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Abstract—This article deals with an inverse problem of
determining two space-time-dependent sources in an integer-
fractional mobile-immobile two-region solute transport system
by additional Dirichlet-Neumann data. The unique existence of
a solution to the forward problem is obtained by the method
of Laplace transform, and a dynamical system connecting the
known data with the unknown sources is established by vari-
ational method and boundary homogenization. The dynamical
system is discretized to a linear system at a given time in
a homogenous polynomial space, and the sources are recon-
structed by alternative iterations and Tikhonov regularization.
Numerical examples are presented to illustrate the validity of
the inversion algorithm.

Index Terms—Two-region solute transport, integer-fractional
system, inverse source problem, dynamical system, boundary
homogenization, numerical inversion.

I. INTRODUCTION

SOIL and groundwater pollution has become a serious
threat to sustainable development worldwide. It is es-

sential to characterize migration and diffusion behaviors in
mathematics for solute transportation in the soil and ground-
water. A typical mathematical model for solute transport in
porous media is advection-dispersion equation:

ut −∇ · (D∇u) + q · ∇u+ s(x, t;u) = 0, (1.1)

where u = u(x, t) is the state variable at time t and space
point x, and D is dispersion/diffusion coefficient tensor, and
q is average flow velocity, s(x, t;u) is source term.

Generally speaking, Eq.(1.1) is suitable for equilibrium
solute transport, where all porous pores in the media are
full of mobile water and chemical reactions of the solute
ions possibly occur in a very short period of time. However,
some pores in the media could have immobile water, or
almost immobile water due to heterogeneity of the media
such that the media is divided into mobile and immobile
regions. Further assume that there is the first-order kinetic
mass transfer between the two regions, and there are no
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adsorption and degeneration in the process, then there holds
(see [11], [12] for instance):{

θm
∂cm
∂t + θim

∂cim
∂t = L(x)cm,

θim
∂cim
∂t = ω(cm − cim),

(1.2)

where cm, cim are solute concentrations in the mobile and
immobile regions respectively; θm and θim are volumetric
water contents of the mobile and immobile regions respec-
tively, and θm + θim = θ where θ denotes the volumetric
water content of the media; L(x) denotes an elliptic operator
describing hydrologic convection and dispersion in space,
and ω is the first-order mass transfer rate between the mobile
and immobile regions.

The system (1.2) is called the mobile-immobile two-region
solute transport model in the case of no sources in het-
erogeneous porous media. If considering linear adsorption,
first-order degeneration and zero-production reaction in the
media, and denoting β = θm/θ as a partition parameter, a
two-region solute transport model with sources is given as
(see [19], [20], [27], [32], for instance){

βR∂cm
∂t + (1− β)R ∂cim

∂t = L(x)cm − µ1cm + γ1(x),

(1− β)R ∂cim
∂t = ω(cm − cim)− µ2cim + γ2(x),

(1.3)
where R ≥ 1 is retardation factor, µ1 and µ2 are degeneration
coefficients, and γ1, γ2 are production coefficients in the
mobile and immobile regions respectively, and other symbols
denote the same meanings as in (1.2).

The models (1.1)-(1.3) are integer-order transport equa-
tions which have been studied and applied widely by hydro-
geologists in lab and field experiments. Nevertheless, quite
a few research studies have shown that fractional diffusion
equations are more effective than the classical equations
in modeling and describing solute transport behaviors with
heavier (power law) tails in recent decades. We only refer
to Metzler et al. [24], Metzler and Klafter [25], Zaslavsky
[36], Zhang et al. [37] for some early work on the non-
instantaneous dynamical models, and recently see [3], [8],
[9], [31] for fractional mobile-immobile models and [1], [26]
for numerical solutions of fractional differential equations.

It is noted that Schumer et al. [30] proposed a fractional
mobile-immobile model by choosing a power-law memory
function, which was referred to as the FMIM equation:

ct + r∂γt c = L(x)c+ s(x, t), (1.4)

where c denotes the solute concentration in the mo-
bile/immobile region, r > 0 is fractional water storage
coefficient, and s(x, t) also denotes the source term, and ∂γt c
is the Caputo’s fractional derivative of c on t with the order
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of γ ∈ (0, 1), defined by [15], [28]

∂γt c =
1

Γ(1− γ)

∫ t

0

(t− s)−γ ∂c

∂s
ds, (1.5)

where Γ(·) denotes the Gamma function. The FMIM equa-
tion (1.4) is a basic model leading to follow-up studies on
anomalous diffusion of solute transport in porous media, see
[6], [10], [13], [23], [35] for instance.

