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Abstract—We present an innovative approach to deep learn-
ing server infrastructure, emphasizing the importance of con-
tinuous service availability and efficiency. The model features
a single server managing two distinct service phases: model
training and model inference, each with separate queues. In
the event of a server failure, a standby server seamlessly
takes over, ensuring uninterrupted service. We also incorporate
structured maintenance cycles which is mentioned as single
vacation state, to optimize system reliability through server
maintenance and enhancements. The research mainly focuses
on transient numerical results, presenting a solution to the
challenge of continuous service availability in the fast-evolving
field of deep learning.

Index Terms—Two Phase Queueing Model, Server Failure,
Standby Server, Single Vacation, Deep Learning.

I. INTRODUCTION

IN the era of deep learning, the demand for real-time
model training and inference services has grown

exponentially. The rapid advancement of deep learning has
led to increased demands for robust server systems capable
of efficiently managing the two primary phases of deep
learning: model training and inference. Deep learning has
revolutionized various domains, from natural language pro-
cessing to computer vision. However, the dependence on
deep learning models involves a server infrastructure that can
effectively handle potential periods of unavailability caused
by many sources.

In our proposed work, we have implemented an application
utilizing a single server queueing model. For a real-life sce-
nario, we have incorporated features such as server vacation
and server breakdown, complemented by a standby server.
Our model considers a single server that serves two phases of
service with a single vacation. Once the system has become
empty and has completed the ongoing service, the server
commences a vacation. After the vacation ends, if the system
is empty then the server remains idle and ready to serve
new incoming customers. Upon returning from vacation, if
the server finds that the system is not empty then the server
swiftly returns to its regular service rate. This particular type
of vacation is commonly referred to as a single vacation.
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Ye and Liu [27] studied a single server Markovian arrival
process queueing system taking repairs and malfunctions
into account. The threshold N -policy for a bulk queueing
system with an unstable server and vacations was studied
by Sharma [19]. Additionally, Singh et al. [20] used the
generating function method to study a queueing model with
vacation and to derive a variety of performance indicators.
Wang’s model was expanded to an N-policy for a two phase
queueing system by Wang et al. [26], who concentrated
on a single-arrival Erlangian service duration with an un-
stable server. Numerous authors have conducted in-depth
research on queueing models that consider server vacations,
as demonstrated by the publications of [6], [9], and [16].
Likewise there are several authors analysed the queueing
model with server breakdown and its flexibility in [8], [13],
[14] and [15].

Based on the field of queueing model, there is a wealth of
literature, including both survey publications and books, that
provide well-established practical examples for scenarios in-
volving backup servers during server vacations and queueing
models where servers are susceptible to failures and main-
tenance. Kolledath’s survey paper [10] explored into various
types of standby models, offering a comprehensive overview
of the subject. An examination of a bulk service queueing
model with two phases of heterogeneous service, a single
primary server, a backup server, and early failures happening
during several vacations was carried out by Ayyappan et al.
[2]. The complicated dynamics of queueing systems with
backup servers and several service phases are investigated
in this study. The work of Padma et al. [17] focuses on a
queueing model with C server and finite capacity which takes
into consideration the server startup processes and considers
two phases of operation without gating. The study explores
the details of this particular queueing arrangement, offering
perceptions on the behaviour and performance of the system.

Kumar and Soodan studied the queueing model with
Transient numerical analysis using Runge-Kutta method
and provided the numerical solutions [11]. Sudhesh and
Vaithiyanathan [22] discussed a queue with single-server,
where the arrival process is time-dependent, and they also
considered server rates in the context of constant catastrophe
rates. In their 1991 study, Zhang and Coyle [28] examined
a queueing model without balking and catastrophes. They
reported the computational solution of the Volterra integral
equation via the Runge-Kutta algorithm and derived the
boundary probability function in the form of a second-kind
Volterra integral equation [4]. Singh and Gupta [5] obtained
the time-dependent and steady-state solutions explicitly, in
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their analysis. Jain and Singh [7] focused on the transient
model with feedback queue, incorporating elements of disas-
ters and discouragement within the system dynamics, while
also considering time-independent parameters. Wagle [25]
studied the time-depedent three server queueing model and
provided transient solution for finite capacity. Recently, two
phase queueing model has been analysed with vacation and
server failure by [23] and [29] respectively.

