
 

  

Abstract—The quasi-interpolation operator is widely used in 

numerical approximation and numerical solutions of 

differential equations. This paper proposes a new 

multiquadric(MQ) quasi-interpolate and formulates a meshfree 

method for the Korteweg-de Vries(KdV) equation based on the 

proposed multiquadric quasi-interpolate. More specifically, 

based on the multiquadric function, a new univariate 

multiquadric(MQ) quasi-interpolation scheme is structured, 

which possesses high accuracy, simple structure, and ease of 

programming. Moreover, the error estimation of the new 

quasi-interpolate is shown in detail. Next, a meshfree method 

for the Korteweg-de Vries (KdV) is proposed by using the novel 

multiquadric(MQ) quasi-interpolation operator. In the spatial 

direction, the derivative is approximated by the proposed 

multiquadric quasi-interpolate, and the forward divided 

difference approximates the temporal derivative. Several 

numerical examples are presented at the end of the paper to 

verify the expected approximation capability, and the 

experiment results show that the meshfree method (based on 

the new multiquadric(MQ) quasi-interpolation operator) is 

valid. 

 
Index Terms—Multiquadric (MQ) quasi-interpolation, 

Meshfree method, Korteweg-de Vries (KdV) equation 

I. INTRODUCTION 

HE radial basis function (RBF) is a multivariate 

function generated by a univariate function. Due to its 

simple form and good approximation behavior, the radial 

basis functions (RBFs) method has become an effective tool 

in different fields, such as function approximation, neural 

networks, machine learning, and the numerical solutions of 

differential equations. Since the multiquadric (MQ) function, 

which is a type of radial basis function (RBF), was proposed 

by Hardy[2], multiquadric quasi-interpolation attracts a great 

deal of scholarly attention. Beaston and Powell[3] proposed 

three multiquadric (MQ) quasi-interpolant operators, namely 

( )AL f x , ( )BL f x  and ( )CL f x , and the properties of the three 
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operators can be found in [17]. Wu and Schaback [4] 

proposed a new MQ quasi-interpolant operator ( )DL f x  and 

proved that the approximation order is two at most. Chen et al. 

[21] defined a multiquadric quasi-interpolant operator *( )f x , 

which is the generalization of ( )DL f x . Besides, there exists a 

large number of results in the study of multiquadric 

quasi-interpolation operators, such as multilevel 

quasi-interpolation operators in the papers [8,22,26], the 

quasi-interpolation operator  for linear functional data [24] 

and quasi-interpolation operators based on the function cubic 

MQ functions in the papers [9,19,27]. Furthermore, many 

scholars have further discussed solving differential equations 

based on MQ quasi-interpolation [10,25,27,30,31,33]. 

Many practical problems are perceived as Dispersive 

Wave Equations. In this paper, we shall concentrate on the 

following nonlinear partial differential equation named the 

Korteweg-de Vries (KdV) equation, which is one of the 

well-known Dispersive Wave Equations: 
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where   and   are positive real constants. The equation 

exhibits both dispersion and non-linearity. For appropriate 

initial conditions, Gardner et al. [1] has shown the existence 

and uniqueness of solutions of the KdV equation. In recent 

years, the numerical solutions of the KdV equation have 

attracted the interest of a large number of scholars. So far, 

there are many classical numerical methods have been used 

to solve the KdV equation, such as the finite-element method, 

finite-difference method, radial basis functions collation 

method, fourier spectral methods [6,11,13,14,16,18], heat 

balance integral method(HBIM) [7] and the HBIM' 

improvement without the exact solution of the KdV equation 

[5]. The exponential finite-difference method (EFDM) is 

given by Bahadir [12], which possesses higher accuracy for 

small time. Besides, Yan presented three approaches that 

focus on energy-preserving and momentum-preserving 

principles. These approaches are discussed in detail in 

references [28,29,32]. However, those methods require 

solving large scale linear systems of the KdV equation. Based 

on Chen and Wu's quasi-interpolation [21], Xiao [23] 

discussed a numerical scheme that overcomes the problem.  

