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Abstract—Pesticides are the most common method used
to eliminate pests, including aphids. Pesticides are the most
common method used to eliminate pests, including aphids.
Nonetheless, numerous farmers incorporate ladybugs into their
pest management strategies as they serve as natural predators
of aphids. By integrating these methods, farmers aim to achieve
optimal outcomes in mitigating the detrimental effects of aphids
on the agricultural sector. In this paper, the dynamics of
interactions between aphids and ladybugs, including the impact
of pesticides on aphid mortality, are represented using a
system of nonlinear differential equations. This study treats the
parameter representing aphid mortality caused by pesticides
as a fuzzy number to account for variations in resistance
levels. Additionally, the model incorporates four parameters
that depict the interaction between aphids and ladybugs beyond
considering the effect of pesticides. The parameters include the
proportion of aphids consumed by ladybugs, the proportion
of aphids capable of evading ladybugs, and the growth rates
of both aphids and ladybugs. The triangular form is chosen
to depict the fuzzy membership function because it reflects
the resistance of aphids when pesticides are applied exces-
sively. The dynamic model, incorporating a fuzzy parameter, is
transformed into discrete-time models using the Non-Standard
Finite Difference (NSFD) method for simulation purposes. The
simulation outcomes align with the analysis findings, indicating
a potential equilibrium between the populations of aphids
and ladybugs. Various examinations on the impact of fuzzy
pesticide parameters on the growth of aphids and ladybugs are
provided. The findings demonstrate that pesticide application
can substantially decrease the aphid population and can be
tailored based on the interplay between aphids and ladybugs.
Moreover, pesticide usage can be diminished with heightened
ladybug growth and predation rates, thereby minimizing the
occurrence of resistant aphids and enhancing the effectiveness
of pesticide application.

Index Terms—Aphid and ladybug; dynamical system; pesti-
cide fuzzy parameters, non-standard finite difference method.

I. INTRODUCTION

UNITED Nations take action to achieve a better life
in 2030 through 17 Sustainable Development Goals

(SDG), which are related to each other. Zero hunger is second
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among these goals, including food security and sustainable
agriculture. This goal gets more attention from countries
with large populations than others because it increases food
demand. High population growth creates complex problems
and unpredictable challenges in the food supply and brings
up food insecurity [1], [2], [3]. This problem also occurs in
Indonesia [4], [5], since Indonesia is the fourth country in the
world with the largest population after India, China, and the
United States. For these reasons, the Food and Agriculture
Organization (FAO) promotes the Sustainable Food and
Agriculture (SFA) program to help countries achieve SDGs,
especially regarding zero hunger. It is proof that food security
and the agricultural sector are closely related. Furthermore,
much research has been conducted to analyze the relationship
between agricultural sustainability and food security [6], [7],
[8]. In improving food security, various efforts have been
made to enhance the quantity and quality of agricultural
production by several approaches [9], [10], [11], [12]. In
Indonesia, improving the agricultural sector is also carried
out to increase national income since Indonesia is an agrarian
country. In 2022, Statistics Indonesia (BPS) reported that
agriculture was the third-largest sector in terms of Gross
Domestic Product (GDP) contribution.

However, agricultural sustainability still faces several ob-
stacles, such as pests. FAO [13] reports that climate change
is stimulating pests to become more destructive, which will
be one of the biggest challenges for farmers. Moreover,
climate change affects the biology, ecology, and distribution
of insect pests [14]. It implies the agricultural production
management strategies to minimize the significant losses
[15], [16], [17]. Aphid is the most common pest distributed
worldwide, which reduces plant growth by sucking sap and
causing leaf deformation. Furthermore, it can be a serious
pest because of its rapid evolution [18], and aphid is the
primary vector to spread plant viruses [19].

Many strategies to reduce and control the aphid population
include cultural, mechanical, biological, and chemical control
[20], [21]. In chemical control, pesticides are a standard
method of reducing the aphid population. Studies regarding
the efficacy of various types of pesticides have been widely
discussed for many plants. However, pesticide use may harm
the environment, human health, and the plant itself [22], [23].
Moreover, some studies show that continuous and excessive
use of pesticides can make aphids resistant [24], [25]. It
would be better to optimize plant production if pesticide use
is combined with other methods, such as companion plants
and natural predators. Ladybug is the most famous predator
of aphids, both commercial and home use. Framers love them
since they eat aphids and insects up to 5,000 in their lifetime.
Therefore, much research has been conducted to examine the
relationship between aphids and ladybugs through several
approaches.
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Constructing mathematical models is a method used to
enhance comprehension when investigating the dynamics of
interactions between aphids and ladybugs. Ge et al.[26] use
predator-prey systems within thermal performance through
some scenarios to analyze the climate change effect on
aphids and ladybirds interaction. It shows that ladybugs
predation substantially affects aphid abundance more than
climate change. A mathematical model of the system param-
eterized by extensive experimental work [27] and a stochastic
metacommunity model successfully describes ecological in-
teraction between aphids and ladybugs in experiment systems
for different spatial scales [28]. Next, Gabbriellini [29]
constructs a discrete-time model for a dynamical system
to analyze the effect of the presence of ants in aphid and
ladybug relationship.