A Q-learning technique was used in [21] to improve
upon the maximum dropout probability computation method,
leading to decreased sensitivity to parameters and increased
overall network performance. Similarly, to enhance network
performance, a unique active queuing management technique
based on learning through reinforcement was presented in
[24]. For active queuing management, a queueing network
approach was investigated in [1]. Regarding machine learn-
ing, models are trained using a large dataset of system inputs
and corresponding outputs, as discussed in [12] and [30]. In
the context of queuing network models for software systems,
which are often used to predict transaction response times
under growing workload demands, these models assist in
estimating the additional computing resources needed, as
indicated in [3]. In [18], the application of deep learning in
the context of two-phase service was discussed concerning
private data.

The seamless integration of the training and inference
stages in neural networks is essential for the development
of artificial intelligence in the rapidly changing arena of
deep learning. This complex infrastructure that effectively
manages these two crucial phases as well as ensuring con-
tinuous service, efficient maintenance, and strong parameter
sensitivity. Our work takes a fresh and inventive approach
that combines theoretical clarity with practical relevance,
as it sets out on a mathematical journey that serves as the
foundation for a deep learning server infrastructure.

This paper begins with practical application overview in
Section II. In section III, we elaborate on the mathematical
model, and provide a comprehensive explanation of the
transient equation along with its notations and dedicated to
the transient numerical method in section IV. In section V,
we examine various system performance measures. Finally
the conclusion is presented in VI.

II. PRACTICAL APPLICATION

In deep learning, training and inference are two distinct
phases of neural networks. Training encompasses the process
of optimizing a neural network’s parameters by exposing it
to a dataset, facilitating the model to learn. On the other
hand, inference pertains to the utilization of the trained model
to generate predictions shown in Figure 1. Let’s see how
this example aligns with the provided scenario. Consider a
practical application in image classification, particularly in
determining whether an image contains a car or not. This
example underscores the efficiency and real-world relevance
of our infrastructure.

In phase 1, known as Model Training, customers submit
datasets and training configurations. The server is entrusted
with the task of training deep neural networks using the
provided data and configurations. This phase is pivotal for

model development and optimization. During the Model
Training phase, our customers submit extensive datasets
containing a diverse range of images, some featuring cars and
others devoid of any automotive presence. The server takes
on the monumental task of training deep neural networks
to recognize and classify these images accurately. Through
rigorous optimization and learning processes, the neural
networks refine their parameters, ultimately becoming adept
at discerning car-related features within images. This phase
is critical for the development and optimization of the car
detection model.

During phase 2, referred to as Model Inference, customers
provide the data they wish to process using the pre-trained
models. The server proficiently manages inference tasks,
generating predictions or executing specific operations based
on the models that were trained earlier. This phase holds par-
ticularly importance for real-time applications and decision-
making. During the transition to the Model Inference phase,
customers submit real-time image data, which may or may
not contain cars, seeking prompt classification results. The
server, having seamlessly shifted from the training phase,
is now fully capable of processing these inference tasks. It
leverages the knowledge gained during training to make ac-
curate predictions, swiftly determining whether the submitted
images indeed feature cars or not.

Furthermore, our framework includes a standby backup
server ready to take over in the event of an unexpected
problem with the main server such as hardware failure,
software failure, loss of network connectivity, power outages
etc. This redundancy assures continuous service availability,
which improves the dependability of car image classification.
Given the practical implications of detecting cars in photos
quickly, the backup server is critical in this scenario. After
completing the model training in phase one, the server
effortlessly moves to phase two, where it handles inference
tasks effectively. It uses trained models to process customer’s
data, ensuring a smooth transition between phases.

