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Abstract—This paper studies the single-index varying-
coefficient quantile model with missing covariates at random.
Firstly, some estimators of index parameters and their corre-
sponding linkage function are given by using the inverse proba-
bility weighting method for missing data in two cases including
parameter estimation and non-parametric estimation for the
single-index varying-coefficient quantile regression model. In
particular, the latter case focuses on the study of both known
and unknown probability functions. Secondly, the established
estimators are proved to be asymptotic normal under some
suitable regularity conditions. Finally, the simulation studies
are conducted to demonstrate the finite sample performance of
the proposed method.

Index Terms—quantile regression, inverse probability
weighting, missing covariates at random, single-index varying-
coefficient model.

I. INTRODUCTION

AS an important semi-parametric model with index
items, single-index varying-coefficient model (SIVCM)

is proposed firstly by Xia and Li [1]. This model immediately
attracted the attention of many scholars upon its proposal.
This is because of its two main advantages: one is that it has
the explanatory power like some parametric models, another
is that it can avoid the curse of dimensionality.

The SIVCM follows the general form:

Y = ηT (αTX)G+ ε, (1)

where Y is the response variable, X ∈ Rp and G ∈ Rd are
p-dimensional and d-dimensional covariates, respectively.
η(·) = (η1(·), · · · , ηd(·))T is a d-dimensional unknown cof-
ficient function vector, and α is the p-dimensional unknown
parameter vector. Generally, the first component of G always
be taken as 1. And for the sake of identifiability [2], we
assume that ‖α‖ = 1 and the first component of α is positive.
The ‖·‖ denotes the Euclidean norm, and ε is a random error
independent of (X,G).

Model (1) is so flexible that statistical inference about
it has received lots of attentions in literatures. For example,
Xue and Wang [3] discussed SIVCM by empirical likelihood
method. Huang, et al [4] proposed a procedure for model
structure selection in the framework of the SIVCM. Zhao, et
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al [5] discussed a robust and effective estimation procedure
for SIVCM by combining minimum average variance esti-
mation (MAVE) with exponential squared loss. Other work
about SIVCM can be seen in [6]-[7].

However, the models mentioned above based on mean
regression are not robust against the outliers. Koenker and
Bassett [8] proposed quantile regression that can effectively
overcome the impact of outliers and non-normal error.
Recently, Kuruwita [9] disscussed the variables selection
of the single-index quantile regression model with high
dimensional covariates. And Xu, et al [10] considered the
single-index quantile regression under left truncated data.
For more work about single-index varying-coefficient quan-
tile regression (SIVCQR), see [11]-[13].

In addition, missing data is a common issue in social,
economic and biomedical studies. To overcome the impact
of missing data on estimation results, scholars have proposed
some methods such as complete case (CC) analysis, inverse
probability weighting (IPW), imputation methods and so on.
For model (1) with missing data at random, there have been
many researches to concern the estimation for this model by
using the inverse probability weighting (IPW) methods. For
example, Zhao [15] discussed the estimation of model (1)
and used IPW to construct a weighted estimator for the index
parameters with missing covariates. Song, et al [16] investi-
gated the robust variable selection for SIVCM and adopted
the IPW method to eliminate the potential bias. We also can
get robust estimation based on IPW in other models with
missing data, such as [17]-[19]. Thus, this paper will adopt
IPW to handle the single-index varying-coefficient quantile
regression model (SIVCQRM) with missing covariates at
random.

In this paper, parameter estimators and non-parametric
estimators are proposed for the SIVCQRM with random
missing covariates by using several methods including quan-
tile regression (QR) with known selection probability, non-
parametric quantile regression (NQR) and parameter quan-
tile regression (PQR) with unknown selection probability,
and their asymptotic properties are established under some
regularity conditions. Further, the finite sample performance
of the proposed method are demonstrated by the simulation
studies.

The rest of this paper is organized as follows. In Section
II, QR based on IPW utilizes local linear methods, kernel
estimation and maximum likelihood estimation respectively
under different conditions of SIVCM to obtain the corre-
sponding nonparameter estimators and parameter estima-
tors. The asymptotic properties of established estimators are
proved in Section III. The simulation studies are conducted
to demonstrate the finite sample performance of the proposed
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method in Section IV. The article is briefly discussed and
summarized in the Section V.

II. ESTIMATION

Let Vi = (Yi, Gi)
T . Assume that Xi is missing at random,

which means the selection probability

P (δi = 1|Yi, Xi, Gi) = P (δi = 1|Vi) = π (Vi) , (2)

where δi = 0 if Xi is missing, otherwise δi = 1.
Theoretically, when selection probability function π (·) is

known the QR estimators of α̂ can be defined as

α̂ = arg min
‖α‖=1,α1>0

n∑
i=1

δi
π(Vi)

ρτ [(Y − ηT (αTX)G)], (3)

if η(·) is known, where ρτ (v) = v(τ − I(v<0)) = τv −
vI(v<0) is the loss function.