Generally, many researchers have carried out mathematical
models related to pesticide and insecticide use. Almost
every model is approached by optimization control for a
nonlinear dynamical system. Herlambang et al. [30] construct
a predator-prey model with pesticide as a control variable.
In the next research, they modify these models by dividing
the prey population into susceptible prey and infected prey
[31]. Reyes et al. [32] develop a differential equation model
to describe the absorption of pesticide spray droplets across
the leaf. The results of the analysis of this model will help
the agrochemical industry create affordable and effective
pesticides. Suganya and Senthamarai [33] also analyzed
awareness programs by insecticide spray for coconut trees
to develop a cost-effective insecticide usage. Furthermore,
several studies have also explored the application of fuzzy
logic and mathematical modeling in agriculture. For example,
Wang [34], and Lone et al. [35] respectively highlight the
potential of fuzzy linear programming in agricultural eco-
nomic management and land allocation. Mehta et al. [36]
developed a fuzzy logic model for crop selection, enhancing
precision and reducing ambiguity. Umadevi [37] discussed
the use of fuzzy rule-based models in solving agricultural
problems, while Shams et al. [38] explored the use of
the modified Adomian decomposition technique to solve
generalized intuitionistic fuzzy differential equations, with
applications in various physical science problems. Mondal
et al. [39] use a fuzzy set number to approach and ex-
amine the correct use of pesticide amounts involving five
indicators in agricultural sustainable development due to
pesticides. Pourjafar [40] provides a comprehensive review
of fuzzy logic in agricultural systems, emphasizing its ability
to handle time-varying, non-linear, and adaptive systems.
Malinowski [41] expands this discussion by introducing the
concept of stochastic fuzzy differential equations as a tool for
modeling uncertain dynamic systems in agriculture. These
studies collectively underscore the value of fuzzy logic and
mathematical modeling in addressing agricultural systems’
complex and uncertain nature.

Prediction of aphid and ladybug growth in the presence
of fuzzy pesticides became interesting to analyze. It can be
used to plan the proper treatment for plants and estimate
how long the aphid can survive. In this study, the dynamical
system of aphid and ladybug interaction is described by
three nonlinear differential equations, completed by pesticide
parameters. Pesticide use will affect the aphid death rate and
change the dynamic behavior between aphids and ladybugs.

This study introduces the fuzzy membership function for
pesticide use, which involves the amount of pesticide and
four parameters that indicate the interaction between aphids
and ladybugs. The fuzzy dynamical model is solved nu-
merically using the Non-Standard Finite Difference Method
(NSFD), then compared to the 4th Runge Kutta scheme.
For further analysis, the NFSD method was carried out to
compile some simulations, including sensitivity analysis. The
results show that the use of pesticides as a fuzzy parameter
has a significant effect on the aphid population.

II. RESEARCH METHODOLOGY

Figure 1 shows that this research methodology is divided
into four major stages, namely the mathematical modeling
stage (blue), the analytical stage (red), the numerical stage
(yellow), and the simulation stage (green).

At the mathematical modeling stage, the authors study
the dynamical system that interprets the interaction between
aphids and ladybugs, which has been reviewed by Dani et al.
[42]. This model does not involve the fuzzy function for pes-
ticide parameters. In this research, we modified the pesticide
parameters as a fuzzy membership function. The membership
function is used in the triangular form to represent the
fuzzy numbers associated with interaction parameters. This
triangular shape was chosen because there are conditions
where aphids will be resistant to pesticides. As previously
researched, the ongoing utilization of insecticides can lead
to the development of insecticide resistance in the target
insects [43]. Even when employing a rotation technique, the
possibility of double resistance remains [44]. Finally, this
stage produces the fuzzy dynamical system.

In the analytical stage, the equilibrium point can be derived
from the fuzzy dynamical system to see the population
condition that no longer changes over time. The eigenvalues
for this dynamical system can be derived by substituting the
equilibrium point into the Jacobian matrix of the model.
These eigenvalues will affect the stability criteria for the
analytical solution.

In the numerical stage, this study uses Python to imple-
ment the model in the numerical solution. Here, the model
is solved by two numerical methods: 4th Runge Kutta and
Non-Standard Finite Difference (NSFD). NFSD scheme can
be derived from the discrete-time model with time step as
a function of eigenvalues from the analytical stage. Unlike
the Runge Kutta scheme, which applies to all equilibrium
points, the NSFD scheme will differ for each equilibrium
point since the time step depends on eigenvalues.

Validation is needed to check the model’s validity by com-
paring Runge Kutta, NSFD, and analytical solutions. If these
solutions are significant, the research should return to the
fuzzy dynamical system in the mathematics modeling stage
to check for an error. Otherwise, the research continues to
the simulation stage. The simulation completed by sensitivity
analysis allows further analysis of the effect of the fuzzy
parameter.