Essentially, during moments when there are no customer
requests in either the training or inference queues, be it in
phase 1 or phase 2, the primary server or, if applicable,
the active backup server, undergoes a designated single
vacation period. This interval presents an opportunity for
various tasks such as system maintenance, model updates,
and optimization of deep learning frameworks. After this
period, the server returns to an busy state.

Upon re-entering the busy period, if customers have data
to process or require model updates, the server promptly re-
sumes service. Conversely, in the absence of active customer
requests, it remains idle, awaiting new tasks to be submitted.

Our deep learning server infrastructure excels in this
transition. With the short duration, it shifts from training
to inference, showcasing its adaptability and responsiveness.
The stability achieved in this transition ensures that car
detection results are consistently reliable. This efficiency is a
testament to the seamless integration of the two phases and
the robustness of our infrastructure.

In this example, the efficiency and reliability of our
deep learning server infrastructure shine through queueing
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Fig. 1. Pictorial representation of Queueing-based Deep Learning Service Infrastructure

analysis in the below context, demonstrating its ability to
seamlessly transition from training to inference and reliably
classify images based on the presence of cars. The same
principles apply to other deep learning applications, making
our infrastructure a valuable asset in the realm of artificial
intelligence.

III. MATHEMATICAL MODEL DESCRIPTION

We examine a queuing model for a single server that has
two service phases in series with single vacation, standby
server, server failure, and repair. The server provide service
to each customer separately with limitless capacity in both
phase 1 and phase 2.

• Customers arrive at a rate λ according to a Poisson
process. Each customer enters and goes through two
phases. The customer waits for service for an arbitrary
period of time in phase 1, which is exponentially
distributed at rate µ1.

• Upon completing phase 1, the customer proceeds to
phase 2 and the service time is exponentially distributed
with rate µ2.

• After completing the service, if the system is empty,
then the server goes on a single vacation. At that
moment, if any customer arrives, they will queue up
in phase 1. The duration of vacation is modelled with
an exponential distribution with a rate of ϕ.

• While providing service, the server may experience
unexpected failure with a rate of γ. In this case, the
standby server instantly takes the control of the service,
although at a lower rate of θµ1 for phase 1 and θµ2 for
phase 2, where 0 < θ < 1. Note that there is no chance
of the standby server fail.

• The standby server’s service is promptly taken up by the
main server after a repair with rate ω is finished. The

server failure time, service time of the standby server,
repair time are exponentially distributed.

Let Fx(t) denote the number of customers in phase x at
time t where x = 1, 2. Let S(t) denotes the states of the
server at time t. Let’s assume the following system states:

S(t) =


0, the main server is busy
1, the main server is under failure and

the standby server is on progress
2, the main server is on vacation

The system can be formulated as {F1(t), F2(t), S(t) :
t ≥ 0} with a state space

Ω = {(i, j, s) : j ≥ 0; s = 0, 1} ∪ {(i, 2)} for i ≥ 0

IV. TRANSIENT EQUATIONS AND ANALYSIS

We describe the probabilities Pi,j,s(t) at time t using the
following notations:

• P0,0,0(t) - Probability that the server is idle.
• Pi,j,0(t) - Probability that there are i customers in phase

1, j customers in phase 2 and the server is busy.
• Pi,j,1(t) - Probability that there are i customers in phase

1 and j customers in phase 2, the server is under failure
and standby server takes over the service.

