
 

  

Abstract—The fuzzy membership function has 

non-collapsability and can be used to characterize uncertainties 

that cannot be explored by sudden events. As the membership 

function does not satisfy the complementarity law, a single 

membership function cannot simultaneously characterize the 

positive and negative aspects of things. This article considers 

structured fuzzy data with negative uncertainty information, 

which is modeled using bipolar fuzzy graphs. On this basis, we 

consider the connectivity remainder of the model and obtain the 

corresponding theoretical results. In addition, we have 

discussed some related fractional factor issues. 

 
Index Terms—bipolar fuzzy graph, connectivity remainder, 

fractional factor, embedding 

 

I. INTRODUCTION 

ROBABILITY theory and fuzzy theory are two effective 

tools to deal with uncertain information. Their 

differences lie in: (1) probability function has collapsibility, 

but membership function (MF) has no collapsibility; (2) The 

probability function satisfies the complementary law, while 

the membership function does not satisfy the complementary 

law. The second feature requires that when considering 

practical problems, at least two MFs are required to depict the 

positive and negative effects of some uncertainty. For 

structured data with uncertainty, the bipolar fuzzy graph 

(BFG) is used to describe the positive and negative 

uncertainties of elements, as well as the positive and negative 

uncertainties associated relationship with elements. For 

recent advances in fuzzy graph and bipolar fuzzy graph, refer 

to Muhiuddin et al. [1], Li et al. [2] and [3], Gao et al. [4], 

Perumal [5], Ullah et al. [6], Gayathri et al. [7], Nie et al. [8], 

Jiang et al. [9] and Josy et al. [10]. 

Specifically, when considering fuzzy graphs which 

represent human relationship networks, where each vertex 

denotes a person and an edge between two people standard 

the “like” relation of each other. For instance, let 1v , 2v  and 
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3v  represents three persons who know each other (hence, 

there are edges between any two of them), and the values of 

membership function of their edges are stated by 1 2( ,0.3)v v , 

2 3( ,0.6)v v  and 3 1( ,0.9)v v . On the other hand, if we 

define the edges in the fuzzy graph as “dislike” of each other, 

then whether the value of membership function of edges can 

be stated by 1 2( ,0.7)v v , 2 3( ,0.4)v v  and 3 1( ,0.1)v v ? The 

answer is “No” since the membership function doesn’t satisfy 

complementary low. Hence, in order to represent the 

“dislike” of edges between vertices, another membership 

function is necessary to be defined. As well as the edge set, 

the membership functions in vertex set should be introduced 

to express the positive and negative uncertainty of vertices. 

This is the main motivation we study the BFG instead of 

fuzzy graph (FG). 

In recent years, the study of fuzzy graph theory has 

become a hotspot in graph theory and computer science, and 

many theoretical results have been applied to the field of 

chemistry. Islam and Pal [11] introduced edge F-index on 

FGs and application in molecular chemistry. Ganesan et al. 

[12] studied the strong domination integrity in fuzzy graphs. 

Khan et al. [13] modelled Cayley picture fuzzy graphs as 

interconnected networks. Das et al. [14] researched Picture 

fuzzy threshold graphs and applied them to medicine 

replenishment. Lu et al. [15] defined the cyclic connectivity 

index in bipolar fuzzy incidence graph and applied it in the 

study of anti-aging drugs. 

Although there has been gratifying progress in BFGs, the 

characteristics of BFGs in most mathematical settings need to 

be further studied. Since connectivity is the basis of graph 

topology which determines the topological properties of the 

whole graph and the local properties between vertices, the 

study of connectivity enables us to further understand the 

construction of bipolar fuzzy graphs from a global 

perspective. This work aims to introduce connectivity 

remainder in bipolar fuzzy graph in terms of bipolar 

connectivity index, and study the characteristics of the new 

topological index from a theoretical prospect.  

The subsequent of this paper is organized as follows. The 

setting of bipolar fuzzy graph is presented in the next section. 

The main contributions include new concepts and theorems 

are manifested in Section 3. Some related problems in 

fractional factors are showcased and we give the affirmative 

answer. 
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II. PRELIMINARY 

This section aims to present the notations and 

terminologies in a BFG setting. Let ( , , , )P N P N

A A B BG    =  

be a bipolar fuzzy graph with ( , ) : [0,1] [ 1,0]P N

A A V  →  − , 

and ( , ) :P N

B B V V   →  [0,1] [ 1,0] − , where 
P

B  and 

N

B  are symmetry functions if G is an undirected FG. 

Moreover, 
1 2 1 2( ) ( ) ( )P P P

B A Ax x x x     and 
1 2 1( ) ( )N N

B Ax x x   

2( )N

A x  for any 1 2,x x V . Set 
*

A  and 
*

B  as the 

vertex set and edge set of G, respectively. If 1 2x x  is not an 

edge in the crisp graph, then 
1 2 1 2( ) ( ) 0P N

B Bx x x x = = . A 

bipolar fuzzy graph ( , , , )P N P N

A A B BG    =  is complete if 

1 2 1 2( ) ( ) ( )P P P

B A Ax x x x  =    and 
1 2 1 2( ) ( ) ( )N N N

B A Ax x x x  =   

for any 1 2,x x V . A bipolar fuzzy graph ( , ,P N

A AH  =  

, )P N

B B   is called a partial bipolar fuzzy subgraph (PBFS) of 

G, if ( ) ( )P P

A Ax x   and ( ) ( )N N

A Ax x   for any 

x V , and 
1 2 1 2( ) ( )P P

B Bx x x x   and 

1 2 1 2( ) ( )N N

B Bx x x x   for any 1 2x x V V  . A PBFS 

with ( ) ( )P P

A Ax x   and ( ) ( )N N

A Ax x   for any 

x V , and 
1 2 1 2( ) ( )P P

B Bx x x x =  and 

1 2 1 2( ) ( )N N

B Bx x x x =  for any 1 2x x V V   is called a 

bipolar fuzzy subgraph of G. A path P of length n in bipolar 

fuzzy graph is a sequence of different vertices 0 1, , , nx x x  

with 
1( ) 0P

B i ix x −   and 
1( ) 0N

B i ix x −   for any 

{1, , }i n . A path is called a cycle if 0 nx x= . The 

positive strength (PS) and negative strength (NS) of P are 

denoted by 

1
{1, , }

( ) { ( )}P P

B i i
i n

S P x x −


=  , 

1
{1, , }

( ) { ( )}N N

B i i
i n

S P x x −


=  . 

The PS and negative strength of connectedness between 

vertices x and y are formulated by 

( , ) { ( ) : }P P

GCONN x y S P P x y=  = , 

( , ) { ( ) : }N N

GCONN x y S P P x y=  = . 