III. DYNAMICAL SYSTEM OF APHID AND LADYBUGS

Dani et al. [42] introduce the dynamical system of
aphids and ladybugs as a simultaneous nonlinear differential
equation. The nonlinear system consists of three popula-
tions: aphids, ladybugs, and hibernate ladybugs. Assume that
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Fig. 1. Research Methodology Flowchart

aphids and ladybugs satisfy the logistic growth model with r
and β as growth rates for their population, respectively. Let
x(t), y(t), and z(t) be the proportion of the aphid, active
ladybugs, and hibernate ladybugs population at time t by
their carrying capacity K1 and K2 as follows,

x =
X

K1
, y =

Y

K2
, z =

Z

K2
.

The population of aphids will decrease due to the use of
pesticides, which cause the death of aphids at a rate u, and
the presence of ladybugs that prey on aphids at a rate m. If
some aphids escape from ladybugs with proportion ξ, then
the population of aphids described by

dx

dt
= rx(1− x)− ux− µxy

1 + cx
, (1)

where
µ = mK2, c = ξK1.

On the other hand, the interaction between aphids and
ladybugs will increase the number of ladybug populations.
If the active ladybugs go to hibernate with a transition rate
α and the hibernate goes to active with a transition rate γ,
then the active ladybug population over time t satisfied the
following differential equation.

dy

dt
= βy(1− y) +

bµxy

1 + cx
− αy + γz, (2)

where

b =
K1

K2
ξ.

Last, assume that the hibernate ladybugs over time t satisfied
the exponential growth so that

dz

dt
= αy − γz. (3)

IV. DYNAMICAL SYSTEM OF APHID AND LADYBUGS
WITH PESTICIDE AS FUZZY PARAMETER

Consider the dynamical model for aphids and ladybugs in
(1) - (3), let Ω be the pesticide load each day, and assume that
the aphid and ladybugs dynamic will influence the effective
use of pesticides. Then, the higher pesticide load leads to a
higher death rate of aphids [45], but aphids may be resistant
if the pesticide use is overdosed [25], [24]. Considering the
pesticide load, the parameters u can be viewed as a function
of the pesticide load Ω. Thus, the dynamical model (1) - (3)
can be modified as the fuzzy dynamical model, represented
as follows:

dx

dt
= rx(1− x)− u(Ω)x− µxy

1 + cx
, (4)

dy

dt
= βy(1− y) +

bµxy

1 + cx
− αy + γz, (5)

dz

dt
= αy − γz, (6)

The membership function u(Ω) is constructed by adjusting
the pesticide load according to the interaction behavior
between aphids and ladybugs. If the aphid’s growth rate r and
the proportion of the aphids that can escape from ladybugs
ξ increases, then the pesticide load must be increased.
Conversely, if the ladybug’s growth rate β and the aphid
death rate caused by ladybug predation m increases, we can
reduce pesticide use. Based on this analysis, the maximum
death rate of aphids because of pesticides becomes

umax = U + umin, (7)

where
U = rξ(1− β)(1−m).

The maximum death rate of aphids umax occurs when Ω =
Ω0, where Ω0 is an effective pesticide load and umin as the
minimum value of u(Ω).
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Fig. 2. Fuzzy Membership Function for Aphid Death Rate u(Ω).

Let Ωmin and Ωmax be a maximum and minimum pesti-
cide load, respectively. If the pesticide load used does not
meet the minimum requirements for effective use (Ω <
Ωmin), then the aphid death rate becomes umin. It happens
because the amount of pesticide used is too small, so it
cannot work perfectly in killing aphids. It also occurs when
the pesticide exceeds the maximum effective limit for use
(Ω > Ωmax); this will cause aphids to develop immunity,
making them unable to kill aphids. From an agricultural
perspective, the minimum and maximum aphid death rates
because of pesticides also depend on their quality and
efficacy [46], [47].

Furthermore, when Ωmin < Ω < Ω0, the pesticide load
does not make aphid resistant yet, then the aphid death rate
will increase up to umax. On the other side, if the pesticide
load is more than the effective pesticide load (Ω0 < Ω <
Ωmax), then aphids start to become resistant so that the aphid
death rate decrease. Mathematically, the death rate of aphids
based on the use of pesticides u(Ω) can be expressed in a
fuzzy membership function as follows:

u(Ω) =


umin,Ω < Ωmin,Ω > Ωmax

umin + Ω−Ωmin

Ω0−Ωmin
U,Ωmin ≤ Ω ≤ Ω0

umin + Ω−Ωmax

Ω0−Ωmax
U,Ω0 ≤ Ω ≤ Ωmax

(8)

which can be described by Figure 2.
The alpha-cut concept from fuzzy sets can be applied to

determine the pesticide load adjusted to the desired minimum
death rate for aphids. Let A be the minimum expected aphid
death rate, and then the pesticide load used should be

uA = {Ω ∈ [Ωmin,Ωmax]|u(Ω) ≥ A}, (9)

After apply some algebraic manipulation to (8) and (9), then
the pesticide load must satisfied

Ω1 ≤ Ω ≤ Ω2, (10)

where

Ω1 = Ωmin +
1

U
(A− umin)(Ω0 − Ωmin)

Ω2 = Ωmax +
1

U
(A− umin)(Ω0 − Ωmax)

A. Equilibrium Point

The equilibrium point for the nonlinear system can be
derived by setting (4) - (6) equal to zero:

rx(1− x)− u(Ω)x− µxy

1 + cx
= 0, (11)

βy(1− y) +
bµxy

1 + cx
− αy + γz = 0, (12)

αy − γz = 0. (13)

Solve (11) - (13) by some algebraic manipulation, then three
equilibrium points are obtained. These are

E0 = (x0, y0, z0) = (0, 0, 0), (14)

E1 = (x1, y1, z1) =

(
0, 1,

α

γ

)
, (15)

E2 = (x2, y2, z2) =

(
r − u(Ω)

r
, 0, 0

)
, (16)

where E0 describes the extinction of all populations, whereas
E1 and E2 describe the extinction of the aphid and ladybug
populations, respectively.