In this paper, based on the new MQ quasi-interpolant we 

constructed, we formulate a meshfree method for the KdV 

equation, which does not need to solve any linear system of 

equations. Specifically, in the spatial direction, the derivative 

is approximated by the proposed multiquadric 

quasi-interpolation. Besides, the temporal derivative is 
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approximated by the forward divided difference.  

This paper is organized as follows. Some preliminaries 

about the multiquadric quasi-interpolant operator and its 

correlation theorem are presented in Section II. In Section III, 

a novel MQ quasi-interpolant ( )dQ f x  is constructed, and the 

properties of the new operator are discussed. Based on the 

new MQ quasi-interpolation, the numerical scheme is 

presented to solve the KdV equation in Section IV. In Section 

V, numerical experiments are given to show that the new 

quasi-interpolation operator ( )dQ f x  has good approximation 

capability as the classical quasi-interpolation ( )DL f x , and 

verify the effectiveness of the meshfree method. Finally, 

some conclusions are given in Section VI. 

II. MULTIQUADRIC QUASI-INTERPOLATION OPERATOR 

For scattered points 
0 1 na x x x b=    = , the univariate 

multiquadric quasi-interpolation operator of a function 
: ,[ ]f a b R→  has the form 

( )j jQf f x=                                     (1) 

where ( )j x is a linear combination of the function 
2 2( ) ( )j jx x x c = − +  introduced by Hardy [2] with the shape 

parameter c . 

The multiquadric quasi-interpolant *( )f x  of Chen and Wu 
[21] is defined as follows 

0
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Remark [21] The quasi-interpolant *( )f x  becomes the 

quasi-interpolant operator ( )DL f x  whose approximation 

order is two at most, which is proposed by Schaback and Wu 

in [4] under the following condition 

0 0( )= ,x x x −                                (3) 

which means that the operator *( )f x  is the generalization of 

( )DL f x . 

Furthermore, the error estimate of the multiquadric 

quasi-interpolation operator *( )f x  is defined by (1) and (2) as 

follows (see[21] for details). 

Theorem 1.[21]. For 2
0[ , ],nf C x x  there exist positive 

constants 0 1 2, ,C C C  and 3C  independent of h  and ,c  the 

quasi-interpolation operator *( )f x  satisfies an error estimate 

of the type  
2 2

0 1 2 3|| *( ) ( ) || log ,hf x f x C C C h C ch C c h−  + + +  

where 
2

1min{ , }, max( ), 1,2, , .h j j

c
C c h x x j n

h
−= = − =    

III. A NOVEL MULTIQUADRIC (MQ) QUASI-INTERPOLATION 

OPERATOR ( )dQ f x  

 

For scattered points 
0 1 na x x x b=    = , a novel 

multiquadric quasi-interpolation operator (based on 

multiquadric function) is constructed as follows 
2
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Theorem 2. For 2
0[ , ],nf C x x  let 

0
1

0

( )
,
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n
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f f
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+
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−
 there are 

positive constants 2 3,C C  and 4C  independent h and c , 

then the L error of the novel quasi-interpolation operator 

( )dQ f x  defined by (4) and (5) satisfies 
2 2

1 2 3 4|| ( ) ( ) || log .df x Q f x C c C h C ch C c h−  + + +
 

Proof of Theorem 2. Let ( , )x a b , according to equation 

(1)-(3), there is 
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Combining the estimation  

0 0[ ( ) ( ) ( ) ( )] 2 ,n nx x x x x x c − − + − −   

the following inequality holds 

1| ( ) ( ) | .d DQ f x L f x C c−                         (6) 

Theorem 2 holds from (6) and the following inequality(see 

[4]for details).  
2 2

1 2 3|| ( ) ( ) || ( log ) || || .Df x L f x k h k ch k c h f 
−  + +

 

Remark The novel quasi-interpolant has excellent 
approximation accuracy, which is not inferior to the operator 

*( )f x . In fact, our operator has almost the same accuracy as 

the quasi-interpolation operator ( )DL f x in numerical 

experiments (see Section 5 for details). 