If the PS (resp. NS) of P from x to y is exactly equal to 

( , )P

GCONN x y  (res. ( , )N

GCONN x y ), then we call P as a 

positive strongest (resp. negative strongest) x y−  path. An 

edge xy  is  

•  positive  -strong if ( ) ( , )P P

B G xyxy CONN x y − ; 

•  negative  -strong if ( ) ( , )N N

B G xyxy CONN x y − ; 

•  bipolar  -strong if ( ) ( , )P P

B G xyxy CONN x y −  and 

( ) ( , )N N

B G xyxy CONN x y − ; 

•  positive  -strong if ( ) ( , )P P

B G xyxy CONN x y −= ; 

•  negative  -strong if ( ) ( , )N N

B G xyxy CONN x y −= ; 

•  bipolar  -strong if ( ) ( , )P P

B G xyxy CONN x y −=  and 

( ) ( , )N N

B G xyxy CONN x y −= ; 

•  positive  -edge if ( ) ( , )P P

B G xyxy CONN x y − ; 

•  negative  -edge if ( ) ( , )N N

B G xyxy CONN x y − ; 

•  bipolar  -edge if ( ) ( , )P P

B G xyxy CONN x y −  and 

( ) ( , )N N

B G xyxy CONN x y − . 

An edge xy  is called a positive fuzzy bridge (PFB) (resp. 

negative fuzzy bridge, NFB) if deleting xy  from G reduces 

(resp. increases) the PS (resp. NS) of connectedness between 

a certain pair of vertices in G. An edge xy  is called a bipolar 

fuzzy bridge if it is both a PFB and a NFB. A vertex 
*

Ax   

is called a positive fuzzy cut-vertex (PFCV) (resp. negative 

fuzzy cut-vertex, NFCV) of G if removing x will decrease 

(resp. increase) the positive strength (resp. NS) of 

connectedness between a certain pair of vertices. A vertex 
*

Ax   is called a bipolar fuzzy cut-vertex if it is both 

PFVC and NFCV. A connected BFG ( , ,P N

A AG  =  

, )P N

B B   is a bipolar fuzzy tree (BFT) if it has a bipolar 

fuzzy spanning subgraph ( , , , )P N P N

A A B BF    =  which is 

a tree, and for all edges xy not in F, there exists a path 

between x and y in F, whose PS is more than ( )P

B xy  and 

negative strength is less than ( )N

B xy . 

A BFG ( , , , )P N P N

A A B BG    =  is called  

•  positive  -saturated if every vertex 
*

Ax   incident at 

least one positive  -strong edge; 

•  negative  -saturated if every vertex 
*

Ax   incident at 

least one negative  -strong edge; 

•  bipolar  -saturated if every vertex 
*

Ax   incident at 

least one bipolar  -strong edge; 

•  positive  -saturated if every vertex 
*

Ax   incident at 

least one positive  -strong edge; 

•  negative  -saturated if every vertex 
*

Ax   incident at 

least one negative  -strong edge; 

•  bipolar  -saturated if every vertex 
*

Ax   incident at 

least one bipolar  -strong edge; 

•  positive saturated if it is both positive  -saturated and 

positive  -saturated; 

•  negative saturated if it is both negative  -saturated and 

negative  -saturated; 

•  bipolar saturated if it is both bipolar  -saturated and 

bipolar  -saturated. 
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III. BIPOLAR CONNECTIVITY REMAINDER AND MAIN 

RESULTS 

As illustrated above, ( , )P

GCONN x y  and ( , )N

GCONN x y  

represent the maximum positive feasible resource and 

minimum negative feasible resource transformed between 

vertices x and y in a transform network (it transforms data, 

service, energy or other kinds of resources) which is 

modelled by a bipolar fuzzy graph G. However, in many 

real-world applications, the network produces some degree 

of congestion due to the conflicts between the small capacity 

of channels and the large amount of resources that need to be 

transformed. On the other hand, an overly amount of 

resources leads to the crash of the whole network because of 

the limited storage of each vertex (measured by 
P

A  and 

N

A ). Thus, it is necessary to characterize the amount of 

overload from both positive and negative aspects, so as to 

serve as a reference to improve the performance of the entire 

network. For this purpose, we extend the connectivity 

remainder [16] to a BFG setting.  

Definition 1. Let ( , , , )P N P N

A A B BG    =  be a BFG. The 

bipolar connectivity remainder (BCR) of G is defined by 

( ) ( ( ), ( ))P NCR G CR G CR G= , where 

*,

( ) ( { ( ), ( )} ( , ))

A

P P P P

A A G

x y

CR G x y CONN x y


 


=  −  

and 

*,

( ) ( { ( ), ( )} ( , ))

A

N N N N

A A G

x y

CR G x y CONN x y


 


=  − , 

denote the positive connectivity remainder and negative 

connectivity remainder, respectively. 

According to its definition, we directly get that if 

( , , , )P N P N

A A B BH    =  is a PBFS of 

( , , , )P N P N

A A B BG    =  with the same vertex set, then 

( ) ( )P PCR G CR H  and ( ) ( )N NCR G CR H . 

Furthermore, the vertices in G are arranged as follows 

according to the value of the positive membership function: 

1, , nx x  such that 
10 ( ) ( )P P

A A nx x    , then 

1

1

0 ( ) ( ) ( )
n

P P

A i

i

CR G n i x
−

=

  − . 

More exactly, by simply computing, we have 

*

1

1 ,

( ) ( ) ( ) ( , )

A

n
P P P

A i G

i x y

CR G n i x CONN x y



−

= 

= − −  .   (1)                

On the other hand, re-arrange the vertices by 1, , ny y  such 

that 
10 ( ) ( )N N

A A ny y    , then 

1

1

0 ( ) ( ) ( )
n

N N

A i

i

CR G n i y
−

=

  − . 

The following equation is obtained using the similar fashion 

as (1): 

      

1

1

( ) ( ) ( )
n

N N

A i

i

CR G n i y
−

=

= −                       (2) 

*,

( , )

A

N

G

x y

CONN x y


−  .             

The equations (1) and (2) can be employed in special 

settings of positive membership function values or negative 

membership function values. For instance, if 

1( ) ( )P P P

A i A ix x  −= +  for vertex order 1, , nx x , 

where {2, , }i n  and 
1

(0, )
1

P

n
 

−
, then in view of 

(1), we deduce 

1( 1)(3 ( ) )
( )

6

P P
P An n x n

CR G
 − +

=  

                
*,

( , )

A

P

G

x y

CONN x y


−  . 

If 
1( ) ( )N N N

A i A iy y  −= +  for vertex order 1, , ny y , 

where {2, , }i n  and 
1

( ,0)
1

N

n
  −

−
, then in 

terms of (2), we get 

1( 1)(3 ( ) )
( )

6

N N
N An n y n

CR G
 − +

=  

              
*,

( , )

A

N

G

x y

CONN x y


−  . 