B. Stability Analysis

The stability of each equilibrium point can be checked
from its characteristic equation by substituting the equilib-
rium point into the Jacobian matrix of the nonlinear system.
The Jacobian matrix (J) for the model (4) - (6) related to
equilibrium point E0 is

J0 =

 r − u(Ω) 0 0
0 β − α γ
0 α −γ

 , (17)

so that the characteristic equation becomes

[λ− r + u(Ω)][λ2 + (α− β + γ)λ− βγ] = 0, (18)

and the eigenvalues are

λ01 = r − u(Ω), (19)

λ02, λ03 =
−(α− β + γ)±

√
(α− β + γ)2 + 4βγ

2
. (20)

Based on (20), the eigenvalues λ02 and λ03 always have
different sign. It can be concluded that the equilibrium point
E0 is unstable.

Next, the Jacobian matrix related to E1 is

J1 =

 r − u(Ω)− µ 0 0
bµ −β − α γ
0 α −γ

 , (21)

and the characteristic equation related to (21) is

(λ− r + u(Ω) + µ)[λ2 + (α+ β + γ)λ+ βγ] = 0. (22)

Solving (22) for λ gives us the following eigenvalues,

λ11 = r − u(Ω)− µ, (23)

λ12, λ13 =
−(α+ β + γ)±

√
(α+ β + γ)2 − 4βγ

2
. (24)

The equation (24) show that λ12 and λ13 always negative.
Furthermore, the equilibrium point E1 is stable if and only
if λ11 negative, which is r − u(Ω)− µ < 0.
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The last, the Jacobian matrix related to equilibrium point
E2, written as

J2 =

 −r + u(Ω) − µ(r−u(Ω))
r+c(r−u(Ω)) 0

0 β + bµ(r−u(Ω))
r+c(r−u(Ω)) − α γ

0 α −γ

 (25)

Then, the characteristic equation for (25) is

[λ+ r − u(Ω)]
[
λ2 − (B − α− γ)λ−Bγ

]
= 0, (26)

where
B = β +

bµ(r − u(Ω))

r + c(r − u(Ω))
.

Solve (26) then
λ21 = −r + u(Ω), (27)

λ22, λ23 =
(B − α− γ)±

√
(B − α− γ)2 + 4Bγ

2
. (28)

The eigenvalues (28) has a similar form with (20), which is
the eigenvalues λ22 and λ23 have different sign so that the
equilibrium point E2 always unstable.

V. NUMERICAL METHOD

The Non-Standard Finite Difference (NSFD) method is
a numerical scheme that can be used to solve differential
equations, which is better than the classical finite difference
method [48]. It shows that NSFD accuracy is the same as
the 4th Runge-Kutta method, although for the large time
increment. Meanwhile, the classical finite difference is only
accurate for small increments. Furthermore, Yaghoubi et al.
[49] stated that NSFD was more stable than the classical
method.

Let an ordinary differential equation{
df
dt = g(f(t), t, ε), t ∈ [0, te],
f(0) = f0

(29)

where ε is a parameter set, te is the final time, and f0 is the
initial condition.

If the domain is uniformly discretized, then the time length
is

∆t = tn+1 − tn

where n = 0, 1, 2, .... Based on this discretization, the
approximation of f(tn) becomes fn. According to Baleanu
[50], we use the discrete approximation

df

dt
≈ fn+1 − fn

ϕ(∆t)
, (30)

so that the NFSD scheme for (29) become

fn+1 − fn
ϕ(∆t)

= G(fn+1, fn, ..., tn, ε), (31)

where ϕ(∆t) is a modified function of time step size that
must be satisfied

ϕ(∆t) = h+O((∆t)2)

and G(fn+1, fn, ..., tn, ε) is a nonlinear term of (29). Note
that the scheme (31) becomes the classical finite difference
scheme when ϕ(∆t) = ∆t.

Gabbriellini [29] stated that the nonlinear term g(f(t), t, ε)
can rewrite as

g(f(t), t, ε) = (−1)pf ih(f, ε), (32)

so that the nonlinear term G(fn+1, fn, ..., tn, ε) discretiza-
tion become
(−1)p

2

[
(1− (−1)p+1)f i

n + (1− (−1)p)f i−1
n fn+1

]
hn(fn, ε).