IV. NUMERICAL SCHEME USING MQ QUASI-INTERPOLATION 

In this section, we propose a numerical method for solving 

the KdV equation based on the novel MQ quasi-interpolation, 

which is a third-order nonlinear equation  
3

3
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with the initial condition 0( ,0) ( ),u x u x= and boundary 

conditions ( , ) ( ), , 0,u x t f t x t=   ( , ) ( ), 0.xu b t g t t=   

Discretizing the KdV equation by using forward divided 

difference in the temporal direction with mesh length τ, we 

obtain the following formula 
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i.e.,  
1 [ ( ) ( ) ],n n n n n

j j j x j xxx ju u u u u  + = − +  

where 
n

ju  is the approximation of 

( , ) .， ，j n j nu x t x jh t n= =  

In the spatial direction, xu is approximated by the derivatives 

of the new MQ quasi-interpolant. Meanwhile, the third 

derivative xxxu  is replaced using the following method. 

1 1

2

( ) 2( ) ( )
( ) .

n n n
x j x j x jn

xxx j

u u u
u

h

+ −− +
=  

V. NUMERICAL EXPERIMENTS 

This section can be divided into two parts. Firstly, we will 

be using the new quasi-interpolation operator ( )dQ f x  to 

approximate four classical functions. Secondly, we will be 

discussing a meshfree method for the KdV equation. This 

method is based on the new operator ( )dQ f x , which is 

defined by equations (4) and (5). 

A. Numerical approximation 

To begin the study, we will employ a novel 

quasi-interpolation called ( )dQ f x , defined by equations 4 

and 5, to approximate four classical functions. Our aim is to 

assess the efficacy and accuracy of operator ( )dQ f x  by 

comparing the resulting L  errors with those obtained using 

two existing operators ( operator *( )f x  proposed by Chen [21] 

and operator ( )DL f x  presented by Wu and Schaback in [4]). 

Through this comparison, we can better understand the 

effectiveness of the new quasi-interpolation ( )dQ f x . 

Example 1. 
9

1( ) ,f x x= [0,1].x   

Example 2. 
216( 0.8)2

2 ( ) ,
x

f x e
−−= [0,1].x   

Example 3. 3 ( ) sin( ) 0.1sin(32 ),f x x x = + [0,1].x   

Example 4. 4 ( ) arctan(100( 0.3)),f x x= − [0,1].x   

The graphs of the test functions    1( ,) 2( , )3,4i x if =  and 

( )dQ f x  are shown in Fig. 1-Fig. 4 respectively. The 

L errors by using the operators *( )f x , ( )DL f x  and ( )dQ f x  

are given in TABLE I with 0.1h = , and TABLE II with 
0.01h = . 