Suppose that {xi, gi, yi}ni=1 are independent identically
distributed samples from (X,G, Y ). For k = 1, 2, · · · , d,
ηk(·) can be approximated linearly if η(·) is unknown. When
t in a neighborhood of αTxi,

η(αTxi) = ηk(t) + η′k(t)(αTxi − t)
= ak + bk(αTxi − t),

where ak = ηk(t), bk = η′k(t). Then the objective function
in (3) can be rewritten as

n∑
i=1

δi
π(Vi)

ρτ (yi − agi − bgi(α
Txi − t))

×J(
αTxi − t

h
),

(4)

where a = (a1, a2, · · · , ad), b = (b1, b2, · · · , bd), J(·) is
the kernel function and h is the bandwidth. By averaging t,
one can get the empirical approximation of (4)

d∑
j=1

n∑
i=1

δi
π (Vi)

ρτ (yi − agi − bgiα
T (xi − xj))ωij , (5)

where

wij =
Jh(αTxi − αTxj)
n∑
l=1

Jh(αTxl − αTxj)
,

Jh(·) = J(·/h)/h.

Then it follows form (3) and the above formulations that the
quantile regression estimator of SIVCM is defined by

(α̂, â, b̂) = arg min
‖α‖=1,α1>0

d∑
j=1

n∑
i=1

δi
π (Vi)

× ρτ (yi − agi − bgiα
T (xi − xj))

× J(
αTxi − αTxj

h
),

(6)

when selection probability function π (·) is known.
However, the selection probability function π (·) is often

unknown in many cases. Thus it is necessary to estimate
the function π (·). We often use nonparametric smoothing
estimation approaches to estimate the unknown selection

probability function. As a common method, the Nadaraya-
Watson estimator of π(v) can be defined as

π̂(v) =

n∑
i=1

δiLh(Vi − v)

n∑
i=1

Lh(Vi − v)
, (7)

where Lh(·) = L(·/h)/h is a kernel function, and h is the
bandwidth. Hence the NQR estimator with π̂(v) is defined
as

(α̂N , âN , b̂N ) = arg min
‖α‖=1,α1>0

d∑
j=1

n∑
i=1

δi
π̂ (Vi)

× ρτ (yi − agi − bgiα
T (xi − xj))

× J(
αTxi − αTxj

h
),

(8)

where α̂N is called NQR estimator of α with π̂(v).
On the other hand, nonparametric estimation may en-

counter the curse of dimension when the dimension of Vi is
too high. As a result, the parameter method can be used to
get the estimator of π(·). Supposing that π(v) = π(v, ω) for
function π(·, ω), where π(·) is a known function, and ω is
an unknown parameter. Assume

π(v, ω) =
exp(vTω)

1 + exp(vTω)
, (9)

when π(v, ω) is specified correctly, the estimator ω̂ can be
obtained by maximum likelihood estimation (MLE). Then
the PQR estimators of SIVCM can be defined as

(α̂P , âP , b̂P ) = arg min
‖α‖=1,α1>0

d∑
j=1

n∑
i=1

δi
π (Vi, ω̂)

× ρτ (yi − agi − bgiα
T (xi − xj))

× J(
αTxi − αTxj

h
),

(10)

where α̂P is called PQR estimator of α with π(Vi, ω̂). The
objective function in optimization problems is convex, and
the resulting PQR estimators are uniquely defined.

III. ASYMPTOTIC PROPERTIES

The asymptotic properties will be established in this sec-
tion for the proposed estimators. Above all, some regularity
conditions will be introduced in the following.

A1. The kernel J(·) is a symmetric density function with
finite support.

A2. In a neighborhood of α0, the density function of
αTX is positive and uniformly continuous for α. Further
the density of α0

TX is continuous and bounded away from
0 and ∞ on its support.

A3. η0(·) is a continuous function which has bounded
second derivative.

A4. The model error ε has a symmetric distribution with
a positive density f(·).

A5. A1(t) is non-singular for all t ∈ Ω and C1 is positive
definite.

A6. The selection probability function π(v) is positive and
has a bounded continuous second derivative on the support
of (Y,G).

A7. The MLE ω̂ of ω is root-n consistent and satisfying
the regularity conditions of asymptotic normality.
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Conditions (A1)-(A5) are standard conditions and is com-
monly used in quantile regression, see Wu[20]. And (A6) is
a indispensable condition for analyzing missing data , (A7)
is a regular condition for MLE.

Lemma1[21]. Assuming that An(s) is convex and can
be expressed as 1

2s
TV s + UTn s + Cn + rns, where V is

symmetrically positive definite, Un is randomly bounded,
Cn is arbitrary, and rns approaches 0 with probability for
every s, then the least of An(s) is αn only op(1) away from
the minimization of 1

2s
TV s+UTn s+Cn is αn = −V −1Un.