(33)
The NSFD scheme (31) can be generalized to the sys-

tem of nonlinear differential equations and applied for the
nonlinear fuzzy model (4) - (6). Let fn = {xn, yn, zn},
where xn, yn, and zn is the population of aphid, active,
and hibernate ladybugs after discretization at time tn, re-
spectively. Rewrite the nonlinear term (4) - (6) one by one
as (32) to get the value of p, i, and the function hn(fn, ε),
then substitute this values and function into (33) to get
G(fn+1, fn, ..., tn, ε). In the end, the NSFD scheme (31)
for the nonlinear fuzzy system (4) - (6) becomes

xn+1 − xn

ϕ(∆t)
= rxn − rx2

n − u(Ω)xn − µxnyn
1 + cxn

, (34)

yn+1 − yn
ϕ(∆t)

= βyn − βy2n +
bµxnyn
1 + cxn

− αyn + γzn, (35)

zn+1 − zn
ϕ(∆t)

= αyn − γzn. (36)

where

ϕ(∆t) =
1− e−q∆t

q
, (37)

with
q ≥ max

{
λ2

2|Re(λ)|

}
, (38)

as in [29]. Here λ is the eigenvalue obtained from Section
III.

VI. RESULTS AND DISCUSSION

This section shows numerical results using the NSFD
scheme compared to the 4th Runge Kutta method as a
validation. Some simulations are conducted here to analyze
the aphid and ladybug interaction behavior, which is affected
by pesticide use as a fuzzy parameter.

A. Numerical Results

The aphid, active, and ladybug populations are approxi-
mated by NSFD and the 4th Runge Kutta scheme using input
parameters as in Table I. From this table, Ω = Ω0 = 5.5
means the simulation shows effective pesticide load, so the
aphid death rate u(Ω) = umax. Use (7), then the aphid death
rate becomes u(Ω) = umax = 0.21575. After calculating
µ = mK2, we obtain that the data satisfied r < u(Ω)+µ and
convergent to equilibrium point E1. Substitute these parame-
ter input into equation (23) and (24), then the eigenvalues are
{−0.0438,−0.4562,−14.9658}. The equilibrium is stable
since all eigenvalues are negative.

The NSFD results can be obtained by iterating (34)-(35)
simultaneously for xn+1, yn+1, and zn+1, then the results
as in Figure 3. Here, choose q = 8, which is satisfying
(38) based on the eigenvalue set. Figure 4 shows the 4th
Runge Kutta approximation with the same parameter input
as in Table I. Both figures show the same quantitative
and qualitative results. The number of aphids over time
(solid curve) grows in the opposite direction with active
(dotted curve) and hibernate ladybugs (dashed curve) since
the dynamical population goes to equilibrium point E1 =
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Fig. 3. Numerical Results by NSFD Scheme.

Fig. 4. Numerical Results by 4th Runge Kutta Scheme.

Fig. 5. NSFD and 4th Runge Kutta Difference.

(0, 1, 1). These results are appropriate for stability analytical
analysis. Here, the extinction of aphids occurs quickly, in
less than three days. It occurs because the aphid death rate
reaches the maximum value since the pesticide load satisfies
the effective amount. Moreover, the existence of ladybugs
as predators also accelerates aphid extinction. The active
ladybugs converge to 1 faster than hibernate ladybugs since
the active ladybug’s growth rate α is greater than a transition
rate from active to hibernate β.

To analyze the accuracy of NSFD, the difference between
NSFD and the Runge Kutta scheme ∆fn is calculated by

∆fn = |fn(NSFD)− fn(RK)|, (39)

where fn(NSFD) and fn(RK) is (xn, yn, zn) by NSFD
and Runge Kutta scheme.

TABLE I
PARAMETER INPUT

Parameter Value Unit

r 0.25 day−1

umin 0.2 day−1

m 0.1 day−1

ξ 0.1 day−1

K1 200 Individuals
β 0.3 day−1

K2 150 Individuals
α 0.2 day−1

γ 0.2 day−1

Ωmin 1 day−1

Ω0 5.5 day−1

Ωmax 10 day−1

Ω 5.5 day−1

x0 100 Individuals
y0 75 Individuals
z0 10 Individuals
T 150 day
∆t 0.01 day

TABLE II
PARAMETER INPUT FOR PESTICIDE LOAD SIMULATION

Parameter Value Unit

r 0.7 day−1

umin 0.2 day−1

m 0.1 day−1

ξ 0.6 day−1

K1 200 Individuals
β 0.1 day−1

K2 150 Individuals
α 0.2 day−1

γ 0.2 day−1

TABLE III
PESTICIDE LOAD AND FUZZY PARAMETER FUNCTION u(Ω)

Simulation Ωmin Ω0 Ωmax Ω umax u(Ω)

5 15 25 8 0.5402 0.3021
Simulation A 5 15 25 12 0.5402 0.4381
(Different Ω) 5 15 25 15 0.5402 0.5402