Based on the models (1.2)-(1.4), we will consider an
integer-fractional two-region solute transport system in the
mobile-immobile porous media. This system is a deformation
of the FMIM equation (1.4), where the classical hydrologic
advection-dispersion transport occurs in the mobile region
and the solute variations in the immobile region result from
the first-order mass transfer between the mobile and the
immobile regions with time-memory effect. By the method of
Laplace transform, a unique solution to the integer-fractional
two-region solute transport system is deduced, which gives
mathematical foundation for further studies of the integer-
fractional solute transport model.

On the other hand, some parameters in the model are
always unknown in advance, such as the mass transfer rate,
the initial distribution of the solute ions, the source term, etc.
In these cases, we have to encounter some inverse problems
related to the corresponding model. As for inverse problems
in fractional diffusion equations, we refer to [7], [29] for
early typical work, and recently see [5], [14], [17], [34],
etc. To the authors’ best knowledge, there are few studies
on inverse problems associated with a system of fractional
differential equations [2], [18]. In this paper we will deal
with an inverse source problem for the integer-fractional two-
region solute transport system from numerics.

As we know it is tough to study an inverse coeffi-
cient problem in PDEs from theory and numerics when
the unknown coefficient is space-time-dependent, or space-
state-dependent, or time-state-dependent. This work aims to
reconstruct two space-time-dependent sources in the integer-
fractional two-region solute transport system. It is still mean-
ingful to investigate such inverse source problems from the
viewpoint of engineering applications.

It is noted that ordinary methodologies, such as gradient-
type optimal algorithms, are not good and effective for
inverse space-time-dependent coefficient problems. Fortu-
nately, a boundary functional energy method was proposed
to solve inverse coefficient problems numerically arising
in science and engineering, see [21], [22] for instance.
This method does not need to solve the forward problem
repetitiously and does not need to compute the gradient of
the cost functional. However, this method lacks mathematical
analysis and basis to some extent. We will develop this
method to solve the inverse source problem for the integer-
fractional two-region solute transport system, and give some
theoretical analysis based on the variational method, which
is the main contribution of this paper. By utilizing the
variational method, the undetermined parameters in our in-
version algorithm can be solved uniquely and the algorithm’s
implementation becomes easy compared with the previous
work [21], [22]. In addition, regularization strategy is always
employed to solve inverse coefficient problems in order to
overcome the ill-posedness [4], [16]. The inverse source
problem here is approximated and transformed to a linear

system by discretization, and Tikhonov regularization is
utilized to solve the discretized system uniquely, which is
another contribution of this paper.

The rest of the paper is organized as follows.
In section 2, the integer-fractional two-region solute trans-

port system with space-time-dependent sources is introduced,
and the unique existence of a solution to the forward problem
is obtained using the method of Laplace transform. In section
3, the inverse space-time-dependent source problem is set
forth by overposing all of Dirichlet-Neumann boundary data,
and it is reduced to a dynamical system by the variational
method and boundary homogeneity. In section 4, the dynam-
ical system is discretized to a linear system by alternative
iterations for the sources and the solutions of the forward
problem, and the inversion algorithm with Tikhonov regular-
ization is proposed. In section 5, numerical experiments are
performed, and concluding remarks are given in section 6.

II. THE INTEGER-FRACTIONAL TWO-REGION MODEL
AND ITS SOLUTION

A. The mathematical model

Consider a heterogeneous porous media divided into mo-
bile and immobile regions, and the space domain is set to be
Ω = (0, 1) by simplification and dimensionless.