TABLE I. THE ERRORS OF OPERATORS *( ), ( )Df x L f x  AND ( )dQ f x  FOR 

   1( ,) 2( , )3,4i x if =  WITH 0.1.h =  

c  0.001 0.01 0.03 0.05 0.1 

1( ) ( )f x f x


−

 
0.0031 0.0304 0.0902 0.1485 0.2878 

1( ) ( )DL f x f x


−
 0.0018 0.0185 0.0583 0.1018 0.2225 

1( ) ( )dQ f x f x


−
 0.0018 0.0187 0.0608 0.1084 0.2459 

2( ) ( )f x f x


−

 
5.8335e-04 0.0058 0.0175 0.0291 0.0614 

2( ) ( )DL f x f x


−
 4.1021e-04 0.0044 0.0149 0.0275 0.0650 

2( ) ( )dQ f x f x


−
 4.0988e-04 0.0043 0.0146 0.0267 0.0619 

3( ) ( )f x f x


−

 
0.0031 0.0308 0.0913 0.1504 0.2893 

3( ) ( )DL f x f x


−
 0.0021 0.0208 0.0603 0.0977 0.1886 

3( ) ( )dQ f x f x


−
 0.0021 0.0208 0.0603 0.0977 0.1886 

4( ) ( )f x f x


−

 
0.0071 0.0693 0.1979 0.3131 0.5480 

4( ) ( )DL f x f x


−
 0.0071 0.0694 0.1979 0.3132 0.5485 

4( ) ( )dQ f x f x


−
 0.0071 0.0694 0.1979 0.3132 0.5483 

TABLE II. THE ERRORS OF OPERATORS *( ), ( )Df x L f x  AND ( )dQ f x  FOR 

   1( ,) 2( , )3,4i x if =  WITH 0.01.h =  

c  0.001 0.003 0.005 0.01 0.02 

1( ) ( )f x f x


−

 
0.0043 0.0130 0.0216 0.0430 0.0855 

1( ) ( )DL f x f x


−
 3.7950e-04 0.0014 0.0030 0.0085 0.0250 

1( ) ( )dQ f x f x


−
 5.4746e-04 0.0019 0.0037 0.0095 0.0279 

2( ) ( )f x f x


−

 
7.1753e-04 0.0022 0.0036 0.0072 0.0143 

2( ) ( )DL f x f x


−
 7.2973e-05 2.8606e-04 5.8318e-04 0.0016 0.0051 

2( ) ( )dQ f x f x


−
 1.0518e-04 3.1516e-04 5.8847e-04 0.0017 0.0050 

3( ) ( )f x f x


−

 
0.0016 0.0046 0.0075 0.0141 0.0252 

3( ) ( )DL f x f x


−
 0.0047 0.0143 0.0240 0.0500 0.1055 

3( ) ( )dQ f x f x


−
 0.0047 0.0143 0.0240 0.0500 0.1055 

4( ) ( )f x f x


−

 
0.0230 0.0675 0.1099 0.2049 0.3453 

4( ) ( )DL f x f x


−
 0.0230 0.0675 0.1099 0.2049 0.3453 

4( ) ( )dQ f x f x


−
 0.0230 0.0675 0.1099 0.2049 0.3453 

 

Fig.1-Fig. 4 indicate that the new MQ quasi-interpolation 

operator ( )dQ f x possesses satisfactory approximation 

capability. TABLE I-TABLE II demonstrate that the 

quasi-interpolations ( )dQ f x  and ( )DL f x  proposed by Wu 

and Schaback in[4] have almost the same accuracy for the 

test functions    1( ,) 2( , )3,4i x if = . The approximation 

accuracy of operators ( )dQ f x  and ( )DL f x  is superior to 

*( )f x  except in a few cases (For the function 3( )f x  with 
01.0=h ). Meanwhile, TABLE I-TABLE II also show that 

the approximation capacity of the three quasi-interpolants is 

dependent on c  and h . Moreover, the L  errors of the 

( )dQ f x  are smaller if the constants c  and h  are smaller. 

These numerical results are consistent with the error analysis.  

B. Solving KdV equation by using the new operator 

( )dQ f x
 

In this part, the novel quasi-interpolation operator defined 

in the previous section will be used to solve two types of the 

KdV equation and record the numerical solutions as MQQIs. 

Additionally, we will calculate the L  error between the 

numerical solutions and the analytical solution of the 

equation and compare the results with the numerical 

solutions MQQI in [23]. The comparison results are shown in 

TABLE III-TABLE VIII. More specifically, these tables 

(TABLE III-TABLE VIII) consist of five columns. The first 

column, labeled "Exact", denotes actual data. The second 

column, labeled "MQQIs", represents the results of the 

meshfree method based on the novel operator A. The third 

column, labeled "Error1", shows the difference between the 

actual data and the data obtained through the meshfree 

method. The fourth column and the fifth column are the 

results of the MQQI method and its error (Error2) in [23]. 