Lemma2[22]. Let (X1, Y1), · · · , (Xn, Yn) be independent
and identically distributed (i.i.d) random vectors, where the
Yi’s are scalar random variables. Suppose that E|Yi|3 <∞
and supx

∫
|y|sϕ(x, y)dy <∞, where f(·, ·) represents the

density of (X,Y ). Let J(·) be a bounded positive function
with a bounded support, satisfying the Lipschitz condition.
Then

sup
x

∣∣∣∣∣ 1n
n∑
i=1

{Jh(Xi − x)Yi − E[Jh(Xi − x)Y ]}

∣∣∣∣∣
= Op(ln

1
2 (1/h)

/√
nh)),

as n2ε−1h→∞ for ε < 1− s−1.
Let F (·) and f(·) be the cumulative distribution function

and density function of model error respectively. Using ft(·)
to represent the marginal density function of T = αT0 X .
We select J(·) as the symmetric density function, denoted
as µj =

∫
tjJ(t)dt, vj =

∫
tjJ2(t)dt. The asymptotic

normality of η̂ = η̂(t;h, α̂) and α̂ are stated in the following
theorems.

Theorem 1. Assume π(v) is known and conditions
(A1)-(A6) hold, if n → ∞, h → 0 and nh → ∞, then
for any interior point t,

√
nh{η̂(t;h, α̂)− η0(t)− 1

2
η′′0 (t)µ2h

2}

→ N(0,Σ(t)),

where Σ(t) = v0τ(1−τ)
fT (t) A1(t)−1A0(t)A1(t)−1, A0(t) =

E{GiGTi |T = t}, and A1(t) = E[f(0|G,T )GiG
T
i |T = t].

Proof Note that
√
nh{η̂(t;h, α̂)− η0(t)}

=
√
nh{η̂(t;h, α̂)− η̂(t;h, α0)}

+
√
nh{η̂(t;h, α0)− η0(t)},

where η̂(·;h, α0) is a local linear estimator of η0(·) when
the parameter α0 is known.

√
nh{η̂(t;h, α̂) − η̂(t;h, α0)}

can be proved as op(1). The details are given below.
For given t,

(η̂(t;h, α̂), η̂′(t;h, α̂)) = arg min
(a,b)

n∑
i=1

δi
π(Vi)

× ρτ{yi − aT gi − bT gi(α̂
Txi − t)}

× Jh(α̂Txi − t),

(η̂(t;h, α0), η̂′(t;h, α0)) = arg min
(a,b)

n∑
i=1

δi
π(Vi)

× ρτ{yi − aT gi − bT gi(α
T
0 xi − t)}

× Jh(αT0 xi − t),

In the following, some signs are introduced,

w̄∗ =
√
nh{η̂(t;h, α̂)− η0(t), h(η̂′(t;h, α̂)

− η′0(t))},

w̄∗∗ =
√
nh{η̂(t;h, α0)− η0(t), h(η̂′(t;h, α0)

− η′0(t))},

y∗i = yi − η0(t)T gi − {η′0(t)}T gi(α̂Txi − t),

y∗∗i = yi − η0(t)T gi − {η′0(t)}T gi(αT0 xi − t),

J∗i = Jh(α̂Txi − t), J∗∗i = Jh(αT0 xi − t),

Gi
∗ = {gi, gi(α̂Txi − t)/h},

Gi
∗∗ = {gi, gi(αT0 xi − t)/h},

and then w̄∗ and w̄∗∗ minimize

ψ∗n(w) =
n∑
i=1

[
δi

π(Vi)
ρτ (y∗i −

wTG∗i√
nh

)− ρτ (y∗i )]J∗i

and

ψ∗∗n (w) =
n∑
i=1

[
δi

π(Vi)
ρτ (y∗∗i −

wTG∗∗i√
nh

)− ρτ (y∗∗i )]J∗∗i

respectively. ψ∗n(w) and ψ∗∗n (w) are convex with respect to
w, further, they both converge point by point to their con-
ditional expectation, the quadratic approximation is easily
deduced. Then by using Lemma 1, we can obtain

ψ∗n(w) =
1

2
wTS∗w +W ∗Tn w + op(1),

ψ∗∗n (w) =
1

2
wTS∗∗w +W ∗∗Tn w + op(1),

where

S∗ = S∗∗ = fT0(t)ϕ′′(0|t)
(

1 0
0
∫
vJ(v)v2dv,

)
,

W ∗n = −(nh)
−1/2

n∑
i=1

ρ′τ (y∗i )G∗i J
∗
i ,

W ∗∗n = −(nh)
−1/2

n∑
i=1

ρ′τ (y∗∗i )G∗∗i J
∗∗
i ,

and ϕ′′(0|t) is the second derivative of

ϕ(m|t) = E(ρτ (y − η0(t) +m)|T = t)

with respect to m evaluated at m = 0.
Assume the first derivatives ϕ′(m|t) and the second deriva-
tives ϕ′′(m|t) of ϕ(m|t) with respect to m exist. Then
v ∈ [−M,M ], and M is a real number which makes
[−M,M ] involve the support of K(·).
Due to the [23] and Lemma 1, w̄∗ that minimize ψ∗n(w) can
be expressed as

w̄∗ = −{S∗}−1Wn
∗ + op(1),

w can be got same as

w̄∗∗ = −{S∗∗}−1Wn
∗∗ + op(1).
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Then we have

w̄∗ − w̄∗∗ = − 1

S∗
(Wn

∗ −Wn
∗∗) + op(1)

= − 1

S∗

n∑
i=1

[(ρ′τ (y∗i )G∗i J
∗
i − ρ′τ (y∗∗i )G∗∗i J

∗∗
i )]

= − 1

S∗

n∑
i=1

ρ′τ (y∗i )G∗i J
∗
i − ρ′τ (y∗∗i )G∗∗i J

∗∗
i ,

y∗∗i has the same sign as y∗i a.s. when

‖α̂− α0‖ = Op(n
−1/2).