Assume that the solute migration and diffusion begin in
the mobile region, and some mass transfer occurs between
the mobile and the immobile regions. Further assume that the
solute transport behavior in the mobile region is governed by
the classical hydrologic advection-dispersion and reaction-
diffusion actions, and it becomes a dynamic process with
memory-effect in the immobile region. Thus an integer-
fractional mobile-immobile two-region solute transport sys-
tem is obtained, where the solute variations in the immobile
region is described by a time-fractional differential equation,
and the solute transport in the mobile region is described by
the classical convection-diffusion equation. By introducing
space-time-dependent sources in the two regions respectively,
we have{

ut = Duxx − ux − ω(u− v) + s1,
τ ∂γt v = ω(u− v) + s2,

(2.1)

where u = u(x, t) and v = v(x, t) denote the solute
concentrations, and s1 = s1(x, t) and s2 = s2(x, t) denote
the sources in the mobile and immobile regions respectively,
and (x, t) ∈ Ω×(0,∞), and ∂γt denotes the Caputo fractional
operator on t > 0 of the γ-order (0 < γ < 1); τ > 0 is a
constant related with the partition parameter, the retardation
factor and the fractional time scale, and D > 0 is a constant
related with the hydrodynamical parameters, and ω > 0 also
denotes the first-order mass transfer rate between the mobile
and immobile regions.

The model (2.1) is an integer-fractional system combining
the hydrologic advection-dispersion transport in the mobile
with the fractional diffusion in the immobile, which can be
regarded as a deformation of the FMIM equation. In fact, by
(2.1) there holds

ut + τ ∂γt v = Duxx − ux + s1 + s2, (2.2)

which induces the same equation as (1.4) if considering the
solute transport in the given mobile/immobile region. From
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the viewpoint of engineering application, the system model
(2.1) seems more practical than the FMIM equation (1.4).

For the system (2.1), the initial condition is given as:

u(x, 0) = 1, v(x, 0) = 0, 0 ≤ x ≤ 1, (2.3)

which means that there is a constant distribution of the
considered solute in the mobile region, and the solute con-
centration in the immobile is zero at the initial stage. The
boundary condition at x = 0 is given as

u(0, t) = 1, v(0, t) = 0, t > 0, (2.4)

which implies that the left-hand side of the region in the
mobile keeps a constant same as the initial. The boundary
condition at x = 1 is impermeable, which given as

ux(1, t) = vx(1, t) = 0, t > 0. (2.5)

As a result we get a determined system composed by (2.1)
with (2.3)-(2.5) which is called forward problem of the
mobile-immobile two-region solute transport system.

In what follows we first prove the unique existence of
the solution to the forward problem by using the Laplace
transform, and then set forth an alternative iteration algorithm
based on variational method and boundary homogenization
to determine the two source functions in the system (2.1).

B. Existence of the solution

Assume that for given x ∈ Ω, any possible solutions
u(x, t) and v(x, t) to the system (2.1) and source functions
s1(x, t) and s2(x, t) satisfy the growth condition on t > 0:
(A1) |u(x, t)|, |v(x, t)|, |s1(x, t)|, |s2(x, t)| ≤ M exp(c0t)
as t→ ∞, and M, c0 are positive constants.

In addition, assume that the source functions s1(x, t) and
s2(x, t) are continuous on x ∈ Ω̄ for any given t > 0.
By performing Laplace transform for the system (2.1), and
thanks to the initial condition (2.3), we get{

p û− 1 = Dûxx − ûx − ω(û− v̂) + ŝ1,
τpγ v̂ = ω(û− v̂) + ŝ2,

(2.6)

where û = û(x; p), v̂ = v̂(x; p) denote the Laplace trans-
forms of u(x, t) and v(x, t) on t > 0 for fixed x ∈ Ω
respectively, which are defined by{

û(x; p) =
∫∞
0

exp(−pt)u(x, t)dt,
v̂(x; p) =

∫∞
0

exp(−pt)v(x, t)dt, (2.7)

here p is the Laplace transform parameter satisfying the
convergent condition Re(p) > c0, and c0 > 0 is given in the
growth condition (A1); ŝ1 = ŝ1(x; p), ŝ2 = ŝ2(x; p) denote
the Laplace transforms of s1(x, t) and s2(x, t) on t > 0 also
for fixed x ∈ Ω respectively, which are defined like (2.7).
From the second equation of (2.6) there is

v̂ =
ω

τpγ + ω
û+

ŝ2
τpγ + ω

. (2.8)

Thus we have by the first equation of (2.6)

Dûxx − ûx + bû = d(x), (2.9)

where b = −ω−p+ ω2

τpγ+ω , and d(x) = −1−ŝ1(x)− ωŝ2(x)
τpγ+ω .