Moreover, compared with Example 5. In this example, we 

consider the situation of propagation of single solitary wave 

[15]. let 6=  and 1=  in the KdV equation. The initial 

condition is  

0 2( ) sech ( 7), 0, 0.5.
2 2

r r
u x x t r= − = =

 

The exact solution is  

2( , ) sech ( ( ) 7), 0.5,
2 2

r r
u x t x rt r= − − =
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and the boundary functions )(tf  and )(tg  can be obtained 

from the exact solution. In the numerical examples, we set the 

mesh length 0.001 0.2h ，= =  with the domain 400  x  and 

0 5.t   TABLE III-TABLE V show the numerical solutions 

based on the novel operator MQQIs and the numerical 

solutions MQQI obtained in [23]. Error1 and Error2 are the 

L  errors of the numerical solutions MQQIs based on the 

new operator ( )dQ f x  and the numerical solutions MQQI 

obtained in [23], respectively, with 0.2799c =  at 5,3,1=t . 

TABLE III. THE L ERROR OF THE NUMERICAL SOLUTIONS MQQIS AND 

MQQI AT 1.t =  

x  Exact MQQIs Error1 MQQI[23] Error2 

17 0.080625 0.081817 0.001192 0.081817 0.001192 

18 0.137393 0.137899 0.000506 0.137899 0.000506 

19 0.203886 0.204228 0.000342 0.204288 0.000402 

20 0.247227 0.247960 0.000733 0.247960 0.000733 

21 0.235251 0.235194 0.000057 0.235194 0.000057 

22 0.177627 0.176306 0.001321 0.176306 0.001321 

23 0.112353 0.110928 0.001425 0.110928 0.001425 

24 0.063421 0.062590 0.000830 0.062591 0.000830 

25 0.033545 0.033223 0.000322 0.033223 0.000322 

 

TABLE IV. THE L  ERROR OF THE NUMERICAL SOLUTIONS MQQIS AND 

MQQI AT 3.t =  

x  Exact MQQIs Error1 MQQI[23] Error2 

17 0.043573 0.045284 0.001711 0.045284 0.001711 

18 0.080625 0.082629 0.002004 0.082636 0.002011 

19 0.137393 0.139849 0.002456 0.139860 0.002467 

20 0.203886 0.206768 0.002882 0.206787 0.002901 

21 0.247227 0.249016 0.001789 0.249011 0.001784 

22 0.235251 0.233686 0.001565 0.233662 0.001589 

23 0.177627 0.173619 0.004008 0.173616 0.004011 

24 0.112353 0.108701 0.003652 0.108716 0.003637 

25 0.063421 0.061288 0.002133 0.061304 0.002117 

 

TABLE V. THE L  ERROR OF THE NUMERICAL SOLUTIONS MQQIS AND 

MQQI AT 5.t =  

x  Exact MQQIs Error1 MQQI[23] Error2 

17 0.022515 0.025975 0.003460 0.024489 0.001974 

18 0.043573 0.045341 0.001768 0.045640 0.002067 

19 0.080625 0.081410 0.000785 0.084426 0.003801 

20 0.137393 0.141610 0.004217 0.142601 0.005208 

21 0.203886 0.212876 0.008990 0.208712 0.004826 

22 0.247227 0.250276 0.003049 0.249883 0.002656 

23 0.235251 0.225279 0.009972 0.231660 0.003591 

24 0.177627 0.177104 0.000523 0.171589 0.006038 

25 0.112353 0.107337 0.005016 0.106221 0.006132 

 

Fig. 5 indicates that the numerical solutions based on the 

new MQ quasi-interpolation operator ( )dQ f x possess 

satisfactory approximation capability with 
0.2799, 0.001, 0.2c h= = =  at 1.t =  It can be also observed from 

TABLE III-TABLE V that when the time layer remains 

unchanged, the error accuracy of the intermediate nodes in 

the spatial layer is lower than that of the boundary nodes. 