For some r > 0,

E{(w̄∗ − w̄∗∗)(w̄∗ − w̄∗∗)T }
≤ −r{S∗}−1h−1(E{((ρ′τ (y∗i ))2

× (G∗i J
∗
i −G∗∗i J∗∗i )(G∗i J

∗
i −G∗∗i J∗∗i )T }

× ({S∗}−1)T

= O(h−1E{(G∗i J∗i −G∗∗i J∗∗i )

× ((G∗i J
∗
i −G∗∗i J∗∗i )T })

= O(o(1)) = o(1),

which means E(w̄∗ − w̄∗∗) = o(1). Then we can obtain
(w̄∗− w̄∗∗) = E(w̄∗− w̄∗∗)+op(1) = op(1) due to the first
two terms. So (w̄∗ − w̄∗∗) = op(1) and

√
nh{η̂(t;h, α̂) −

η̂(t;h, α0)} = op(1). Then we need to prove that
√
nh{η̂(t;h, α0)− η0(t)− 1

2
η′′0 (t)µ2h

2}

→ N(0,Σ(t)).

The details are given as follows.
Let w̄∗∗ =

√
nh{(â− η0(t))T , h(b̂− η′0(t))T }T and w̄∗∗ is

the minimizer of the following formulation

ψn(w̄∗∗) =
n∑
i=1

[
δi

π(Vi)
ρτ (εi + ri −∆i)

− ρτ (εi + ri)]Ji,

where Hi = (gi, gi(α
T
0 xi − t)

/
h)T , ∆i = w̄∗∗Hi/

√
nh,

Ji = J((αT0 xi − t)
/
h), ri = ηT0 (αT0 xi)gi − ηT0 (t)gi −

(η′0(t))T (αT0 xi − t)gi.
By referring to the identity

ρτ (u− v)− ρτ (u)

= −vϕτ (u) +

v∫
0

{I(u≤s) − I(u≤0)}ds,

where ϕτ (u) = τ − I(u≤0). Then ψn(w̄∗∗) can be rewritten
as

ψn(ŵ) = ψ1n(w̄∗∗) + ψ2n(w̄∗∗),

where

ψ1n(w̄∗∗) =
1√
nh

n∑
i=1

δiJi
π(Vi)

∆i[I(εi≤−ri) − τ ],

ψ2n(w̄∗∗) =
n∑
i=1

δiJi
π(Vi)

∆i∫
0

[I(εi≤−ri+s) − I(εi≤−ri)]ds.

It is easy to get

ψ2n(w̄∗∗) =
fT (t)

2
w̄∗∗E(Sn)(w̄∗∗)T + op(1),

Sn =
1

nh

n∑
i=1

f(−ri|G,T )HT
i HiJi(t),

and

E(Sn) = E((f(0|G,T )

[
GGT 0

0 GGTµ2

]
|T )

= S.

Thus,

ψ2n(w̄∗∗) =
1

2
fT (t)w̄∗∗S(w̄∗∗)T + op(1).

It follows from the convexity Lemma [23] that, for any
compact set, the quadratic approximation to ψn(w̄∗∗) holds
uniformly for w̄∗∗ in any compact set, which generates

w̄∗∗ = −f−1
T (t)S−1

× 1√
nh

n∑
i=1

JiHi[I(εi≤−ri) − τ ] + op(1).

At this point, S is a quasi-diagonal matrix.
√
nh(η̂(t)− η0(t)) = −f−1

T (t)A1(t)−1

× 1√
nh

n∑
i=1

JiGi[I(εi≤−ri) − τ ] + op(1).

So we can acquire

E[
√
nh(η̂(t)− η0(t))] = −1

2
η′′0 (u)µ2h

2,

V ar[
√
nh(η̂(t)− η0(t))]

=
v0τ(1− τ)

fT (t)
A1(t)−1A0(t)−1A1(t)−1.

The proof has been finished.
Theorem 2. Under the same conditions as in Theorem 1

and assuming that π(v) is a smoothing function of v and
π(v) ≥ ς > 0, we have

√
nh{η̂N (t;h, α̂N )− η0(t)− 1

2
η′′0 (t)µ2h

2}

→ N(0,Σ∗(t)),

where

Σ∗(t) =
v0τ(1− τ)

fT (t)
A1(t)−1A∗0(t)A1(t)−1,

A∗0(t) = E{ δi
π(Vi)

GiG
T
i |T = t}

− E{1− π(Vi)

π(Vi)
E[GTi |Vi]⊗2|T = t},

A1(t)−1A∗0(t)A1(t)−1

≤ A1(t)−1E[GiG
T
i |T = t]A1(t)−1

= A1(t)−1A0(t)A1(t)−1.