An edge 
*

Be   is 

•  positive CR-reducing if ( ) ( )P PCR G e CR G−  ; 

•  positive CR-increasing if ( ) ( )P PCR G e CR G−  ; 

•  positive CR-neutral if ( ) ( )P PCR G e CR G− = ; 

•  negative CR-reducing if ( ) ( )N NCR G e CR G−  ; 

•  negative CR-increasing if ( ) ( )N NCR G e CR G−  ; 

•  negative CR-neutral if ( ) ( )N NCR G e CR G− = . 

In light of the definitions stated above, we immediately 

obtain the following truths: an edge 
*

Be   of BFG G is 

•  positive CR-increasing   e is positive  -strong; 

•  negative CR-decreasing   e is negative  -strong; 

•  positive CR-neutral   e is positive  -strong or positive 

 -edge; 

•  negative CR-neutral   e is negative  -strong or 

negative  -edge. 

Moreover, we confirm that the crisp graph of BFG G is a tree 

  no edge of G is positive CR-neutral or negative 

CR-neutral. 

For vertex 
*

Ax  , we call it a 

•  positive remainder reducing vertex if 

( ) ( )P PCR G x CR G−  ; 

•  positive remainder enhancing vertex if  

( ) ( )P PCR G x CR G−  ; 

•  positive remainder inactive vertex if 

( ) ( )P PCR G x CR G− = ; 

•  negative remainder reducing vertex if 
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( ) ( )N NCR G x CR G−  ; 

•  negative remainder enhancing vertex if 

( ) ( )N NCR G x CR G−  ; 

•  negative remainder inactive vertex if 

( ) ( )N NCR G x CR G− = . 

In terms of the definition of isomorphic of bipolar fuzzy 

graphs, we know that if two bipolar fuzzy graphs 1G  and 2G  

satisfying 1 2G G , then 
1 2( ) ( )P PCR G CR G=  and 

1 2( ) ( )N NCR G CR G= . Set 1 20 1mw w w     , 

then 

1 2( ) ( ) ( )mww wP P PCR G CR G CR G   , 

1 2( ) ( ) ( )mww wN N NCR G CR G CR G   . 

The following theorem characterizes the BCR of the BFG 

by deleting a special vertex, which extends Theorem 4.1 in 

[16].  

Theorem 1. If for any two vertices x and y, there is a positive 

strongest path (resp. negative strongest path) connecting 

them with z as a non-internal vertex, then 

( ) ( )P PCR G z CR G−   (resp. ( ) ( )N NCR G z CR G−  ). 

Proof of Theorem 1. We only check the negative arguement 

using the same trick manifested in [16]. For any 
*

Ay  , we 

infer 
*

( { ( ), ( )} ( , )) 0

A

N N N

A A G

x

x z CONN x y


 


 −  . 

According to the assumption, z is not internal in any negative 

strongest path, we acquire 

( { })NCR G z−  

*

{ }

, { }

( { ( ), ( )} ( , ))

A

N N N

A A G z

x y z

x y CONN x y


  −

 −

=  −  

*, { }

( { ( ), ( )} ( , ))

A

N N N

A A G

x y z

x y CONN x y


 
 −

=  − . 

Furthermore, we get 

( )NCR G  

*, { }

( { ( ), ( )} ( , ))

A

N N N

A A G

x y z

x y CONN x y


 
 −

=  −  

*

( { ( ), ( )} ( , ))

A

N N N

A A G

x

x z CONN x z


 


+  −    

 
*

( { }) ( { ( ), ( )}

A

N N N

A A

x

CR G z x z


 


= − +   

( , ))N

GCONN x z−  

( { })NCR G z − .                                                           

Unfortunately, the reverse of Theorem 1 is not established 

in general, which can refer to Figure 6 in [16] for more details. 

Moreover, the following statements are deduced from 

Theorem 1. 

•  If x is a terminal vertex (with degree 1 in its crisp graph), 

then ( ) ( )P PCR G x CR G−   and ( ) ( )N NCR G z CR G−  . 

•  If G is a bipolar saturated fuzzy cycle, then we have 

( ) ( )P PCR G x CR G−   and ( ) ( )N NCR G z CR G−   

for any 
*

Ax  . 

Theorem 2. Let ( , , , )P N P N

A A B BG    =  be a BFG with 

* 3An =  . Assume ( ) 1P

A x =  and ( ) 1N

A x = −  for 

any 
*

Ax  . For a given vertex 
*

Az  , set 

* *

{ }

, , { }

( , ) ( , )

A A

P P P

z G G z

x y x y z

CONN x y CONN x y
 

−

  −

 = −  , 

* *

{ }

, , { }

( , ) ( , )

A A

N N N

z G G z

x y x y z

CONN x y CONN x y
 

−

  −

 = −  . 

Then we have the following statements: 

• z is a positive remainder reducing vertex 1P

z n   − ; 

• z is a positive remainder enhancing vertex 1P

z n   − ; 

• z is a positive remainder inactive vertex 1P

z n  = − ; 

• z is a negative remainder reducing vertex 
N

z    

1n− + ; 

• z is a negative remainder enhancing vertex 
N

z    

1n− + ; 

• z is a negative remainder inactive vertex 1N

z n  = − + . 

Proof of Theorem 2. We only check the negative remainder 

reducing vertex part, and the rest parts can be verified in view 

of the same fashion. 

Let z be a negative remainder reducing vertex. Then, we 

yield 

( ) ( )N NCR G z CR G−   

*

{ }

, { }

( { ( ), ( )} ( , ))

A

N N N

A A G z

x y z

x y CONN x y


  −

 −

  −  

*,

( { ( ), ( )} ( , ))

A

N N N

A A G

x y

x y CONN x y


 


  −  

*

{ }

, { }

( 1 ( , ))

A

N

G z

x y z

CONN x y


−

 −

 − −  

*,

( 1 ( , ))

A

N

G

x y

CONN x y


 − −  

*

{ }

, { }

1
( ( , ))

  2
A

N

G z

x y z

n
CONN x y



−

 −

− 
 − − 

 
  

*,

( ( , ))
2

A

N

G

x y

n
CONN x y



 
 − − 

 
  

* *

{ }

, , { }

( ( , )) ( ( , ))

A A

N N

G G z

x y x y z

CONN x y CONN x y
 

−

  −

 −   

1n − +  

1N

z n   − + .                                                                  

Using the principle of Theorem 2, it is not hard to check 

the following statements (assume ( ) 1P

A x =  and 

( ) 1N

A x = −  for any 
*

Ax  ). 