5 15 25 18 0.5402 0.4381
5 15 25 22 0.5402 0.3021

Simulation B 10 15 25 11 0.5402 0.2680
(Different Ωmin) 5 15 25 11 0.5402 0.4041

1 15 25 11 0.5402 0.4430

5 20 25 11 0.5402 0.3361
5 15 25 11 0.5402 0.4041

Simulation C 5 10 25 11 0.5402 0.6082
(Different Ω0) 5 20 25 19 0.5402 0.6082

5 15 25 19 0.5402 0.4041
5 10 25 19 0.5402 0.3361

The result (39) is plotted by Figure 5. It can be seen
that the difference for each population increases quickly at
the initial observation. The difference for aphid, active, and
hibernate ladybugs rich the maximum value ∆x ≈ 0.00125
at time t = 1.5 days, ∆y ≈ 0.00110 at time t ≈ 12 days,
and ∆z ≈ 0.0018 at time t = 18 days, then decrease
afterward before convergent to 0. Furthermore, the time
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Fig. 6. Fuzzy Membership Function u(Ω) for Simulation A, B, and C.

required for the difference ∆fn to converge to 0 is the same
as the time needed for each population to converge to the
equilibrium point. It is why the hibernate ladybug has the
most significant difference between NSFD and Runge Kutta,
followed by active ladybugs and aphid populations. Since the
difference between NSFD and the 4th Runge Kutta is less
than 0.0018 = 0.18%, then the NSFD scheme has a high
accuracy in solving model (4) - (6).

B. Pesticide Load Simulation

This section gives the simulation results to analyze the
effect of pesticide load on the dynamical system. The sim-
ulation uses the data in Table II. Use these data to conduct
three simulations, named Simulation A (different value Ω),
B (different value Ωmin), and C (different value Ω0). Each
simulation gives some variation of fuzzy parameter function
u(Ω) as shown in Table III. From an agricultural perspective,
the minimum and effective pesticide load can be derived
based on pesticide quality. Then, the fuzzy membership func-
tion for each simulation is described in Figure 6. Based on

Fig. 7. Aphid, Active, and Hibernate Ladybugs Population: Simulation A.

Table III, umax always has the same value for all simulations
since umax depend on r, ξ, β, and m as in Table II so that
pesticide load Ω does not change umax. The fuzzy parameter
u(Ω) will change by pesticide load. Changing the pesticide
load also changes the aphid, active, and hibernate ladybugs
as in Figure 7 - 9.

In simulation A, u(8) = u(22) = 0.3021, u(12) =
u(18) = 0.4381, and u(15) = 0.5. It is related to Figure 7,
which shows that the aphid population decreases when Ω gets
closer to Ω0 = 15. When effective pesticide loads are used
Ω0 = 15, the aphid extinction occurs for about eight days.
When pesticide loads 12 and 18, the aphid extinction occurs
for about ten days. For pesticide loads 8 and 22, the aphid
extinction occurs about 15 days. Therefore, if the pesticide
load Ω is closer to an effective pesticide load Ω0, the aphid
death rate u becomes bigger so that the aphid population gets
smaller, and the aphid extinction becomes faster.
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Fig. 8. Aphis, Active, and Hibernate Ladybugs for Simulation B.

TABLE IV
PESTICIDE LOAD VS THE DESIRED MINIMUM DEATH RATE AND

APHIDS EXTINCTION TIME

The Desired Minimum Aphid Extinction Pesticide Load
Death Rate for Aphids (A) Time (Days) Ω

0.2680 18 7 ≤ Ω ≤ 23

0.3361 13 9 ≤ Ω ≤ 21

0.4041 10 11 ≤ Ω ≤ 19

0.4721 8 13 ≤ Ω ≤ 17

0.5402 7 Ω = Ω0 = 15

In simulation B, changing the minimum pesticide load will
change the fuzzy parameter u(Ω) so that the line gradient
in domain [Ωmin,Ω0] will be different as in the Figure 6
(middle). In this domain, a bigger Ωmin leads to a bigger
line gradient so that u(Ω) becomes smaller. For example,
Ω = 11, which is described by a dotted vertical line in the

Fig. 9. Aphis, Active, and Hibernate Ladybugs for Simulation C.

Figure 6 (middle), will intersect u(Ω) in the different point,
which gives us u(11) as in Table III. When u(Ω) gets smaller,
the aphid population gets bigger, as in Figure 8.

In simulation C, changing the effective pesticide load
Ω0 will change the fuzzy membership function u(Ω) as
in Figure 6 (right). Without changing the value of Ωmin

and Ωmax, a bigger Ω0 leads a smaller line gradient in
domain [Ωmin,Ω0] and a bigger line gradient in domain
[Ω0,Ωmax]. That is why the value u(11) become smaller
when Ω0 getting bigger since 11 ∈ [Ωmin,Ω0]. It can be
concluded that for Ω ∈ [Ωmin,Ω0], the aphid, active, and
hibernate ladybug population will increase over Ω0 as in
Figure 6. In contrast, u(19) will be proportional to the Ω0

and inversely proportional to the number of aphids, active,
and hibernate ladybugs since 19 ∈ [Ω0,Ωmax].