Proof Let

ŵN =
√
nh{(âN − η0(t))T , h(b̂N − η′0(t))T }T .

Similarly to the proof of Theorem 1, we have

ψ∗n(π̂(Vi), wN ) =
1√
nh

n∑
i=1

δiJi
π̂(Vi)

× {wTNHi[I(εi<−ri) − τ ]

+

∫ ∆∗
i

0

[I(εi≤−ri+s) − I(εi≤−ri)]ds}

= ψ∗1nwN + ψ∗2n(wN ),
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where

ψ∗1nwN =
1√
nh

n∑
i=1

δiJi
π(Vi)

wTNHi[I(εi<−ri) − τ ],

ψ∗2n(wN ) =
n∑
i=1

δiJi
π(Vi)

∫ ∆∗
i

0

[I(εi≤−ri+s)

− I(εi≤−ri)]ds.
Let

B∗n(wN ) =
n∑
i=1

δiJi(π(Vi)− π̂(Vi))

π̂(Vi)π(Vi)

×
∫ ∆∗

i

0

[I(εi≤−ri+s) − I(εi≤−ri)]ds,

and ψ∗2n(wN ) = ψ2n(wN ) +B∗n(wN ). It is easy to get that

1√
nh

n∑
i=1

δiJi
π(Vi)

∫ ∆∗
i

0

[I(εi≤−ri+s) − I(εi≤−ri)]ds

= Op(1).

Because of the fact that

sup
v
|π̂(v)− π(v)| = o(1),

it following the above formulations, B∗n(wN ) = op(1).
Similarly to the proof of Theorem 1, we can prove that

√
nh(âN − η0(t)) = −f−1

T (t)A1(t)−1

× 1√
nh

n∑
i=1

δiJi
π(Vi)

Gi

× [I(εi≤−ri) − τ ] +Op(1).

Let

ψ̃∗1n(t) =
1√
nh

n∑
i=1

δiJi
π̂(Vi)

Gi[I(εi≤−ri) − τ ].

By the proof of Theorem 2 in [18], we can obtain

ψ̃∗1n(t) =
1√
nh

n∑
i=1

δiJi
π(Vi)

Gi[I(εi≤−ri) − τ ]

+
1√
nh

n∑
i=1

δiJi − π(Vi)

π(Vi)

× E[(I(εi≤−ri) − τ)Gi|Vi] + op(h
2)

= ψ̃∗1n,1(t) + ψ̃∗1n,2(t) + op(h
2),

where E(ψ̃∗1n,1(t)) = 0 and E(ψ̃∗1n,2(t)) = 0. In addition,
by completing some calculations, we can obtain

var(ψ̃∗1n(t)) =
v0

fT (t)
{E(

δi
π(Vi)

[I(εi≤−ri) − τ ]2

×GiGTi |T = t)− E[
1− π(Vi)

π(Vi)

× E(GTi [I(εi≤−ri) − τ ]|Vi)⊗2|T = t]}
+ o(1).

Then ψ̃∗1n,2
d−→ N(0, v0τ(1−τ)

fT (t) A∗0(t)). Following [17], we can
get

V ar(ψ̃∗1n,2 − ψ∗1n,2|X,G)

≤ q2

nh

n∑
i=1

δiJi
π(Vi)

GiG
T
i max

k
{F (ck + |ri|)− F (ck)}

= op(1).

Based on above results, it follows that ψ̃∗1n(t)
d−→

N(0, v0τ(1−τ)
fT (t) A∗0(t)). By Slutsky’s theorem,

ψ̃∗1n(t)− E[ψ̃∗1n(t)]
d−→ N(0,

v0τ(1− τ)

fT (t)
A∗0(t)).

By Lemma 2, we can get

1

nh

n∑
i=1

δiJi[I(εi≤−ri) − τ ]Gi
p−→

E[
1

nh

n∑
i=1

δiJi[I(εi≤−ri) − τ ]Gi = O
(
h2
)
.

Since 1
π̂(Vi)

− 1
π(Vi)

= op(1), then

1√
nh
ψ̃∗1n(t) =

1√
nh

n∑
i=1

δiJi
π̂(Vi)

× [I(εi≤−ri) − τ ]Gi

+
1√
nh

n∑
i=1

δiJi[
1

π̂(Vi)
− 1

π(Vi)
]

× [I(εi≤−ri) − τ ]Gi

=
1

nh

n∑
i=1

δiJi
π (Vi)

ηiGi + op(h
2).

Thus, we can show that

1√
nh
E[ψ̃∗1n(t)] =

1√
nh
E[

n∑
i=1

δiJi
π (Vi)

ηi(u)Gi]

+ o(h2).