•  All vertices in a complete BFG are both positive 

remainder inactive and negative remainder inactive. 

•  No vertex in G is a positive remainder enhancing vertex 

(resp. negative remainder enhancing vertex); 

•  If there is a positive remainder inactive vertex (resp. 

negative remainder inactive vertex) in G, then all the resting 
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vertices are positive remainder inactive vertices (resp. 

negative remainder inactive vertices). 

For the bipolar fuzzy cycle (BFC), we have the following 

properties.  

Theorem 3. Let ( , , , )P N P N

n A A B BC    =  be a bipolar 

fuzzy cycle with ( ) 1P

A x =  and ( ) 1N

A x = −  for any 

*

Ax  . We have the following statements: 

(i) If nC  is positive  -saturated (resp. negative 

 -saturated) and ( )P P

B e =  (resp. ( )N N

B e = ) for 

any 
*

Be  , then ( ) (1 )
2

P P

n

n
CR C 

 
= − 

 
 (resp. 

( ) ( 1 )
2

N N

n

n
CR C 

 
= − − 

 
). 

(ii) If nC  is positive saturated (resp. negative saturated) 

with 
1 2 /2, , ,P P P

n    (resp. 
1 2 /2, , ,N N N

n   ) as 

strengths of positive  -strong (resp. negative  -strong) 

edges, and all positive  -strong (resp. negative  -strong) 

edges share the same strength 
P  (resp. 

N ), then we have 

/2

1

( ) [ (1 ) 2 1]
2

n
P P P P

n i

i

n
CR C n   

=

= − + − −   (resp. 

/2

1

( ) [ ( 1 ) 2 1]
2

n
N N N N

n i

i

n
CR C n   

=

= − − + + −  ). 

Furthermore, if 
1 2 /2

P P P P

n   = = = =  (resp. 

1 2 /2

N N N N

n   = = = = ), then ( ) [ (1
2

P

n

n
CR C n= −  

) 2 1]P P P  − + −  (resp. ( ) [ (1
2

N N

n

n
CR C n = −  

) 2 1]N N − + − ). 

(iii) If nC  contains m positive  -strong (resp. negative 

 -strong) edges with strengths 
1 2, , ,P P P

m    (resp. 

1 2, , ,N N N

m   ), and all positive  -strong (resp. 

negative  -strong) edges share the common strength 
P  

(resp. 
N ), then 

1

( ) (1 )
2

m
P P P P

n m

i

n
CR C m  

=

 
 − + − 

 
  

(resp. 

1

( ) ( 1 )
2

m
N N N N

n m

i

n
CR C m  

=

 
 − − + − 

 
 ). 

(iv) ( ) ( )P P

n nCR C CR C xy= −  (resp. ( )N

nCR C =  

( )N

nCR C xy− ) for each 
*

Bxy     nC  is positive 

 -saturated (resp. negative  -saturated) and 
P

B  (resp. 

N

B ) is a constant function.  

(v) For a positive real number 
Pr  (resp. negative real 

number 
Nr ), there exists a BFC nC  such that 

( )P P

nCR C r=  (resp. ( )N N

nCR C r= ). 

Proof of Theorem 3. Since most of the results can be directly 

verified, we only check some negative parts of them. 

To prove the negative part of (iii), denote 
NE  as the set of 

negative  -strong edges in nC . We get 

1

( , )
N

m
N N

G i

ixy E

CONN x y 
=

=  , ( , )N N

GCONN x y   

where 
*, Ax y   and 

Nxy E , and hence  

*, ,

( ) ( ( , )
2 N

A

N N

n G

x y xy E

n
CR C CONN x y

 

 
= − − 

 
  

( , ))
N

N

G

xy E

CONN x y


+   

1

( 1 )
2

m
N N N

m

i

n
m  

=

 
 − − + − 

 
 . 

To prove the negative part of (v), let 
Nr  be any negative 

real number. Select an integer n with 2
2

N
n

r
 

−  
 

, the 

bipolar fuzzy cycle nC  can be constructed as follows: 

( ) 1P

A x =  and ( ) 1N

A x = −  for any 
*

Ax  . 

2
( ) 1

( 1)

P
P

B

r
xy

n n
 = −

−
 and 

2
( ) 1

( 1)

N
N

B

r
xy

n n
 = − −

−
 

for any 
*

Bxy  . Hence, 
2

( , ) 1
( 1)

P
P

G

r
CONN x y

n n
= −

−
 

and 
2

( , ) 1
( 1)

N
N

G

r
CONN x y

n n
= − −

−
 for any 

*, Ax y  . 

The negative connectivity remainder is calculated by 

( )N

nCR C  

*,

( { ( ), ( )} ( , ))

A

N N N

A A G

x y

x y CONN x y


 


=  −  

*,

( ( , ))
2

A

N

G

x y

n
CONN x y



 
= − − 

 
  

2
( 1 )

2 2 ( 1)

N
N

n n r
r

n n

   
= − − − − =   

−   
.                                              

The last result in this section is related to the BFT. 

Theorem 4. Let ( , , , )P N P N

A A B BT    =  be a bipolar 

fuzzy tree with ( ) 1P

A x =  and ( ) 1N

A x = −  for any 

*

Ax  . Let 
min

P , 
max

P , 
min

N , 
max

N  be the minimum 

positive strength of all positive  -strong edges in T, 

maximum positive strength of all positive  -strong edges in 

T, minimum negative strength of all negative  -strong 

edges in T, maximum negative strength of all negative 

 -strong edges in T, respectively. Then, we have 
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max min(1 ) ( ) (1 )
2 2

P P P

n

n n
CR C 

   
−   −   

   
, 

max min( 1 ) ( ) ( 1 )
2 2

N N N

n

n n
CR C 

   
− −   − −   

   
. 

In what follows, we say a path is positive (negative) strong 

if it has only positive strong edges (PSEs) (negative strong 

edges NSEs). 'V V  is called a positive vertex cut (PVC)  

(resp. negative vertex cut, NVC) if either 'G V−  is trivial or 

'( ) ( ), ' , 'P P

G V GCONN v v CONN v v−   (resp. 
'( ), 'N

G VCONN v v−
 

), '(N

GCONN v v ) for some v and v’. 'E E  is called a 

positive edge cut (PEC) (resp. negative edge cut, NEC) if 

either 'G E−  is disconnected or 
'( ), 'P

G ECONN v v−   

( ), 'P

GCONN v v  (resp. 
'( ) ( ), ' , 'N N

G E GCONN v v CONN v v−  ) 

for some , 'v v V . For a fuzzy vertex cut V’ of G, the 

positive (resp. negative) sum 

'

( ') min{ ( , ) :P P

B

x V

s V x y xy


=    

is a PSE} (resp. 