Eq.(2.9) is a second-order inhomogeneous ordinary differ-
ential equation on x ∈ Ω with constant coefficients. By (2.3)
and (2.4) the boundary conditions are given as

û(0) = 1/p, û′(1) = 0. (2.10)

By the theory of the second-order inhomogeneous ODE,
there holds
Lemma 1([33]) Assume that the growth condition (A1) is
valid for the functions u(x, t), v(x, t) and s1(x, t), s2(x, t)
on t > 0, and the source functions are continuous on x ∈ Ω̄;
and the coefficients D > 0, τ > 0, ω > 0 and γ ∈ (0, 1), and
the Laplace transform parameter p satisfies Re(p) > c0 > 0,
then the problem (2.9)-(2.10) has a unique, bounded solution.

Nevertheless, following the method used in [18], we can
get the unique existence of the solution to the forward
problem (2.1), (2.3)-(2.5).
Theorem 1 Under the conditions of Lemma 1, the forward
problem (2.1), (2.3)-(2.5) has a unique solution in L∞(Ω∞).
Proof Under the conditions of the theorem, and by the
method of inverse Laplace transform, the contour integral

1

2πi

∫ p0+i∞

p0−i∞
û(x, p)eptdp,

is convergent for (x, t) ∈ Ω∞, which is the solution u(x, t),
i.e., there is

u(x, t) =
1

2πi

∫ p0+i∞

p0−i∞
û(x; p)eptdp, (2.11)

where p0 = Re(p) > c0. Similarly, we can get the expression
of the solution v(x, t).

This theorem gives the unique existence of solution to
the forward problem in the bounded space of L∞(Ω∞), and
the solution’s regularity is still open due to the complexity
of the contour integral. However, it is still meaningful in
mathematics to obtain the existence and the expression of
the solution to the forward problem.

III. INVERSE SOURCE PROBLEM AND DYNAMICAL
SYSTEM

A. The inverse source problem

The source terms s1(x, t) and s2(x, t) in the sys-
tem (2.1) are essential issues characterizing some physi-
cal/chemical/biological actions in the solute transportation,
which are always unknown for real-life problems. At this
point, if having some additional measurable data on the
solution, we can determine them by utilizing the method of
inverse source problems.

Assume that the two sources s1 and s2 are both space-
time-dependent and continuous functions on x ∈ Ω and
t > 0. Noting the known boundary conditions given by (2.4)-
(2.5), we give the following additional boundary conditions:

ux(0, t), vx(0, t); u(1, t), v(1, t), t > 0; (3.1)

s1(0, t), s1(1, t),
∂s1
∂x

(0, t),
∂s1
∂x

(1, t), t > 0; (3.2)

and

s2(0, t), s2(1, t),
∂s2
∂x

(0, t),
∂s2
∂x

(1, t), t > 0. (3.3)

Therefore, an inverse source problem is formulated by the
system (2.1), the initial boundary value conditions (2.3)-
(2.5), together with the additional boundary conditions (3.1)-
(3.3), which is to determine the two source functions s1(x, t)
and s2(x, t) in (2.1) simultaneously.

It is feasible from the viewpoint of engineering to measure
the boundary values and the boundary fluxes for the state
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variables and the sources, in other words, the additional
conditions (3.1)-(3.3) are reasonable and acceptable.

B. The dynamical system

In what follows we set forth a dynamical system connect-
ing the known data with the unknown sources, which plays
an important role in the inversion algorithm.
Theorem 2 For the inverse source problem of determining
s1(x, t) and s2(x, t) in (2.1), there exist third-order polyno-
mials H1(·, t) and H2(·, t) on x ∈ Ω such that there holds
for any given t > 0:

∫
Ω
s1ũdx =

∫
Ω

∂
∂t (ũ+H1)ũdx

− D
∫
Ω
(ũ+H1)ũxxdx−

∫
Ω
(ũ+H1)ũxdx

+ ω
∫
Ω
(ũ− ṽ +H1 −H2)ũdx,∫

Ω
s2ṽdx = τ

∫
Ω
∂γt (ṽ +H2)ṽdx

− ω
∫
Ω
(ũ− ṽ +H1 −H2)ṽdx,

(3.4)
where ũ, ṽ are prescribed functions on x ∈ Ω and t > 0,
which satisfy the homogeneous Dirichlet and Neumann
boundary conditions.
Proof By smooth functions φ(x, t) and ψ(x, t) multiplying
the mobile and immobile equations of (2.1), and integrating
on Ω respectively, there is

∫
Ω
[ut −Duxx + ux + ω(u− v)]φ(x, t)dx

=
∫
Ω
s1(x, t)φ(x, t)dx;∫

Ω
[τ∂γt v − ω(u− v)]ψ(x, t)dx

=
∫
Ω
s2(x, t)ψ(x, t)dx.