Following above proof and Theorem 1, Theorem 2 is proved.
Theorem 3. Assuming π(v) ≥ ς > 0 is with an unknown

parameter ω, based on (A1)-(A7), we have
√
nh{η̂P (t;h, α̂P )− η0(t)− 1

2
η′′0 (t)µ2h

2}

→ N(0,Σ∗∗(t)),

where
A1(t)−1A∗0(t)A1(t)−1

≤ A1(t)−1E[GiG
T
i |T = t]A1(t)−1

= A1(t)−1A0(t)A1(t)−1,

Σ∗∗(t) =
v0τ(1− τ)

fT (t)
A1(t)−1A∗∗0 (t)A1(t)−1,

A∗∗0 (t) = E{ δi
π(Vi, ω)

GiG
T
i |T = t} − ΩTt Λ−1

t Ωt,

Ωt = E[(1− π(Vi, ω)GTi Vi|T = t],

Λt = E[V Ti Viπ(Vi, ω)(1− π(Vi, ω)|T = t].

Proof Let

ŵP =
√
nh{(âP − η0(t))T , h(b̂P − η′0(t))T }T .

Then

ψ∗∗n (π(Vi, ω̂), ŵP ) =
1√
nh

n∑
i=1

δiJi
π(Vi, ω̂)

wTPHi

× [I(εi≤−ri) − τ ]

+

n∑
i=1

δiJi
π(Vi, ω̂)

∫ ∆∗∗
i

0

× [I(εi≤−ri+s) − I(εi≤−ri)]ds
= ψ∗∗1nwP + ψ∗∗2n(wP ),
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where

ψ∗∗1n =
1√
nh

n∑
i=1

δiJi
π(Vi, ω̂)

HiGi[I(εi≤−ri) − τ ],

ψ∗∗2n(wP ) =
n∑
i=1

δiJi
π(Vi, ω̂)

∫ ∆∗∗
i

0

[I(εi≤−ri+s)

− I(εi≤−ri)]ds}.

Let

B∗∗n (wP ) =
n∑
i=1

δiJi(π(Vi, ω)− π(Vi, ω̂))

π(Vi, ω̂)π(Vi, ω)

×
∫ ∆∗∗

i

0

[I(εi≤−ri+s) − I(εi≤−ri)]ds.

Then ψ∗∗2n(wP ) = ψ2n(wP )+B∗∗n (wP ). Based on MLE the-
ory and the proof of Theorem 2, we can prove B∗∗n (wP ) =
op(1). Similarly we get that

√
nh(âP − η0(t)) = −f−1

T (t)A1(t)−1 1√
nh

×
n∑
i=1

δiJi
π(Vi, ω̂)

Gi[I(εi≤−ri) − τ)]

+Op(1).

Denote π′(Vi, ω) = grad(Vi, ω), then

π(Vi, ω̂)− π(Vi, ω) = π(Vi, ω)(1− π(Vi, ω))

× Vi(ω̂ − ω) + op(n
−1/2),

√
n(ω̂ − ω) = E[π′(Vi, ω)⊗2]−1

× 1√
n

n∑
i=1

π′(Vi, ω)
T

(δi − π(Vi, ω)).

Let

ψ̃∗∗1n(wP ) =
1√
nh

n∑
i=1

δiJi
π(Vi, ω̂)

Gi[I(εi≤−ri) − τ)].

According to the above functions, we have

ψ̃∗∗1n(wP ) =
1√
nh

n∑
i=1

δiJi
π(Vi, ω)

Gi[I(εi≤−ri) − τ)]

− 1√
nh

n∑
i=1

δiJi(π(Vi, ω̂)− π(Vi, ω))

π(Vi, ω)π(Vi, ω̂)
Gi

× [I(εi≤−ri) − τ)]

=
1√
nh

n∑
i=1

δiJi
π(Vi, ω)

Gi[I(εi≤−ri) − τ)]

− 1√
nh

n∑
i=1

δiJi(π(Vi, ω̂)− π(Vi, ω))

π2(Vi, ω)

×Gi[I(εi≤−ri) − τ)] + op(1)

=
1√
nh

n∑
i=1

δiJi
π(Vi, ω)

Gi[I(εi≤−ri) − τ)]

− 1√
nh

n∑
i=1

δiJi(1− π(Vi, ω))

π(Vi, ω)
Gi

× [I(εi≤−ri) − τ)]Vi(ω̂ − ω) + op(1)

= ψ̃∗∗1n,1(wP )− ψ̃∗∗1n,2(wP ) + op(1).

Note that π′(v, ω) = 1− π(v, ω). Then we have

√
n(ω̂ − ω) =

1√
n

n∑
i=1

π′(Vi, ω)
T

(δi − π(Vi, ω))Λ−2
t .

Since

var(ψ̃∗∗1n,1(wP )) =
v0τ(1− τ)

fT (t)

× E(
δi

π(Vi, ω)
GiG

T
i |T = t),

var(ψ̃∗∗1n,2(wP )) =
v0τ(1− τ)

fT (t)

× ΩTt E[V Ti Viπ(Vi, ω)

× (1− π(Vi, ω))] + o(1),

cov(ψ̃∗∗1n,1(wP ), ψ̃∗∗1n,2(wP )) =
2v0τ(1− τ)

fT (t)

× ΩTt E[V Ti Viπ(Vi, ω)(1− π(Vi, ω))] + o(1),

then

var(ψ̃∗∗1n(wP )) =
v0τ(1− τ)

fT (t)
E(

δi
π(Vi, ω)

GiG
T
i |T = t)

− v0τ(1− τ)

fT (t)
ΩTt E[V Ti Viπ(Vi, ω)

× (1− π(Vi, ω))] + o(1).