'

( ') max{ ( , ) :N N

B

x V

s V x y xy


=    is a NSE)), 

and if 'E  is a PEC (resp. NEC) of G, then its positive strong 

weight (PSW) (resp. negative strong weight, NSW) is 

denoted by 

'

( ') ( )P P

B

e E

s E e


=    (resp. 

'

( ') ( )N N

B

e E

s E e


=   ).  

The minimum of the strong weights of PVCs and PECs are 

the positive vertex connectivity and positive edge 

connectivity of G respectively, and the maximum of the 

negative weights of NVCs and NECs are the negative vertex 

connectivity and negative edge connectivity of G 

respectively. If a cycle C  has more than one positive (resp. 

negative) weak edge, then we call it a positive (resp. negative) 

cycle.  

Positive (resp. negative) cycle connectivity (CC) of a BFG 

G is the maximum (minimum) of the strengths of all positive 

(resp. negative) strong cycles in G. We call a vertex as 

positive (resp. negative) cyclic cutvertex if it’s removing will 

reduce (increase) the positive (resp. negative) cycle 

connectivity of G, and an edge is referred as a positive (resp. 

negative) cyclic bridge if deleting it will decrease (increase) 

the positive (resp. negative) cycle connectivity. A bipolar 

fuzzy graph doesn’t admit positive (resp. negative) cyclic 

cutvertices and positive (resp. negative) cyclic bridges is a 

positive (resp. negative) cyclically balanced graph. 'V V  

is a positive (resp. negative) cyclic vertex cut if 

( ') ( )P PCC G V CC G−   (resp. ( ') ( )N NCC G V CC G−  ) 

and 'E E  is a (positive) cyclic edge cut of G if 

( ') ( )P PCC G E CC G−   (resp. ( ') ( )N NCC G E CC G−  ). 

A cycle is positive (resp. negative) strong if all its edges are 

positive (resp. negative) strong, and the positive (resp. 

negative) strength of a cycle is the value of its minimum 

(maximum) edge. 

For two vertices x and x’ in BFG G, the positive 
P -evaluation and negative 

N -evaluation of x and x’ are 

denoted by 

{ :  is the PS f( , o)  ' P PP x x  =  

 a cycle containing  and '}x x , 

{ :  is the NS f( , o)  ' N NN x x  =  

         a cycle containing  and '}x x . 

If there is no cycle containing x and x’, then 

( , ') ( , ')P Nx x x x= =   (and hence 

( , ') ( , ') 0G

P

G

NC xCx x x= = ). 

Generalized positive (resp. negative) cycle connectivity 

(GPCC, and resp. GNCC) between x and x’ in a BFG G is 

given by 

 ( , ') ( , 'max{ : , , ' })P PP P

GC x x x x Vx x=     , 

( , ') ( , 'min{ : , , ' })N NN

G

NC x x x x Vx x=     . 

The GPCC and GNCC of a BFG G are formulated by 

}( ) ( , 'max{ : , ')G

P PC G C x xx Vx=  , 

}( ) ( , 'min{ : , ')G

N NC G C x xx Vx=  . 

In the crisp graph, ) 1(PC G =  and ) 1(NC G = −  if G is 

cyclic and 0( ) ( )P NC CG G= =  if G is a tree. For a BFG 

( , , , )P N P N

A A B BG    = , we have ( )( )P PCC G C G  

and ( )( )N NCC G C G . Let H be a PBFS of G, then 

( ) ( )P PC H C G  and ( ) ( )N NC H C G . If G is 

complete, then all cycles are positive and negative strong, 

hence 
2( ) ( )P P

n

PCC G C G m −= =  and 

3( ) ( ) NNNCC G C G m= =  (assume V n= , we rank the 

value of ( )P

A v  and ( )N

A v  in increasing order by 

1{ , , }P P

nm m  and 
1{ , , }N N

nm m ). 

If G is a bipolar fuzzy tree. Then 

0,  is a tree

, otherwise
( )

P

P
D

C G
w


= 

 

, 

0,  is a tree

, otherwise
( )

N

N
D

C G
w


= 

 

. 

where 
Pw  (resp. 

Nw ) is the maximum (resp. minimum) MF 

value of positive (resp. negative)  - edges in G. Since 

bipolar fuzzy cycle has no  -edges, thus GPCC (resp. 

GNCC) and positive (resp. negative) cycle connectivity of a 

BFC are equal to the PS (resp. NS) of G. If two BFGs 1G  and 

2G  are isomorphic, then 
1 2( ) ( )P PC CG G=  and 

1 2( ) ( )N NC CG G= . Suppose 'G  is a BFG obtained by 

deleting an edge from G, then G contains a unique cycle with 

largest (resp. smallest) positive (negative) strength if 

( ) ( )'P PC G C G  (resp. ( ) ( )'N NC G C G ). 

A vertex x in BFG is called a positive (resp. negative) 

g -cyclic cutvertex (PgCC and NgCC) of G if 

){ }( ) (P PC G x C G−   (resp. ){ }( ) (N NC G x C G−  ). A 

positive (resp. negative) g -cyclic bridge (PgCB and NgCB) 
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of G is an edge e such that satisfying ( ) ( )P PC G e C G−    

(resp. ( ) ( )N NC G e C G−  ). Note that a PgCC (resp. 

NgCC) may not be a positive (resp. negative) cyclic cutvertex 

and a PgCB (resp. NgCB) may not be a positive (resp. 

negative) cyclic bridge. Obviously, if 'e xx=  is a PgCB 

(resp. NgCB) of a BFG G, then both x and 'x  are PgCC (resp. 

NgCC) of G. Moreover, all vertices and edges in a BFG are 

PgCC and NgCC, and PgCB and NgCB if crisp graph is a 

cycle. In fact, a vertex x in a BFG is a PgCC (resp. NgCC) if 

and only if x contains in all cycles with maximum PS 

(minimum NS). 

Note that in complete bipolar fuzzy graph, all cycles are 

strong, the condition for the existence of  PgCC (resp. NgCC) 

(or PgCB (resp. NgCB)) (that is, 
3 2

P P

n nm m− −  for positive 

and 
4 3

N Nm m ) is the same as that of positive (resp. 

negative) CCs (or positive (resp. negative) CBs). Therefore, 

the corresponding PgCC (NgCC) (or PgCB (NGCB)) set is 

the same as the positive (resp. negative) CCs (or positive 

(resp. negative) CBs) set. That is, for complete BFG, the 

concept of positive cycle connectivity (PCC) (negative cycle 

connectivity, NCC) and positive (negative) g -cycle 

connectivity coincides.  