Overall, the number of active and hibernated ladybugs is
proportional to the number of aphids since more aphids give
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TABLE V
SENSITIVITY PARAMETER INPUT TO FUZZY PARAMETER u(Ω) AND umax

Simulation r ξ β m Ωmin Ω0 Ωmax Ω umin umax u(Ω)
1st Simulation: 0.7 0.6 0.1 0.05 5 15 25 13 0.2 0.5591 0.4873

Different Value of r 0.4 0.6 0.1 0.05 5 15 25 13 0.2 0.4052 0.3642
0.1 0.6 0.1 0.05 5 15 25 13 0.2 0.2513 0.2411

2nd Simulation: 0.7 0.6 0.1 0.05 5 15 25 13 0.2 0.5591 0.4873
Different Value of ξ 0.7 0.35 0.1 0.05 5 15 25 13 0.2 0.4095 0.3676

0.7 0.1 0.1 0.05 5 15 25 13 0.2 0.2599 0.2479
3rd Simulation: 0.7 0.6 0.7 0.05 5 15 25 13 0.2 0.3197 0.2958

Different Value of β 0.7 0.6 0.4 0.05 5 15 25 13 0.2 0.4394 0.3915
0.7 0.6 0.1 0.05 5 15 25 13 0.2 0.5591 0.4873

4th Simulation: 0.7 0.6 0.1 0.75 5 15 25 13 0.2 0.2945 0.2756
Different Value of m 0.7 0.6 0.1 0.4 5 15 25 13 0.2 0.4268 0.3814

0.7 0.6 0.1 0.05 5 15 25 13 0.2 0.5591 0.4873

Fig. 10. Fuzzy Membership Function u(Ω) for Different r.

Fig. 11. Fuzzy Membership Function u(Ω) for Different ξ.

more food for ladybugs. The active ladybug population fluc-
tuates in domain t ∈ [0, 25], and the maximum point occurs
when aphids are extinct. All populations converge toward the
equilibrium point (0,1,1) according to the analytical solution
described previously.

Furthermore, simulation results can be used to determine
the load of pesticide (Ω) required that will produce the
desired minimum death rate of aphid or the expected time
to achieve aphid extinction through the alpha-cut concept
in equation (9) - (10). Table IV gives some examples for
pesticide load selection to get the desired u(Ω) based on pa-
rameter input in Simulation A. It can be seen that the length
of time aphids are extinct is inversely proportional to the
death rate of aphids. Other scenarios can be considered when
making decisions about controlling aphids with pesticides.

C. Sensitivity Analysis

Consider the definition of fuzzy membership function (8),
changing parameter r, ξ, β, and m will affect u(Ω). For this

Fig. 12. Fuzzy Membership Function u(Ω) for Different β.

Fig. 13. Fuzzy Membership Function u(Ω) for Different m.

reason, four simulations were conducted here as in Table V
where the membership function u(Ω) for each simulation
is described in Figure 10 - 13. The simulation results
align with the analytical analysis, which stated that umax

is proportional to aphid growth rate r and the proportion
of aphids that can escape from ladybugs ξ. Moreover, it is
inversely proportional to ladybugs’ growth rate β and the
proportion of aphids eaten by ladybugs m.

Figure 14 - 17 describes the aphid population for Simu-
lation 1 - 4. Each figure consists of three subfigures corre-
sponding to three different parameter values (which produce
three different u). Each subfigure shows aphid populations
over time with pesticides (red solid line) and without pesti-
cides (green dashed line) to see the effect of pesticide use.
Almost all subfigures show that aphid populations dropped
drastically after pesticide use.

For further analysis, each simulation is completed by
Figure 18 - 21. These figures show how big the difference
in aphid population over time between pesticide use and
non-pesticide for different parameter values based on the
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Fig. 14. Aphid Population Between Pesticide Use (u ̸= 0) and Non
Pesticide (u = 0) for Simulation 1.

following formula,

∆xn = xn|u(Ω)̸=0 − xn|u=0. (40)

In Figure 14, when r = 0.7 and u = 0, the aphid
population will increase sharply up to x ≈ 0.95 within
ten days, then decrease slowly afterward, convergent to
x ≈ 0.83. The use of pesticides changes u from 0 to 0.4873,
so the aphid population will drop quickly and become extinct
within 15 days. This pattern also occurs for r = 0.4, but the
distance between the green dotted line (u ̸= 0) and the red
solid line (u = 0) becomes smaller. The extreme condition
occurs when the aphid growth rate is too small. Without
pesticide use, the aphid population will be extinct within 25

Fig. 15. Aphid Population Between Pesticide Use (u ̸= 0) and Non
Pesticide (u = 0) for Simulation 2.

days for r = 0.1. This extinction becomes faster (within
eight days) when the pesticide is used. In detail, Figure 18
shows that a bigger r leads to a more significant difference
in the aphid population between pesticide and non-pesticide.
This means that the use of pesticides will kill more aphids
when the aphid growth rate r is higher. The same explanation
applies to Simulation 2, described by Figure 15 and 19. The
proportion of aphids that can escape from ladybugs ξ is
proportional to the number of aphids killed by pesticides.

Figure 16 related to Simulation 3, aphid population based
on different ladybugs growth rate β. This parameter is
inversely proportional to u, so the parameter u becomes
smaller when β gets bigger. That is why aphid extinction
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Fig. 16. Aphid Population Between Pesticide Use (u ̸= 0) and Non
Pesticide (u = 0) for Simulation 3.

becomes slower when β gets bigger. It is in line with the
Figure 20. However, this figure does not follow the pattern
in Figure 18 and 19. Here, a bigger β leads to a smaller
difference between pesticide use and non-pesticide within
50 days (before aphid extinction because of pesticide use).
After 50 days, this order will be reversed.