Similar to the proof of Theorem 2, Theorem 3 follows.
Theorem 4. Assuming conditions (A1)-(A6) hold, if n→
∞, h→ 0 and nh→∞, then

√
n(α̃− α0)→ N(0, τ(1− τ)C−1

1 C0C
−1
1 ),

where α̃ can be α̂, α̂N and α̂P ,

C0 = E[(X − E(X|αT0 X))η′0(αT0 X)T

×GiGTi η′0(αT0 X)(X − E(X|αT0 X))T ],

C1 = E[f(0|X,G)(X − E(X|αT0 X))η′0(αT0 X)T

×GiGTi η′0(αT0 X)(X − E(X|αT0 X))T ].

Proof Let γ̂ =
√
n(α̃ − α0). Then γ̂ is the minimizer of

the following criterion

Qn(γ) =
d∑
j=1

n∑
i=1

[
δi

π (Vi)
[ρτ (εi − si −

1√
n
γTxij b̂

T
j gi)

− ρτ (εi − si)]ωij ,

where si = −ηT0 (αT0 xi)gi + âTj gi + b̂Tj giα
T
0 xij , xij = xi −

xj .

Thus,

Qn(γ) = E(Qn(γ))− 1√
n

d∑
j=1

n∑
i=1

γT
δi

π (Vi)

× [ωijρ
′
τ (εi − si)xij b̂Tj gi

− ωijE[ρ′τ (εi − si)]xij b̂Tj gi] + op(1),
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and

E[(Qn(γ))] =
d∑
j=1

n∑
i=1

[E
δi

π (Vi)
[ρτ (εi − si

− 1√
n
γTxij b̂

T
j gi)]− E[ρτ (εi − si]ωij

=
d∑
j=1

n∑
i=1

[Eρτ (yi − η̂(γ̂Txi|γT0 xi = γT0 xi)gi

+
1√
n

(γ̂ − γ)xij b̂
T
j gi)ωij

−
d∑
j=1

n∑
i=1

Eρτ (yi − η̂(γTxi|γT0 xi = γT0 xi)gi

+
1√
n

(γ̂Txij b̂
T
j gi)ωij ]

= − 1√
n
γT

d∑
j=1

n∑
i=1

ρ′τ (εi − si)xij b̂Tj giωij

+
1

2n
γT

d∑
j=1

n∑
i=1

2f(0|X,G)xij b̂
T
j gig

T
i

× b̂Tj xTijωijγ + op(1).

As a result, we can acquire

Qn(γ) = − 1√
n
γT

d∑
j=1

n∑
i=1

ρ′τ (εi − si)xij b̂Tj giwij

+
1

2n
γT

d∑
j=1

n∑
i=1

2f(0|X,G)xij b̂
T
j gig

T
i

× b̂jxTijwijγ + op(1).

In the root-n consistency assumption, ρ′τ (εi − si) has similar
asymptotic distribution of ρ′τ (εi) given âj and b̂j . Thus, the
theorem can be proved.

IV. NUMERICAL STUDIES

In this section, several simulation examples are given to
assess the performance of the proposed methods.

In numerical studies, we use the kernel function J(x) =
0.75(1−x2)I(|x|≤1), and it follows from the cross validation
method that the optimal bandwidth hopt is selected.

We conduct a small simulation study with n = 100 and
the data is generated from the following model

Y = (XTα0)G+ (ε− Eτ (ε)),

where ε is the model error and Eτ (ε) is the τ th quantile
of ε, α0 = (α1, α2, α3)T = (2/3, 1/2, 1/3)T . The covariate
vector X = (X1, X2, X3)T is a three-dimensionals standard
normal variable. The correlation between Xi and Xj is
1
2

|i−j|
, i, j = 1, 2, 3. X1 is the missing value and another

covariate vector G is generated from a standard normal dis-
tribution. In the following simulations, we considered three
error distributions: N(0, 1), t(3) and χ2(2). All simulations
are performed with 500 replicates based on the following
selection probability function:

P (δi = 1|Xi, Gi) =
exp(ω0+ω1X2+ω2X3+ω3G)

1+exp(ω0+ω1X2+ω2X3+ω3G)
,

where ω = (ω0, ω1, ω2, ω3) = (−1, 0.3, 0.8, 0.1). The average
missing rates are approximately 31% when the quantile point
are set as 0.25, 0.5 and 0.75.