If a BFG G contains exactly one cycle C of maximum PS 

(minimum negative strength). Let P  be the set of positive 

(resp. negative) cyclic cutvertices and Q  be the set of PgCC 

(NgCC) of G. Then P Q=  if and only if C is a positive 

(negative) strong cycle. 

A BFG G is a positive cyclically stable (PCS) (resp. 

negative cyclically stable, NCS) if it lacks both PgCC (resp. 

NgCC) and PgCB (NgCB). Suppose G is not a tree, 'V V  

is positive (resp. negative) g -cyclic vertex cut if 

( ') ( )P PC CG V G−  (resp. ( ') ( )N NC CG V G−  ) (in 

this case, the positive and negative weight of 'V  are 

'

' min{ ( '),( ) P

B

x V

PS V xx


=    ' ( )}xx E G  and 

'

' max{ ( '), ' ( )}( ) N

B

x

N

V

S V xx xx E G


=   ). 'E E  is a 

positive (resp. negative) g -cyclic edge cut of G if 

( ') ( )P PC CG E G−  (resp. ( ') ( )N NC CG E G−  ) (in 

this case, the PSW and NSW of 'E  are denoted by 

'

' ( )( )
j

P

B j

e E

PS E e


=   (
je  is a positive strong edge in 'E ) 

and  

'

' ( )( )
j

N

B j

e E

NS E e


=   (
je  is a negative strong edge 

in 'E )). 

The positive (resp. negative) g -cyclic vertex connectivity 

of G is denoted by ( )P G  (resp. ( )N G ) is defined as the 

minimum (resp. maximum) of positive (resp. negative) 

strong weights of all positive (resp. negative) g -cyclic 

vertex cuts of G. The positive (resp. negative) g -cyclic edge 

connectivity ( )P G  (resp. ( )N G ) is denoted as the 

minimum (resp. maximum) of the non-zero PSW (resp. NSW) 

of all positive (resp. negative) g -cyclic edge cuts of G. For a 

PBFS H of G, we have ( ) ( )P PH G   and 

( ) ( )N NH G  . 

Suppose, G is a complete BFG, we have 
1( ) PP G m= , 

( ) N

n

N G m= , ( ) ( ) ( )PP P

sG G G     and 

( ) ( ) ( )NN N

sG G G    . Actually, there always exist 

positive and negative g -cyclic end vertices in complete BFG. 

Furthermore, G is PCS (resp. NCS) if and only if 

3 2

P P

n nm m− −=  (resp. 
4 3

N Nm m= ). Hence, a complete BFG G 

with at least four vertices is PCS (resp. NCS) if there exist a 

subgraph 4K  of G, where each cycle has the equal maximal 

PS (minimum NS). 

When G is a BFT which is cyclic, let C  be the only cycle 

of maximum PS (resp. minimum NS) in G, then 

{ ( ') : '  is a positive( ) ( ) P

B

P P xG x xG x= =     

 strong edge in }C , 

{ ( ') : '  is a negative( ) ( ) N

B

N N xG x xG x= =     

strong edge in }C . 

For a BFT G that is not cyclic, we have 

) 0( ) (P NG G ==  . 

IV. RELATED PROBLEMS 

In this section, we discuss some related problems and give 

a theoretical analysis. 

A. Fractional Factors of Graphs on Surfaces 

Kawarabayashi and Ozeki [17] studied the existence of 2- 

and 3-factor in 4- and 5-connected graphs embedded in a 

surface with a small face-width (denoted by ( )fw G ). With 

the help of this pioneering contribution, Matsubara et al. [18] 

proved some results for a graph embedded in a surface to 

admit an [a,b]-factor (where a<b), and they also presented 

that parts of parameter bounds are sharp by counterexamples. 

Due to the equivalence of necessary and sufficient conditions 

for the existence of [a,b]-factor and fractional [a,b]-factor 

(FabF) in a<b setting (compared by Lovasz [19] and Zhang 

and Liu [20]), the theoretical conclusions presented in 

Matsubara et al. [18] also established for FabF if a<b. 

However, set a=b in [a,b]-factor and FabF, it is noteworthy 

that k-factor and fractional k-factor (FkF) have completely 

different characterizations. In what follows, we always 

assume that ( ) ( )a g x f x b    for all ( )x V G  in 

(fractional) (g,f)-factor setting. 

Motivated by such deficiency, we study the conditions for 

a graph embedded in a surface to have a fractional k-factor. 

Theorem 5. Let 3k   be an integer and G be a graph 

embedded in a surface of Euler genus (EG) g. If 

( ) 2G k  +  and 
( 1)(2 4) 2

( )
2

k g
fw G

k

+ − −


−
, then 

G admits a FkF. 
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Proof. Assume that G meets all the conditions of Theorem 5 

but has no fractional k-factor. There exist two disjoint subsets 

, ( )S T V G  which satisfy 

( ) 1G Sk S d T k T−+ −  −                     (3) 

Select S and T with minimum T . Thus, T    and 

( ) 1G Sd x k−  −  for any x T . 

Construct a bipartite graph H from G by setting 

( )V H S T=   and ( ) ( , )GE H E S T= . Then 

( )V H S T= +  and ( ) ( , )GE H e S T= . In terms of 

Lemma 4 in [17] or Lemma 2.2 in [18], we infer 

2 2 2,         if  is flat,
( , )

2 2 2 4,  otherwise.
G

S T H
e S T

S T g

 + −
 

+ + −

       (4) 

Since ( ) 2G k  + , we determine 

( ) ( 2) ( , )G S Gd x k T e S T−  + − .           (5) 

In light of (3) and (5), we derive 

( , ) 2 1Ge S T k S T + + . 

Using (4), we get 

3,      if  is flat,
( 2)

2 5,  otherwise.

H
k S

g

−
−  

−
             (6) 

If H is flat or 2g  , then it leads to a contradiction. Thus, H 

is not flat and 3g  . By (5) and ( ) 1G Sd x k−  −  for any 

x T , we get ( 1) | | ( ) ( 2) | | ( , )G S Gk T d T k T e S T−−   + −  

and ( , ) 3 | |Ge S T T . Substituting this inequality into (4) 

yields | | 2 | | 2 4T S g + − . Thus, by (6) and 3k  , 

( 1)(2 4) 3
| | | | 3 | | 2 4 .

2

k g
S T S g

k

+ − −
+  + − 

−
  (7) 

Since H is not flat, there is a non-contractible cycle C in H 

(in G), and a non-contractible curve   with G    

( ) ( )V C V H S T =  . By virtue of S T =   and 

(7), we have 

( 1)(2 4) 3
| | | | | | | | .

2

k g
G S T S T

k


+ − −
   = + 

−
 

It contradicts 
( 1)(2 4) 2

( )
2

k g
fw G

k

+ − −


−
.                     