When the spatial layer remains unchanged, the error accuracy 

of the intermediate nodes in the temporal layer is also lower 

than that of the boundary nodes. The numerical solutions 

used in this paper and the errors are MQQIs and Error1, 

respectively. Meanwhile, the numerical solutions in [15] and 

the errors are MQQI [23] and Error2, respectively.  

TABLE III-TABLE V show that the meshfree method 

proposed possesses almost the same approximation error as 

the numerical solutions MQQI in [23]. Moreover, the 

meshfree method is slightly superior to the numerical 

solutions MQQI method used in the article [23] except for the 

approximation results of the intermediate nodes. 

Example 6. In this example, we consider the situation of 

propagation of two solitary waves [15]. Let 6=  and 1=  

in the KdV equation. The initial condition is 

0

2

3 4cosh(2 ) cosh(4 )
( ) 12

[3cosh( ) cosh(3 )]

x x
u x

x x

+ +
=

+
{ },

 

and the exact solution is 

2

3 4cosh(2 8 ) cosh(4 64 )
( , ) 12

[3cosh( 28 ) cosh(3 36 )]

x t x t
u x t

x t x t

+ − + −
=

− + −
{ }.

 

Considering 0.01, 0.00001c = = and 0.1h =  in the domain 
5 15,x−    0 0.1.t   TABLE VI-TABLE VIII, which are 

containing six columns, demonstrate the effectiveness of the 

meshfree method we proposed. The numerical solutions 

MQQIs (the third column), which are based on our operator, 

and the numerical solutions MQQI (the fifth column), which 

are obtained in [23]. The fourth and sixth columns (Error1 

and Error2) in the TABLE VI-TABLE VIII represent the L  

errors of the numerical solutions based on our operator 

MQQIs and the numerical solutions obtained in [23], 

respectively, with   0.01c = at 0.01,0.05,0.1.t =   
TABLE VI. THE L  ERROR OF THE NUMERICAL SOLUTIONS MQQIS AND 

MQQI AT 0.01.t =  

x Exact MQQIs Error1 MQQI[23] Error2 

-3 0.054477 0.054448 0.000029 0.054358 0.000119 

-2 0.382934 0.382850 0.000084 0.382756 0.000178 

-1 2.084133 2.084222 0.000089 2.084206 0.000073 

0 5.638245 5.640733 0.002488 5.640733 0.002488 

1 3.192964 3.186663 0.006301 3.186663 0.006301 

2 0.478495 0.478633 0.000138 0.478633 0.000138 

3 0.064520 0.064569 0.000049 0.064570 0.000050 

4 0.008723 0.008730 0.000007 0.008730 0.000007 

5 0.001180 0.001181 0.000001 0.001181 0.000001 

 

TABLE VII. THE L  ERROR OF THE NUMERICAL SOLUTIONS MQQIS AND 

MQQI AT 0.05.t =  

x  Exact MQQIs Error1 MQQI[23] Error2 

-3 0.039507 0.038499 0.001008 0.038461 0.001046 

-2 0.275315 0.279317 0.004002 0.279287 0.003972 

-1 1.390946 1.380456 0.010490 1.380403 0.010543 

0 2.574829 2.597851 0.023022 2.597785 0.022956 

1 6.881609 6.922285 0.040676 6.922214 0.040605 

2 1.207024 1.192006 0.015018 1.191924 0.015100 

3 0.100955 0.101539 0.000584 0.101458 0.000503 

4 0.012239 0.012310 0.000071 0.012227 0.000012 

5 0.001630 0.001645 0.000015 0.001559 0.000071 

 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 6, June 2024, Pages 1172-1181

 
______________________________________________________________________________________ 



 