(3.5)

Let φ and φx are homogeneous at the boundary of Ω,
i.e., there are φ|∂Ω = 0 and φx|∂Ω = 0. There holds by
integration by part{ ∫

Ω
[utφ−Duφxx − uφx + ω(u− v)φ]dx =

∫
Ω
s1φdx;∫

Ω
[τ∂γt v ψ − ω(u− v)ψ]dx =

∫
Ω
s2ψdx.

(3.6)
Next, let H1(x, t) satisfy the following boundary condi-

tions on x ∈ Ω:

H1|x=0,1 = u|x=0,1,
∂H1

∂x
|x=0,1 =

∂u

∂x
|x=0,1. (3.7)

By the method of undetermined coefficients, there exists a
unique third-order polynomial of x given as

H1(x, t) = x3[2− 2u(1, t) + ux(0, t)]− x2[3− 3u(1, t)
+ 2ux(0, t)] + xux(0, t) + 1,

(3.8)
Similarly one can determine the function H2(x, t) given as:

H2(x, t) = x3[−2v(1, t) + vx(0, t)]− x2[−3v(1, t)
+ 2vx(0, t)] + xvx(0, t).

(3.9)
Henceforth by setting

ũ = u−H1, ṽ = v −H2, (3.10)

we get two functions ũ and ṽ, which satisfy the homoge-
neous Dirichlet-Neumann boundary conditions, respectively.
Combining with (3.6) and choosing φ = ũ and ψ = ṽ, we
obtain the dynamical system (3.4). The proof is completed.

It is noted that (3.4) is a group of integral equations on
the unknown sources, and it is also a dynamical system on
the time t > 0, and the two source functions must satisfy the
system (3.4). Furthermore, the system is also valid for the

series of time t = tj , j = 1, 2, · · ·. From this viewpoint, the
dynamical system is discretized on the time, and the sources
s1 and s2 can be reconstructed by alternative iterations with
the aids of regularization strategy.

IV. THE INVERSION ALGORITHM

A suitable approximate space is always needed to im-
plement an inversion algorithm. If fixing t = tj ∈ (0, T ],
j = 1, 2, · · · in the dynamical system (3.4) for any given
T > 0, the solutions u, v and the source functions s1 and
s2 can be regarded as functions of the space variable x ∈ Ω.
Let V be an approximate space composed by basis functions
Bj(x), j = 1, 2, · · ·, i.e., V = span{Bj(x), j ≥ 1}, and there
holds the homogeneous condition:

Bj(0) = Bj(1) = 0, B′
j(0) = B′

j(1) = 0, j ≥ 1, (4.1)

and ∥Bj∥L2(Ω), ∥B′
j∥L2(Ω) ̸≡ 0 for any j ≥ 1.

Now let t = tj (j = 1, 2, · · ·) in (3.4), and ũ and ṽ be
expressed at such tj by{

ũ|t=tj = λj1Bj(x),

ṽ|t=tj = λj2Bj(x),
(4.2)

where λj1 and λj2 are undetermined parameters dependent
upon tj , j = 1, 2, · · ·.

Assume that the source terms s1 and s2 are prescribed
given, then by substituting (4.2) into (3.4), a linear system
of the parameters λj1 and λj2 is deduced and we can get:{

λj1 = c+d
b−a ,

λj2 = ad+bc
b(b−a) ,

(4.3)

where the coefficients a, b and c, d are given as follows:

a = D
∫
Ω
(B′

j)
2dx+ ω

∫
Ω
(Bj)

2dx;
b = ω

∫
Ω
(Bj)

2dx;

c =
∫
Ω
Bj(

∂H1

∂t )t=tjdx+D
∫
Ω
B′

j
∂H1

∂x dx

+
∫
Ω
Bj

∂H1

∂x dx+ ω
∫
Ω
Bj(H1 −H2)dx−

∫
Ω
Bjs1dx;

d = τ
∫
Ω
Bj(∂

γ
t H2)t=tjdx− ω

∫
Ω
Bj(H1 −H2)dx

−
∫
Ω
Bjs2dx.