Using the same tricks, we get the following conclusion on 

the existence of fractional (g,f) -factor (FgfF) on surfaces. 

Theorem 6. Let a,b be positive integers with 3 a b  , and 

G be a graph embedded in a surface of EG g. If 

( ) 2G b  +  and 
( 1)(2 4) 2

( )
2

a g
fw G

a

+ − −


−
, then 

G admits a FgfF. 

Since the FgfF and (g,f)-factor have the same necessary 

and sufficient condition when g f , we have the following 

result on the existence of (g,f)-factors on surfaces. 

Theorem 7. Let a,b be positive integers with 3 a b  , and 

G be a graph embedded in a surface of EG g. If 

( ) 2G b  +  and 
( 1)(2 4) 2

( )
2

a g
fw G

a

+ − −


−
, then 

G admits a (g,f)-factor. 

B. Difference Strategy of Choosing v  in 2I  in Gao et al. 

[21] 

This subsection aims to explain why the traditional trick 

can’t be used to select 2I  in Gao et al. [21]. 

Suppose we select v  using the following principle: 

2

arg max | ( ) | .G S
v I

v N v−


 =  

Let 
* ( )G Sj d v−

= . We acquire 

*

*

1
*

2

1

( { }) ( 1)
j

G S j j
j

N I v ji j i
−

−

=

  + −  

*
2

* *

1 1

j k

j j

j j

ji j ji j
−

= =

= − = −  .                                         (8) 

If 
* 2j k − , and 

2

2 1

1

( { }) ( 2)( 1)
k

G S j k

j

N I v ji k i
−

− −

=

  + − −  

1

1

1

2
k

j k

j

ji i k
−

−

=

= − − +  

if 
* 1j k= −  (i.e., 1 1ki −  ). 

In these circumstances, the proof of 1 0ki − =  part when 

1| | 0I =  and 0| | 1T l+   will become the following 

procedure: 

If 1 0ki − = , then in terms of (8), we verify 

2| | | | | ( { }) |G SU S N I v−
 +  

2

2
1 *

0

1

( 1)( )
1

| | ( )

k

j k
j

j

j

j k j i

T l n ji j
k k

−

−
=

=

+ −

 + + + − + −


  

22
*

0

1

1 1
| | ( (2 ) 1)

k

j

j

j
T l n j i j

k k k

−

=

= + + − + − + − + − . 

Considering quadratic equation 

2 1
( ) (2 ) 1

j
j j

k k
 = − + − + . 

We have
*max{ ( )} ( )j j =  , and hence set 

* 2
* * *

2

( ) 1
( ) ( (2 ) 1) | |

j
j j I j

k k
 = − + − + −  

* 2 *2
2 2

| | 1
( ) ((2 ) | | 1) | | .

I
j I j I

k k
= − + − − +  

Symmetry axis of quadratic function 
*( )j  is 

* 2

2

(2 1) | |

2 | |

k I k
j

I

− −
=  which depends on the correlation 

between k and 2| |I . Since 
* {1, , 2}j k − , we infer 
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*max{ ( )}j =  

2

2

2

2

2

2

(2 1) | |
(1), if 1

2 | |

(2 1) | |
( 2), if 2,

2 | |

(2 1) | |
( ), otherwise.

2 | |

k I k

I

k I k
k k

I

k I k

I

 − −
 


 − −

 −  −

 − −




 

If 2

2

(2 1) | |
1

2 | |

k I k

I

− −
 , then  2| | 0I  , a contradiction. If 

2

2

(2 1) | |
2

2 | |

k I k
k

I

− −
 − , then 

2

0

1 1
| | | | ( ( 2)U T l n k

k k
 + + − + − −  

2

1
(2 )( 2) 1) | | ( 2)k I k

k
+ − − + − −  

0 2

1 2
| | 1 ( ) | |T l k I

k k
 + + − + −  

and hence 

| |
( )

( )

U
t G

G U


−
 

0 2

2 0

1 2
| | 1 ( ) | |

| | | |

T l k I
k k

I T l

+ + − + −


+ +

 

2

2 0

1 2
1 ( 1 ) | |

1
| | | |

k I
k k

I T l

− + − −

= +
+ +

 

2

2

1 2
1 ( 1 ) | |

1
| | 1

k I
k k

I

− + − −

 +
+

 

2

1
2

2
1 ( 1 )

| | 1

k
kk

k I

− −

= + − − −
+

 

2
k

k
 − , 

which contradicts to 
1

( )t G k
k

 − . If 
2

2

(2 1) | |
1

2 | |

k I k

I

− −
  

2k − , then we check that 

2

2
( 2) ( ) | | 2k k I k

k
 − = − − + , 

2

6
( 3) ( ) | | 3k k I k

k
 − = − − + , 

 

2

2

1 1
( ) ( ( ) (2 ) 1) | |j j j I j

k k
 = − + − + − , 

2

2

1 1
( 1) ( ( 1) (2 )( 1) 1) | | 1j j j I j

k k
 − = − − + − − + − + , 

 

2

2
(1) (3 ) | | 1I

k
 = − − . 

Therefore, we conclude that ( ) ( 1)j j −  − =  

2

2
(2 ) | | 1

j
I

k
− − . Set 

opt {1,2, , 2}j k −  which 

satisfies 
2

opt opt

| |
2 2( 1) 2 2

k k
I

k j k j
 

− + −
. Hence, 

opt{ ( 2), ( 3), , ( 1)}k k j −  −  + is a strictly 

monotonically increasing sequence in terms of 

2

opt

| |
2 2( 2) 2 2( 1)

k k
I

k k k j
  

− − − +
, and 

opt{ ( ),j   

, (1)}  is a strictly monotonically decreasing sequence 

in terms of 
2

opt

| |
2 2 2 2

k k
I

k j k
  

− −
. Hence, 

*

optmax ( ) ( )j j =   and 

2

0 opt

1 1
| | (U T l n j

k k
 + + − + − +  

opt 2 opt

1
(2 ) 1) | |j I j

k
− + −  

2

0 opt

1 1
1 (T l k j

k k
 + + − − + −  

opt 2 opt

1
(2 ) 1) | |j I j

k
+ − + −  

0 opt opt

1
1 (2 1T l k j j

k
= + + − − − + +  

opt opt

2

(1 )
) | |

j j
I

k

+
− . 

Therefore, 

| |
( )

( )

U
t G

G U


−
 

opt opt

0 opt opt 2

2 0

(1 )1
| | 1 (2 1 ) | |

| | | |

j j
T l k j j I

k k

I T l

+
+ + − − − + + −


+ +

 

opt opt

opt opt 2

2 0

(1 )1
1 (2 ) | |

1
| | | |

j j
k j j I

k k

I T l

+
− − − + −

= +
+ +

 

opt opt

opt opt 2

2

(1 )1
1 (2 ) | |

1
| | 1

j j
k j j I

k k

I

+
− − − + −

 +
+

 

opt opt

opt

(1 )
1 (2 )

j j
j

k

+
= + −  
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opt opt

opt

2

(1 )1
1 3

| | 1

j j
k j

k k

I

+
− − − +

+
+

. 