• Pi,2(t) - Probability that there are i customers in phase
1, no customer in phase 2 and the server is under single
vacation.
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The transient equations of the model are

P ′
0,0,0(t) = −(γ + λ)P0,0,0(t) + ϕP0,2(t)

+ ωP0,0,1(t), i, j = 0 (1)
P ′
i,0,0(t) = −(λ+ µ1 + γ)Pi,0,0(t) + µ2Pi,1,0(t)

+ ωPi,0,1(t) + λPi−1,0,0(t)

+ ϕPi,2(t), i ≥ 1; j = 0 (2)
P ′
0,j,0(t) = −(λ+ µ2 + γ)P0,j,0(t) + µ1P1,j−1,0(t)

+ µ2P0,j+1,0(t) + ωP0,j,1(t), i = 0; j ≥ 1 (3)
P ′
i,j,0(t) = −(λ+ µ1 + µ2 + γ)Pi,j,0(t)

+ µ1Pi+1,j−1,0(t) + µ2Pi,j+1,0(t)

+ λPi−1,j,0(t) + ωPi,j,1(t), i, j ≥ 1 (4)
P ′
0,0,1(t) = −(ω + λ)P0,0,1(t) + γP0,0,0(t), i, j = 0 (5)

P ′
i,0,1(t) = −(λ+ θµ1 + ω)Pi,0,1(t) + θµ2Pi,1,1(t)

+ γPi,0,0(t) + λPi−1,0,1(t), i ≥ 1; j = 0 (6)
P ′
0,j,1(t) = −(λ+ θµ2 + ω)P0,j,1(t)

+ θµ1P1,j−1,1(t) + θµ2P0,j+1,1(t)

+ γP0,j,0(t), i = 0; j ≥ 1 (7)
P ′
i,j,1(t) = −(λ+ θµ1 + θµ2 + ω)Pi,j,1(t)

+ θµ1Pi+1,j−1,1(t) + θµ2Pi,j+1,1(t)

+ λPi−1,j,1(t) + γPi,j,0(t), i, j ≥ 1 (8)
P ′
0,2(t) = −(λ+ ϕ)P0,2(t) + µ2P0,1,0(t)

+ θµ2P0,1,1(t), i = j = 0 (9)
P ′
i,2(t) = −(λ+ ϕ)Pi,2(t)

+ λPi−1,2(t), i ≥ 1; j = 0 (10)

with the initial state probabilities given by P0,0,0(0) = 1,
Pi,j,s(0) = 0 ∀ i = 0, j ≥ 1, s = 0, 1, Pi,j,s(0) = 0 ∀
i ≥ 1, j = 0, s = 0, 1, Pi,j,s(0) = 0 ∀ i ≥ 1, j ≥ 1, s = 0, 1
and Pi,2(0) = 0 ∀ i ≥ 0.

Considering the difficulty of explicitly getting an analytical
solution for our proposed model, we use the fourth-order
Runge-Kutta method to derive the transient solution. The
numerical findings for the transient analysis are computed
using the ode45 function in the MATLAB software.

V. PERFORMANCE MEASURES

We evaluate the system behaviour based on the following
performance measure.

• Mean System Size

Ls(t) =
N∑
i=0

N∑
j=0

i(Pi,j,0(t) + Pi,j,1(t)) +
N∑
i=0

iPi,2(t)

• Probability that the server is busy

Pb(t) =
N∑
i=0

N∑
j=0

Pi,j,0(t)

• Probability that the server is under failure and standby
is on progress

Ps(t) =
N∑
i=0

N∑
j=0

Pi,j,1(t)

• Probability that the server is on vacation

Pv(t) =
N∑
i=0

Pi,2(t)

VI. COST ANALYSIS

We demonstrate the cost per unit time spent on various
operations as follows in order to evaluate the total cost, which
includes numerous cost elements per unit time:

• Ch: The holding cost for each customer in the system.
• Cb: The system’s operating expenses while it is in busy.
• Cs: The system’s operating expenses while it is in fail-

ure state and provides service through standby server.
• Cv: The system’s operating expenses while it is on

vacation.
• Cr: Cost associated with the repairing of the main

server.
• Cx: Main server expenses on phase x service for a

customer where x = 1, 2.
• Cy: Standby server expenses on phase y−2 service for

a customer where y = 3, 4.
So, the Total Cost (TC) at time t is obtained as

TC(t) = Ls(t)Ch + Pb(t)Cb + Ps(t)Cs + Pv(t)CvωCr+

+ µ1C1 + µ2C2 + θµ1C3 + θµ2C4

VII. NUMERICAL ANALYSIS

In this work, we present a comprehensive analysis of our
deep learning server infrastructure through graphical repre-
sentations. We illustrate the transient behavior of the model
using a numerical example with the following parameter
values: λ = 1.5, µ1 = 2, µ2 = 2.5, θ = 0.4, γ = 1.5,
ω = 2, ϕ = 3.

The transient probabilities estimated using the Runge-
Kutta method for a specific time t = 1 and capacity N = 6
for the numerical purpose are shown in Table I. These
computed probabilities of the system being in different states
at the specified time. By summing the transient probabilities
for all states, we find that the total probability is precisely
one, thereby confirming the precision and effectiveness of the
proposed model. This finding supports the reliability of the
Runge-Kutta method and the model’s ability to accurately
capture the system’s time-dependent behavior.

Further numerical work, we have truncate the system with
finite capacity for N = 4 and for N = 6. We have compared
the results of mean system size for those capacity levels.

In Figures 2, 3, 4, and 5, we provide plots that depict the
probabilities over time. These figures reveal a common trend
where the probabilities initially rise before reaching a stable
state. Particularly noteworthy is the probability Pi,j,s(t),
which exhibits a distinct pattern of having its highest value
at the outset and subsequently undergoing a gradual decline
before stabilizing. This behavior is attributed to the system’s
initial condition, specifically P0,0,0(0) = 1.

Furthermore, in Figures 6, 7, 8, 9, 10, and 11, we illustrate
the evolution of mean system sizes over time across a
spectrum of parameter values, including λ, µ1, µ2, γ, ω, and
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TABLE I
PROBABILITES OF Pb(1), Ps(1) AND Pv(1).

j

i
0 1 2 3 4 5 6 Total

Pb(1)

0 0.1042000000 0.1215340884 0.0918100341 0.0516503017 0.0230746362 0.0085534696 0.0035992692 0.4044217992

1 0.0479985384 0.0400028026 0.0238079295 0.0110066020 0.0041639476 0.0014484350 0.0003506319 0.1287788870

2 0.0112386401 0.0078273882 0.0039116130 0.0015482146 0.0005236764 0.0001433123 0.0000291033 0.0252219479

3 0.0016765464 0.0010076333 0.0004352794 0.0001522711 0.0000440004 0.0000103347 0.0000017714 0.0033278367

4 0.0001727676 0.0000911938 0.0000347859 0.0000106491 0.0000026893 0.0000005483 0.0000000804 0.0003127144

5 0.0000129673 0.0000060907 0.0000020515 0.0000005542 0.0000001231 0.0000000220 0.0000000028 0.0000218116

6 0.0000008537 0.0000003209 0.0000000931 0.0000000221 0.0000000043 0.0000000007 0.0000000001 0.0000012949

Ps(1)

0 0.0630000000 0.0848632671 0.0682819696 0.0396824737 0.0180694032 0.0067715706 0.0028959513 0.2835646355

1 0.0298124691 0.0275996736 0.0171610792 0.0081291266 0.0031216132 0.0010793981 0.0002910259 0.0871943857

2 0.0064223670 0.0049353444 0.0025775316 0.0010463735 0.0003568307 0.0001012142 0.0000227310 0.0154623924

3 0.0008578633 0.0005676529 0.0002567180 0.0000919545 0.0000272358 0.0000066883 0.0000012694 0.0018093822

4 0.0000784549 0.0000455358 0.0000181822 0.0000057408 0.0000014972 0.0000003214 0.0000000523 0.0001497846

5 0.0000052106 0.0000026867 0.0000009507 0.0000002662 0.0000000615 0.0000000116 0.0000000016 0.0000091889

6 0.0000003145 0.0000001273 0.0000000387 0.0000000095 0.0000000019 0.0000000003 0.0000000000 0.0000004922

Pv(1)

0 0.0327335590 0.0117672209 0.0037798555 0.0010829112 0.0002776840 0.0000640926 0.0000133978 0.0497187210

Total 1.0000000000

ϕ. These figures depict how the mean system size evolves
from an initial state and gradually converges to a stable value
over time.