(4.4)
For convenience of writing, denote

zj1 = λj1Bj(x), z
j
2 = λj2Bj(x), j ≥ 1. (4.5)

Take a fixed integer K ≥ 1, which is called discretized
dimension of the source functions in the approximate space.
With a completely similar method as used for u and v, the
sources s1 and s2 are homogenized and expressed in terms
of functions in V via

s1(x, t) = f1(x, t) +
K∑

k=1

ck1z
k
1 (x);

s2(x, t) = f2(x, t) +
K∑

k=1

ck2z
k
2 (x),

(4.6)

where ck1 and ck2 (k = 1, 2, · · · ,K) are coefficients un-
determined, and f1(x, t) and f2(x, t) are determined by
the additional boundary data (2.7) and (2.8) as done in
determining H1(x, t) and H2(x, t), which are expressed as
below:

fi(x, t)

= x3

l3 [2si(0, t)− 2si(l, t) + l ∂si∂x (0, t) + l ∂si∂x (l, t)]

+x2

l2 [−3si(0, t) + 3si(l, t)− 2l ∂si∂x (0, t)− l ∂si∂x (l, t)]

+x∂si
∂x (0, t) + si(0, t), i = 1, 2.

(4.7)
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As done in the above, let t = tj(j ≥ 1) in (3.4), and
substitute (4.6) into (3.4), and choose ũ and ṽ at t = tj
as zj1 and zj2 respectively, we get a linear system on c1 =
(c11, · · · , cK1 )T and c2 = (c12, · · · , cK2 )T , which is given via:

K∑
k=1

ck1
∫
Ω
zj1z

k
1dx = yj1,

K∑
k=1

ck2
∫
Ω
zj2z

k
2dx = yj2,

(4.8)

where yj1, y
j
2 (j ≥ 1) are computed by

yj1 =
∫
Ω
zj1(

∂H1

∂t )tjdx+D
∫
Ω
[
∂zj

1

∂x ]2dx

− D
∫
Ω
zj1

∂2H1

∂x2 dx+
∫
Ω
zj1

∂H1

∂x dx

+ ω
∫
Ω
zj1(z

j
1 − zj2 +H1 −H2)dx

−
∫
Ω
zj1f1(x, tj)dx;

(4.9)

and

yj2 = τ
∫
Ω
zj2(∂

γ
t H2)tjdx−

∫
Ω
zj2f2(x, tj)dx

− ω
∫
Ω
zj2(z

j
1 − zj2 +H1 −H2)dx,

(4.10)

respectively.
Take an integer J ≥ 1, which is called discretized dimen-

sion of the dynamical system (3.4), and let j = 1, 2, · · · , J ,
we rewrite (4.8) in a matrix form:

GC = Y, (4.11)

where

G =

(
G1 0
0 G2

)
; C = (c1, c2)

T ;Y = (y1, y2)
T ;

G1 =
(
g1jk

)
J×K

, g1jk =
∫
Ω
zj1z

k
1dx;

G2 =
(
g2jk

)
J×K

, g2jk =
∫
Ω
zj2z

k
2dx;

Y1 =
(
y11 , y

2
1 , . . . , y

K
1

)T
, Y2 =

(
y12 , y

2
2 , . . . , y

K
2

)T
.
(4.12)

Now we give the solvability of the linear system (4.11).
Noting that the coefficient matrix G and the right-hand

term Y are generated by the additional data (3.1)-(3.3), they
have random perturbations in the production. Assume that
the upper bound of the noises is δ > 0, and we have a
disturbed equation:

GδC = Y δ, (4.13)

where Gδ , Y δ are the noised matrix and the right-hand term.
There holds
Theorem 3 For any given δ > 0, there exists an optimal
parameter α∗, and a unique regularized solution, denoted as
Cα∗,δ , to the system (4.11), which can be expressed by

Cα∗,δ = (α∗I + (Gδ)TGδ)−1(Gδ)TY δ, (4.14)

here I denotes the identity matrix, (Gδ)T denotes the trans-
pose of Gδ .
Proof By the general theory of Tikhonov regularization
[16], a regularized solution of (4.11), denoted as Cα,δ , should
satisfy the normal equation:

(Gδ)TGδCα,δ + αCα,δ = (Gδ)TY δ, (4.15)

where α > 0 is the regularization parameter. Henceforth, for
any given δ > 0, there must have an optimal regularization
parameter α∗ = α∗(δ, Y δ) > 0 such that the matrix
α∗I + (Gδ)TGδ is symmetric positive definite, and the
equation (4.15) has a unique solution expressed by (4.14).