If 
opt opt

opt

(1 )1
1 3 0

j j
k j

k k

+
− − − +  , then 

opt opt

opt

(1 )
( ) 1 2

j j
t G j

k

+
 + −  

2

opt

opt

1
(2 ) 1

j
j

k k
= − + − +  

2( 2) 1
(2 )( 2) 1

k
k

k k

−
 − + − − +  

2
k

k
= −  

which contradicts to 
1

( )t G k
k

 − . Thus, 
1

1k
k

− −  

opt opt

opt

(1 )
3 0

j j
j

k

+
− +   and 

opt opt

opt

(1 )
( ) 1 (2 )

j j
t G j

k

+
 + −  

opt opt

opt

opt

(1 )1
1 3

1
2 2

j j
k j

k k
k

k j

+
− − − +

+

+
−

. 

To prove 
1

( )t G k
k

 − , it is necessary to prove 

opt opt

opt
opt opt

opt

opt

(1 )1
1 3(1 )

(2 )

1
2 2

j j
k jj j k kj

kk

k j

+
− − − ++

− +

+
−

 

1
1k

k
 − − . 

That is, 

1
1k

k
− −  

opt opt opt opt

opt

opt opt

3 2 (1 ) 3 21
( 1 ) (2 )

2 2 2 2

k j j j k j
k j

k k j k k j

− + −
 − − − −

− −
 

opt opt

opt

(1 )
3

j j
j

k

+
+ − . 

which equals to 

opt opt

opt

opt

(1 )
(2 )

2 2

j j k
j

k k j

+
−

−
 

opt

opt

1
( 1 )

2

k
k j

k k j
 − − +

−
, 

and it can be easily confirmed due to 
opt {1, , 2}j k − .   

However, this trick is not available when 1| | 0I =  and 

0| | 0T l+ = . This is why the selecting policy of v  will be 

revised if 1 0ki − = . 

C. Remark on Difference of Isolated Bound for FabF and 

Fractional (a,b,n)-Critical Graph (FabnCG) 

Recently, there have been two papers on the relationship 

between isolated toughness and FabF (resp. FabnCG). The 

main contributions are stated as follows. 

Theorem 8. (Gao et al. [22]) Let G be a graph, a, b be 

positive integers with 2 a b  . If ( )G a   and 

( ) 1
a

I G a
b

 − + , then G admits a FabF. 

Theorem 9. (Gao et al. [23]) Let G be a graph, and a, b, n be 

positive integers with 2 a b   and 

, ,( 1) 1a b a bn a b n a−   − , where 2i   is an integer. If 

( )G a n  +  and 

,

1
( ) 1

a b

n
I G a

n

+
 − + , then G is a 

FabnCG. 

Compared to Theorem 8 and Theorem 9, it is essential to 

ask some questions: 

(1) Why isolated toughness bound in Theorem 8 is denoted 

by “ ”, while isolated toughness bound in Theorem 9 is 

denoted by “>”? 

(2) Why the tight isolated toughness bound in Theorem 8 is 

a function with regard to a and b, while the sharp ( )I G  

bound in Theorem 9 is a function with regard to a and n? 

(3) Why the best isolated toughness bound in Theorem 9 is 

a piecewise function, and the ( )I G  bound for a graph 

admits FabF only a simple expression? 

In fact, the answer to the aforementioned three questions 

are involved in the counterexample analysis of [22] and [23]. 

Let 0( ) 1a T l mb c+ − = + , where {0}m  and 

{0, , 1}c b − . In terms of 
1 1

1
c

b b

+
  , we have 

0

0

1
( 1 )(| | )

max{ }
| |

a
a T l n

b b

T l

 
− + + + − 

 

+
 

0

1

1 max{ }
| |

c
n

a ba
b T l

+
−

= − + +
+

. 

If 0n = , then the last term 

0

1

max{ }
| |

c
n

b

T l

+
−

+
 is negative, 

which implies that the objective function reaches the 

maximum value when 0| |T l+  tends to be infinite. Since 

graph G is finite, which leads to that the extreme graph can't 

be reached and hence the isolated toughness bound in 

Theorem 8 takes “  ”. If n , then the last term is 

positive, which implies that the objective function reaches the 
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maximum value when 0| |T l+  takes the minimum value, 

which leads to that the extreme graph can be reached and 

hence the isolated toughness bound in Theorem 9 takes “>”'. 

In addition, when 0n = , the last term 

0

1

max{ }
| |

c
n

b

T l

+
−

+
 

tends to   and the value focuses on 1
a

a
b

− + . This 

explains the isolated toughness bound in Theorem 8 with 

regard to a and b and only one expression of the final form. 

When it comes to n , 

0

0

1
( 1 )(| | )

| |

a
a T l n

b b

T l

 
− + + + − 

 

+
 

,

,

1
( 1 )a b

a b

a
n a n

b b

n

 
− + + − 

   

,

,

1

1

a b

a b

n a
n

b
a

n

− 
+ 

 = − + . 

Since the value of 
, 1a bn a

b

− 
 
 

 independent of b, the sharp 

( )I G  bound in Theorem 9 is independent of the value of b. 

And it is the piecewise function because whether 

, 1a bn a

b

− 
 
 

 takes depends on the relationship between a 

and b. It answers both the second and the third questions. 

V. CONCLUSION 

Bipolar fuzzy graphs have a wide range of applications in 

structured fuzzy data, and almost all network problems can 

have corresponding models and theories. This article 

provides the theoretical analysis of connectivity remainder in 

bipolar fuzzy graph setting, and discusses some related topics 

on fraction factors by obtaining relevant remarks. 

The following questions can serve as future research 

directions. 

1. The important difference between fuzzy set theory and 

general set theory can be summarized that fuzzy set 

operations do not satisfy the complementarity law. Based on 

this fact, the BFG is a compensation for the complementarity 

law, using the negative MF to characterize the negative 

uncertainty in the graph. Similar settings include 

intuitionistic fuzzy graph and Pythagorean fuzzy graph, and 

hence the connectivity remainder under these fuzzy graph 

assumptions needs further study. 

2. With the diversification of structural data, in many 

applications, it is necessary to embed graph structures into 

manifolds or other geometric surfaces (for example, Klein 

bottle). Therefore, it is necessary to study what 

characteristics the corresponding connectivity remainder has 

when the fuzzy graph is embedded into a specific geometric 

structure. 
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