There are four different estimation methods for the above
cases: least square method (LS), quantile regression (QR),
quantile regression method under nonparameter estimation
(NQR) and parameter estimation (PQR). In these cases,
standard deviation (SD) and the mean square error (MSE)
of parameter vectors are calculated and simulation results
are given in the following tables. Using the same selection

TABLE I
ESTIMATORS OF SD AND MSE ON τ = 0.25

Dist Methods τ MEAN SD MSE

α1 α2 α3 α1 α2 α3 α1 α2 α3

N(0,1) LS 0.5 0.669 0.505 0.334 0.090 0.091 0.087 0.008 0.008 0.008

QR 0.25 0.676 0.502 0.333 0.132 0.133 0.120 0.018 0.018 0.014

PQR 0.25 0.667 0.503 0.330 0.035 0.034 0.030 0.001 0.001 0.001

NQR 0.25 0.668 0.499 0.333 0.038 0.035 0.037 0.002 0.002 0.002

t(3) LS 0.5 0.672 0.496 0.328 0.158 0.162 0.145 0.025 0.026 0.021

QR 0.25 0.678 0.499 0.324 0.155 0.152 0.144 0.026 0.023 0.021

PQR 0.25 0.665 0.504 0.333 0.040 0.040 0.034 0.002 0.002 0.001

NQR 0.25 0.665 0.485 0.345 0.307 0.312 0.367 0.094 0.097 0.135

χ2(2) LS 0.5 0.672 0.507 0.333 0.166 0.170 0.172 0.028 0.030 0.030

QR 0.25 0.667 0.497 0.339 0.215 0.232 0.212 0.046 0.054 0.045

PQR 0.25 0.666 0.502 0.331 0.066 0.060 0.050 0.004 0.004 0.003

NQR 0.25 0.653 0.490 0.357 0.370 0.369 0.370 0.006 0.006 0.006

TABLE II
ESTIMATORS OF SD AND MSE ON τ = 0.5

Dist Methods τ MEAN SD MSE

α1 α2 α3 α1 α2 α3 α1 α2 α3

N(0,1) LS 0.5 0.669 0.505 0.334 0.090 0.091 0.087 0.008 0.008 0.007

QR 0.5 0.669 0.503 0.335 0.104 0.107 0.105 0.011 0.012 0.011

PQR 0.5 0.667 0.502 0.333 0.029 0.029 0.026 0.001 0.001 0.001

NQR 0.5 0.668 0.499 0.333 0.041 0.040 0.042 0.002 0.002 0.002

t(3) LS 0.5 0.672 0.496 0.328 0.158 0.162 0.145 0.025 0.026 0.021

QR 0.5 0.678 0.496 0.326 0.135 0.135 0.120 0.018 0.018 0.014

PQR 0.5 0.666 0.502 0.333 0.033 0.035 0.028 0.001 0.001 0.001

NQR 0.5 0.679 0.489 0.313 0.229 0.231 0.240 0.052 0.053 0.058

χ2(2) LS 0.5 0.672 0.507 0.333 0.166 0.170 0.172 0.028 0.029 0.030

QR 0.5 0.672 0.502 0.338 0.189 0.206 0.192 0.036 0.042 0.037

PQR 0.5 0.664 0.504 0.332 0.059 0.054 0.046 0.004 0.003 0.002

NQR 0.5 0.669 0.498 0.334 0.066 0.067 0.066 0.005 0.005 0.004

probability function and the same sample size, and we can
observe that SD of QR, PQR and NQR which are in different
quantile points are mostly lower than those of LS. The
estimation effect is better under different distributions. The
MSE of LS is slightly better than QR method only under
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TABLE III
ESTIMATORS OF SD AND MSE ON τ = 0.75

Dist Methods τ MEAN SD MSE

α1 α2 α3 α1 α2 α3 α1 α2 α3

N(0,1) LS 0.5 0.669 0.505 0.334 0.090 0.091 0.087 0.008 0.008 0.008

QR 0.75 0.668 0.506 0.330 0.117 0.112 0.116 0.014 0.013 0.014

PQR 0.75 0.667 0.500 0.336 0.037 0.033 0.032 0.001 0.001 0.001

NQR 0.75 0.665 0.501 0.331 0.049 0.046 0.043 0.002 0.002 0.0018

t(3) LS 0.5 0.672 0.496 0.328 0.158 0.162 0.145 0.025 0.026 0.021

QR 0.75 0.670 0.500 0.331 0.156 0.159 0.151 0.024 0.025 0.023

PQR 0.75 0.667 0.503 0.332 0.040 0.040 0.034 0.002 0.002 0.001

NQR 0.75 0.665 0.504 0.332 0.051 0.052 0.053 0.003 0.003 0.003

χ2(2) LS 0.5 0.672 0.507 0.333 0.166 0.170 0.172 0.028 0.0289 0.030

QR 0.75 0.666 0.508 0.342 0.226 0.229 0.224 0.051 0.052 0.050

PQR 0.75 0.668 0.502 0.331 0.068 0.061 0.053 0.005 0.004 0.003

NQR 0.75 0.671 0.496 0.336 0.072 0.073 0.074 0.005 0.005 0.006

standard normal distribution from above tables. However,
the outcomes of QR and PQR are superior to those of the
LS in other distributions. Hence, a more robust estimation is
provided by the quantile regression in most scenarios, and
parameter estimation is better than non-parametric estima-
tion in small sample experiments.

V. CONCLUSION

This paper considers quantile regression estimation of
single-index varying-coefficient model with covariates miss-
ing at random. The IPW method is used to handle missing
covariates. Using different estimation methods to estimate
selection probabilities. Numerical simulation results show
that methods can achieve good results under different error
distributions. And the properties of the large sample estima-
tor and linkage functions are proved.
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