from the
line.

Future research will compare the basins to regions of
convergence resulting from Newton’s method convergence
theorems.
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