In Figure 6, we fix the parameters as µ1 = 2, µ2 = 2.5,
θ = 0.4, γ = 1.5, ω = 2, ϕ = 3 and it indicates that
as the parameter λ increases, there is a corresponding rise
in the mean system size. This happens because when more
customers enter the system, the overall system size increases.

For both Figures 7 and 8, we fixed the parameters as λ =
1.5, θ = 0.4, γ = 1.5, ω = 2 and ϕ = 3. From Figure
7, it becomes evident that the mean system size exhibits an
upward trend with a decrease in the parameter µ1 for the
fixed value of µ2 = 2.5. Similarly, in Figure 8, a decrease in
the parameter µ2 is associated with an increase in the mean
system size for fixed value of µ1 = 2.

Furthermore, for Figures 9 and 10, the fixed parameters
values are λ = 1.5, µ1 = 2, µ2 = 2.5, θ = 0.4 and
ϕ = 3. In Figure 9, an observed escalation in the mean
system size aligns with an increase in the server failure rate
γ with ω = 2. This relationship is explained by the system
experiencing server failure more frequently, causing delays
in processing input data and potentially coinciding with new
arrivals, thereby contributing to the overall increase in the
mean system size.

In Figure 10, an increase in the repair rate ω is associated
with a decrease in the mean system size with γ = 1.5. This
implies that as the repair rate rises, the main server undergoes
faster repairs and returns to the busy period more swiftly.
Consequently, the server transitions back to regular service
rates, leading to a reduction in the mean system size with

higher repair rates.

In Figure 11, we fix the parameter values as λ = 1.5,
µ1 = 2, µ2 = 2.5, θ = 0.4, γ = 1.5, ω = 2 and a
notable observation is that the mean system size is higher
for a vacation rate of ϕ = 1.5 compared to ϕ = 3.5. This
trend is logical considering that an increasing vacation rate
implies shorter duration of server inactivity. Consequently,
the main server returns to the busy period more rapidly as
the vacation duration decreases, corresponding to an increase
in the rate. This, in turn, results in a higher mean system size
for a smaller vacation rate.

Figure 12 shows how the service rates in phase 1 and phase
2 affect the mean system size. To assess this, we keep other
factors constant at N = 4, λ = 1.5, θ = 0.4, γ = 1.5, ω = 2,
and ϕ = 3. When both phases have equal high service rates,
the system size decreases. Likewise both phases have equal
and lower service rates makes the mean system size higher.
If the service rate µ1 in phase 1 is higher than the service
rate µ2 in phase 2 (i.e., µ1 > µ2) , it leads to a larger system
size, meaning customers in phase 1 receive service quickly,
but overall service is slowed by phase 2.

Conversely, when µ2 > µ1, the system size is smaller,
indicating that faster service in phase 2 reduces the overall
system size. The system then switches back to phase 1
promptly, serving waiting customers there. This aligns the
decrease in mean system size.
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Fig. 9. Time Vs Mean system size for various γ
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Fig. 10. Time Vs Mean system size for various ω
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Fig. 11. Time Vs Mean system size for various ϕ
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Fig. 12. Time Vs Mean system size for various µ1 and µ2