In Simulation 4, when m = 0.75 and m = 0.4, the
aphid population will drastically decline at the initial time,
as shown in Figure 17. Pesticides did not cause it, but the
proportion of aphids eaten by ladybugs was too big. In this
case, we do not need pesticides. In contrast, when m = 0.05,
the proportion of aphids eaten by ladybugs is too small, so
the pesticide use needs more here to get a more considerable

Fig. 17. Aphid Population Between Pesticide Use (u ̸= 0) and Non
Pesticide (u = 0) for Simulation 4.

aphid death rate u. It is described clearly in Figure 21 that
m is inversely proportional to the effect of pesticide use. In
this case, the use of pesticides will appear significant at very
small m.

Not only the aphid population but also the active ladybug
population over time is described in Figure 22 - 25 for
Simulation 1-4 as in Table V. Based on Figure 22 - 25, we
can derive the difference in active ladybug population over
time between pesticide use and non-pesticide for different
parameter values, as in equation (40), based on the following
formula,

∆yn = yn|u(Ω)̸=0 − yn|u=0, (41)
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Fig. 18. Aphid Difference Between u ̸= 0 and u = 0 for Simulation 1.

Fig. 19. Aphid Difference Between u ̸= 0 and u = 0 for Simulation 2.

Fig. 20. Aphid Difference Between u ̸= 0 and u = 0 for Simulation 3.

Fig. 21. Aphid Difference Between u ̸= 0 and u = 0 for Simulation 4.

Fig. 22. Active Ladybug Population Between Pesticide Use (u ̸= 0) and
Non Pesticide (u = 0) for Simulation 1.

then Figure 26 - 29 can be plotted.
Figure 22 - 25 shows the active ladybug population when

u = 0 is always greater than u ̸= 0. Moreover, the active
ladybug’s population always goes to 1 as its equilibrium
condition E1 for u ̸= 0, but not for u = 0. It means the
equilibrium points E1 will not be achieved without pesticide
use.

From Figure 22 and 23, a bigger value of r has significant
results: the red and green curves dispersed to different points.
This condition does not occur when r = 0.1 and ξ = 0.1.
These are why Figure 26 and 27 show a unique pattern for
r = 0.1 and ξ = 0.1. The same explanation for Figure 25
and 29. In varying parameter, β, Figure 24 implies that a
smaller value leads the red and green curve to more disperse
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Fig. 23. Active Ladybug Population Between Pesticide Use (u ̸= 0) and
Non Pesticide (u = 0) for Simulation 2.

so that ∆yn become bigger as in Figure 28.
This subsection implies that pesticides are used based

on the interaction between aphids and ladybugs. We may
measure the effectiveness of pesticide use by combining
parameters through the fuzzy parameter. Furthermore, based
on Figure 18 - 21, the simulation results show that the
parameters that influence the effectiveness of pesticide use,
from largest to smallest, are: β, ξ, r,m. In addition, pesticide
use kills aphids and can control the number of ladybugs, so
they do not have more than their carrying capacity.

VII. CONCLUSION

The fuzzy membership function has successfully modeled
the aphid death rate because pesticides depend on pesticide

Fig. 24. Active Ladybug Population Between Pesticide Use (u ̸= 0) and
Non Pesticide (u = 0) for Simulation 3.

load. It becomes a fuzzy parameter for the dynamical system
of aphid and ladybug interaction. The membership function
is depicted triangular to represent the possibility of aphids
being resistant to pesticides when the pesticide load exceeds
the effective pesticide load. The pesticide load must be
proportional to the aphid’s growth rate and the proportion
of the aphids that can escape from ladybugs. Conversely, if
the ladybug’s growth rate and the aphid death rate caused
by ladybug predation increase, we can reduce pesticide use
to minimize the cost of controlling aphids. Based on the
pesticide fuzzy parameter, we may examine the required
pesticide load to produce the desired minimum death rate
of aphids or the expected time to achieve aphid extinction.
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Fig. 25. Active Ladybug Population Between Pesticide Use (u ̸= 0) and
Non Pesticide (u = 0) for Simulation 4.

The simulation results show that the usage of pesticides can
reduce the number of aphids and speed up aphid extinction.
It can also control the number of ladybugs so they do not
have more than their carrying capacity. Furthermore, the
aphid and ladybug interaction parameters that influence the
effectiveness of pesticide use, from largest to smallest, are
ladybug growth rate, the proportion of aphids that can escape
from ladybugs, aphid growth rate, and the proportion of
aphids eaten by ladybugs.
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Fig. 26. Active Ladybug Difference Between u ̸= 0 and u = 0 for
Simulation 1.

Fig. 27. Active Ladybug Difference Between u ̸= 0 and u = 0 for
Simulation 2.

Fig. 28. Active Ladybug Difference Between u ̸= 0 and u = 0 for
Simulation 3.

Fig. 29. Active Ladybug Difference Between u ̸= 0 and u = 0 for
Simulation 4.
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