This solution is called regularized solution of the system
(4.11), and there holds Cα∗,δ → C as δ → 0 and α∗ → 0,
here C denotes the exact solution of (4.11).

The procedure of the algorithm is summarized as follows.
Inversion Algorithm:
Step 1. Give the basis functions Bj(x)(j ≥ 1), the time
T > 0, the discretized dimensions K,J ≥ 1, the convergent
precision ε and the noise level δ. For each tj ∈ (0, T ]
(j = 1, 2, · · · , J), set initial values of λj1 and λj2 be zero,
and initial guess of C0 be zero vector;
Step 2. For k = 0, 1, . . .K, calculate zj1 and zj2 by (4.5) and
s1 and s2 by (4.6) respectively;
Step 3. Get the updated coefficients λj1 and λj2 by (4.3), and
then update zj1 and zj2 by (4.5) again;
Step 4. Calculate the coefficient matrix G, and the right-hand
term Y by (4.12) using the updated zj1 and zj2;
Step 5. For given δ > 0, by choosing the regularization
parameter α > 0, to get an optimal solution by (4.14) as
the updated C, denoted by C(k) = (c

(k)
1 , c

(k)
2 )T ;

Step 6. If ∥C(k+1)−C(k)∥2 < ε, the algorithm terminates and
an optimal source solution is obtained by (4.6); Otherwise,
go on by turning to Step 2.

V. NUMERICAL EXPERIMENTS

A. Example 1

For (x, t) ∈ (0, 1) × (0, 1) let the exact solution of the
forward problem be

u(x, t) = (x2 − 2x)t+ 1; v(x, t) = (
1

2
x2 − 1

3
x3)t, (5.1)

and the exact source functions be:
s1(x, t) = − t

2 (−
x3

3 + x2

2 )− 2x− 2t+ (2x− 2)t
+ t

2 (x
2 − 2x) + x2 + 1

2 ,

s2(x, t) =
t(1−γ)( x2

2 − x3

3 )

Γ(2−γ) − t
6x

3 − t
4x

2 + xt− 1
2 .

(5.2)
By the above exact solutions we have the additional data
at the boundaries, and then the two source functions are
reconstructed with noisy data by the inversion algorithm.

On the concrete implementation of the inversion algorithm,
take T = 1, τ = 1, and γ = 0.5, and D = 1, ω = 0.5 as
the model parameters, and take Bj(x) = x2(1 − x)2xj−1

(j = 1, 2, · · ·) as the basis functions of the approximate
space, and choose K = J = 3, ε = 1e− 4 as the inversion
parameters. As for the regularization parameter, we choose
α = 0.1 due to the severe ill-posedness of the system (4.11).

Noting the random noises of the additional data, the inver-
sion result for given noise is an average value of continuous
ten-time computations. The inversion errors in the solutions
are listed in Tables I-III, where Err11 and Err21 denote the
relative errors of s1 and s2 at (x, t), Err12 and Err22 denote the
relative errors of s1 and s2 in L2-norm at the time T = 1,
respectively. Moreover, the inversion sources of s1 and s2
with the noise level δ = 5%, and the exact sources are plotted
in Figures 1-2, respectively.

Tables I-III and Figs 1-2 show that the inversion sources
give good approximations to the exact sources, and the
solution errors become small as the noise level goes to small
demonstrating that the inversion algorithm is stable against
the data noises.
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TABLE I
INVERSION RESULTS OF s1 WITH δ = 1% IN EX.1

(x, t) Inversion Solu. Exact Solu. Err11
(0.2, 0.2) -0.617964766 -0.617733333 3.75e-4

(0.4, 0.4) -1.559694139 -1.559733333 2.51e-5

(0.6, 0.6) -2.305021734 -2.304400000 2.70e-4

(0.8, 0.8) -2.824795065 -2.823733333 3.76e-4

(1.0, 1.0) -3.084363139 -3.083333333 3.34e-4

TABLE II
INVERSION RESULTS OF s2 WITH δ = 1% IN EX.1

(x, t) Inversion Solu. Exact Solu. Err21
(0.2, 0.2) -0.454182226 -0.453519807 1.46e-3