TABLE II
TC FOR VARIOUS VALUES OF λ WITH RESPECT TO TIME t

λ

t
2 4 6 8 10

1.0 537.7336 554.3275 565.0020 571.0240 574.3321

1.5 558.5157 588.1881 603.8361 611.3473 614.6467

2.0 580.0650 617.2947 632.0076 636.8175 637.4237

2.5 600.6411 638.6240 648.6727 649.6222 651.6636

3.0 618.9546 652.5943 657.4704 658.6470 659.2899
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TABLE III
TC FOR VARIOUS VALUES OF γ WITH RESPECT TO TIME t

γ

t
2 4 6 8 10

1.0 576.8162 612.8578 627.0095 631.6394 632.2256

1.5 580.0650 617.2947 632.0076 636.8175 637.4237

2.0 582.5703 620.6912 635.8002 640.7214 641.3263

2.5 584.5588 623.3720 638.7727 643.7655 644.3595

3.0 586.1743 625.5401 641.1630 646.2030 646.7822

TABLE IV
TC FOR VARIOUS VALUES OF ϕ WITH RESPECT TO TIME t

ϕ

t
2 4 6 8 10

1.0 580.0650 617.2947 632.0076 636.8175 637.4237

1.5 580.8892 618.3604 634.0126 639.5075 640.5381

2.0 581.3971 618.6559 634.5561 640.3039 641.5106

2.5 581.7278 618.7235 634.6937 640.5547 641.8471

3.0 581.9550 618.7248 634.7127 640.6319 641.9715

In the graphical representations depicted in Figures 6,
7, 8, 9, 10, and 11, a consistent trend emerges: the mean
system size exhibits an increase as the system capacity
N rises. This pattern aligns with expectations, indicating
that as the system’s capacity grows, the mean system size
also increases across various parameter interpretations. This
transient approach, combined with graphical representation,
provides a holistic view of deep learning server infrastruc-
ture, offering insights into its transient behavior and the
influence of parameter variations on the mean system size.

For the cost analysis, we fix the parameters as λ = 2, µ1 =
1.5, µ2 = 2.5, θ = 0.6, γ = 1.5, ω = 2, ϕ = 3, Ch =
30, Cb = 60, Cs = 80, Cr = 70, C1 = 40, C2 = 45, C3 =
50, C4 = 55, Cv = 25. Tables II, III, IV and V display the
variation in Total Cost (TC) of the system by varying the λ,
γ, ω and ϕ respectively.

In all the Tables II, III, IV and V, we observe that the TC
increases as time t grows. In Tables II, III and IV, for increas-
ing values of λ, γ and ϕ, TC is also increases, respectively.
However, Table V presents an intriguing observation. Here,
we find that as the repair rate ω increases, the TC decreases.
This phenomenon is likely due to the fact that a higher repair
rate ensures quicker system availability, enabling customers
to access service from the main server sooner after repairs.
Thus, the TC increases over time but decreases while the
repair rate ω increases.

VIII. CONCLUSION

We constructed a queueing model in this research that
effectively handles deep learning infrastructure, as illustrated
by the practical case of picture classification (i.e., determin-
ing if an image has an automobile or not). Through the imple-
mentation of a two-phase service model that includes single
vacation, server failure and standby, we ensure that customers
may still receive deep learning services even in the event
of unexpected disruptions. The transient numerical solutions

TABLE V
TC FOR VARIOUS VALUES OF ω WITH RESPECT TO TIME t

ω

t
2 4 6 8 10

1.0 585.2638 624.9033 640.6849 645.8138 646.4433

2.0 580.0650 617.2947 632.0076 636.8175 637.4237

3.0 577.0524 613.0328 627.1529 631.7678 632.3461

4.0 575.1067 610.3160 624.0555 628.5376 629.0910

5.0 573.7515 608.4357 621.9097 626.2951 626.8271

highlight the effectiveness of the system’s resource alloca-
tion, allowing for precise and reliable image classification.
Our fresh approach combines mathematical precision with
real-world applications, ensuring consistent performance and
reliable decision-making, ultimately advancing the field of
artificial intelligence. In future, we can extend the model with
Markovian Arrival Process with phase type service using
Matrix Geometric Method.
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