TABLE VIII. THE L  ERROR OF THE NUMERICAL SOLUTIONS MQQIS AND 

MQQI AT 0.1.t =  

x  Exact MQQIs Error1 MQQI[23] Error2 

-3 0.026554 0.024052 0.002502 0.023935 0.002619 

-2 0.188162 0.194745 0.006583 0.194571 0.006409 

-1 1.045967 1.038892 0.007075 1.038671 0.007296 

0 2.000572 1.990282 0.010290 1.990040 0.010532 

1 1.717101 1.765233 0.048132 1.764999 0.047898 

2 7.171392 7.139916 0.031476 7.139714 0.031678 

3 0.464299 0.452859 0.011440 0.452621 0.011678 

4 0.024308 0.024709 0.000401 0.024443 0.000135 

5 0.002542 0.002585 0.000043 0.002261 0.000281 

 

Fig. 6 indicates that the numerical solutions based on the 

new MQ quasi-interpolation operator ( )dQ f x possess 

satisfactory approximation capability with 
0.01, 0.00001, 0.1c h= = =  at 0.1.t =  In TABLE VI-TABLE 

VIII, the numerical solutions used in this paper and the errors 

are MQQIs and Error1, respectively. Meanwhile, the 

numerical solutions in [15] and the errors are MQQI [23] and 

Error2, respectively. From TABLE VI-TABLE VIII, it can 

be seen that the error accuracy for the middle node is 

relatively low in both the temporal and spatial layers. 

However, the approximation accuracy for other nodes is 

relatively high. Moreover, compared with the result of MQQI 

method and its error (Error2) in [23], the numerical solutions 

based on the new operator have higher accuracy except for a 

few points, which means that our meshfree method is 

acceptable and valid.  

VI. CONCLUSION 

This paper proposes an improved quasi-interpolation 

operator ( )dQ f x  based on the MQ function and achieves its 

error estimates. The quasi-interpolation operator possesses 

simple structure and easily performs programming. The 

numerical approximation of test functions validates that the 

operator ( )dQ f x  has almost the same accuracy as ( )DL f x , 

which is superior to *( )f x  for the test functions except in a 

few cases. Meanwhile, a meshfree method by a new 

multiquadric quasi-interpolation for numerical solutions of 

the Korteweg-de Vries (KdV) equation is proposed. The 

numerical method has higher accuracy except in a few points, 

which means that the meshfree method based on our 

quasi-interpolation operator is acceptable and valid. 
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(a) The graphs of 1( )f x  and ( )dQ f x  with 0.01h =  and 0.001c = . 

 

(b) The locally enlarged image of (a). 

Fig. 1. The graphs of 1( )f x  and ( )dQ f x  and the enlarged image of them. 

 

 

(a) The graphs of 2 ( )f x  and ( )dQ f x  with 0.01h =  and 0.001c = . 
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(b) The locally enlarged image of (a). 

Fig. 2. The graphs of 2 ( )f x  and ( )dQ f x  and the enlarged image of them. 

 

 

(a) The graphs of 3 ( )f x  and ( )dQ f x  with 0.01h =  and 0.001c = . 

 

(b) The locally enlarged image of (a). 

Fig. 3. The graphs of 3 ( )f x  and ( )dQ f x  and the enlarged image of them. 
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(a) The graphs of 4 ( )f x  and ( )dQ f x  with 0.01h =  and 0.001c = . 

  

(b) The locally enlarged image of (a). 

Fig. 4. The graphs of 4 ( )f x  and ( )dQ f x and the enlarged image of them. 

 

 

(a) The exact and numerical solutions of Korteweg-de Vries (KdV) equation with 0.2799, 0.001, 0.2c h= = =  at 1.t =  
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(b) The locally enlarged image of (a). 

Fig. 5. The exact and numerical solutions of Korteweg-de Vries (KdV) equation and the enlarged image of them. 

 

 

(a) The exact and numerical solutions of Korteweg-de Vries (KdV) equation with 0.01, 0.00001, 0.1c h= = =  at 0.1.t =  

 

 

(b) The locally enlarged image of (a). 

Fig. 6. The exact and numerical solutions of Korteweg-de Vries (KdV) equation and the enlarged image of them. 
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