(0.4, 0.4) -0.318797420 -0.318399221 1.25e-3

(0.6, 0.6) -0.121471238 -0.121203816 2.21e-3

(0.8, 0.8) 0.094182394 0.094448449 2.82e-3

(1.0, 1.0) 0.271006467 0.271396528 1.44e-3

TABLE III
INVERSION ERRORS WITH NOISES AT T = 1 IN EX.1

δ Err12 Err22
5% 7.31e-3 9.52e-2

1% 1.35e-3 2.38e-2

0.1% 8.44e-5 1.59e-3

TABLE IV
INVERSION RESULTS OF s1 WITH δ = 1% IN EX.2

(x, t) Inversion Solu. Exact Solu. Err11
(0.2, 0.2) 1.281899585 1.290420514 6.60e-3

(0.4, 0.4) 2.258525546 2.286362652 1.22e-2

(0.6, 0.6) 3.240805701 3.278301363 1.14e-2

(0.8, 0.8) 4.022861172 4.043684529 5.15e-3

(1.0, 1.0) 4.384496670 4.384067767 9.78e-5

B. Example 2

Let the exact solution of the forward problem be{
u(x, t) = sin(πx2 )t+ 1,

v(x, t) = (x
2

2 − x3

3 )t1+γ ,
(5.3)

and the exact source functions are given below:
s1(x, t) = sin(πx2 )[1 + π2t

4 + t
2 ] + cos(πx2 )πt2

− x2

4 t
1+γ + x3

6 t
1+γ + 1

2 ,

s2(x, t) = Γ(2 + γ)(x
2

2 − x3

3 )t− sin(πx2 ) t2
+ x2

4 t
1+γ − x3

6 t
1+γ − 1

2 .
(5.4)

Choose K = J = 5 in this example, and other parameters
are the same as used in Ex.1. As done in Ex.1, the inversion
results are listed in Tables IV-VI, where Erri1 (i = 1, 2) and
Erri2 (i = 1, 2) denote the same meanings as in Ex.1.

From Tables IV-VI, it can be seen again that the inversion
sources are in good approximation to the exact sources as
observed in Ex.1. Although the inversion for s2 is not so
good as for s1, it is still acceptable from numerics.

VI. CONCLUSION

The inverse problem of determining two space-time-
dependent sources in the integer-fractional two-region solute

(a) Inversion source with δ = 5%

-4
1

-3

-2

1

-1

0.8

0

0.5 0.6

1

0.4
0.2

0 0

(b) exact source

Fig. 1. Inversion and exact sources of s1(x, t) in Ex.1

TABLE V
INVERSION RESULTS OF s2 WITH δ = 1% IN EX.2

(x, t) Inversion Solu. Exact Solu. Err21
(0.2, 0.2) -0.517134842 -0.525518149 1.60e-2

(0.4, 0.4) -0.569710443 -0.578941051 1.59e-2

(0.6, 0.6) -0.621167632 -0.631466909 1.63e-2

(0.8, 0.8) -0.658408639 -0.668183624 1.46e-2

(1.0, 1.0) -0.685812165 -0.695109935 1.34e-2

TABLE VI
INVERSION ERRORS WITH NOISES AT T = 1 IN EX.2

δ Err12 Err22
5% 1.08e-2 3.82e-2
1% 9.27e-3 9.28e-3
0.1% 9.16e-3 5.06e-3

transport system is investigated form numerics. A unique
bounded solution to the forward problem is obtained by
the Laplace transform, and the alternative iteration inversion
algorithm is set forth to reconstruct the sources successfully.
The inversion algorithm is not only independent of solving
the forward problem but also independent of computation
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(a) Inversion source with δ = 5%
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(b) exact source

Fig. 2. Inversion and exact sources of s2(x, t) in Ex.1

of the gradient of the cost functional, which can be utilized
to other inverse coefficient problems arising from a system
of partial differential equations where the unknowns are in
forms of space-time-dependent.

We are concerned with the theoretical analysis of the
inverse source problem, and pay attention to the choices
of the basis functions and the discretized dimensions in the
realization of the inversion algorithm in the near future.
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