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Abstract—If p(z) =

n∑
ν=0

aνz
ν is a polynomial of degree n

having all its zeros in |z| ≤ k, k ≥ 1, Jain [Bull. Math. Soc.
Sci. Math. Roumania Tome, 59(2016), 339-347] proved

max
|z|=1

|p′(z)| ≥ nAk max
|z|=1

|p(z)|,

where

Ak =

(
|a0|+ |an|kn+1

|ao| (1 + kn+1) + |an| (kn+1 + k2n)

)
.

In this paper, we initially derive a generalized form that
not only encompasses but also enhances the aforementioned
inequality. Additionally, we extend this formulation to a more
comprehensive result, thereby producing an improved outcome
for certain established inequalities as a specific instance.

Index Terms—polynomial, zeros, derivatives, Turán-type in-
equality, maximum modulus, Schwarz lemma.

I. INTRODUCTION

Consider a polynomial p(z) of degree n. Turán [16] proved
his calibrated result that if p(z) has all its zeros in |z| ≤ 1,
then

max
|z|=1

|p′(z)| ≥ n

2
max
|z|=1

|p(z)|. (1)

Inequality (1) is sharp and equality holds for p(z) = αzn+β,
where |α| = |β|.
Inequality (1) was refined by Aziz and Dawood [1] in the
form

max
|z|=1

|p′(z)| ≥ n

2

{
max
|z|=1

|p(z)|+ min
|z|=1

|p(z)|
}
. (2)

Inequality (1) of Turán [16] has been of considerable interest
and applications and it would be of interest to seek its
generalization for polynomials having all their zeros in
|z| ≤ k, k > 0. The case when 0 < k ≤ 1 was for the
first time settled by Malik [8] and proved

max
|z|=1

|p′(z)| ≥ n

1 + k
max
|z|=1

|p(z)|. (3)

While for the case k ≥ 1, Govil [4] proved

Manuscript received December 2, 2023; revised April 25, 2024. This
work was financially supported in part by University Grant Commission
with reference no. 1118/(CSIR-UGC NET JUNE 2017).

Reingachan N. is a PhD candidate of the Department of Mathematics,
National Institute of Technology Manipur, Langol-795004, India (Corre-
sponding author, phone: +917085223940; e-mail: reinga14@gmail.com).

Robinson Soraisam is a PhD candidate of the Department of Mathematics,
National Institute of Technology Manipur, Langol-795004, India (e-mail:
soraisam.robinson@gmail.com).

Khangembam Babina Devi is a PhD candidate of the Department of
Mathematics, National Institute of Technology Manipur, Langol-795004,
India (e-mail: Khangembambabina@gmail.com).

M. Singhajit Singh is a PhD candidate of the Department of Mathematics,
National Institute of Technology Manipur, Langol-795004, India (e-mail:
msinghasingho@gmail.com).

Barchand Chanam is Professor of the Department of Mathematics,
National Institute of Technology Manipur, Langol-795004, India (e-mail:
barchand 2004@yahoo.co.in).

max
|z|=1

|p′(z)| ≥ n

1 + kn
max
|z|=1

|p(z)|. (4)

Equality in (4) is satisfied for p(z) = zn + kn, k ≥ 1.
Under the same hypothesis, it was Govil [5] who improved
upon (4) by proving

max
|z|=1

|p′(z)| ≥ n

1 + kn

{
max
|z|=1

|p(z)|+ min
|z|=k

|p(z)|
}
. (5)

Equality in (5) holds for p(z) = zn + kn, k ≥ 1.
For a better insight into the recent works on polynomial
inequalities one can see [2], [9], [11], [12], [13], [14].

Recently, Jain [7] proved an improvement of inequality
(4), incorporating the leading coefficient and the constant
term of the polynomial by using the generalized form of the
classical Schwarz’s lemma.

Theorem 1. If p(z) =
n∑

ν=0

aνz
ν is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|p′(z)| ≥ nmax
|z|=1

|p(z)|, (6)

where

Ak =

(
|a0|+ |an|kn+1

|ao| (1 + kn+1) + |an| (kn+1 + k2n)

)
II. LEMMAS

To establish the proposed theorems, we will rely on the
following lemmas. Consider a polynomial p(z) of degree
n, and let q(z) = znp

(
1
z̄

)
. The first lemma is credited to

Frappier et al. [3].

Lemma 2. If p(z) =
n∑

ν=0

aνz
ν is a polynomial of degree n,

then for R ≥ 1

max
|z|=R

|p(z)| ≤ Rn max
|z|=1

|p(z)| −
(
Rn −Rn−2

)
|p(0)|, (7)

if n ≥ 2 and

max
|z|=R

|p(z)| ≤ Rmax
|z|=1

|p(z)| − (R− 1) |p(0)|, if n = 1.

(8)

Lemma 3. Let f(z) be analytic in |z| < 1, with f(0) = a
and |f(z)| ≤M , |z| < 1. Then

|f(z)| ≤M
M |z|+ |a|
|a||z|+M

, |z| < 1. (9)

Lemma 3 is a well-known generalization of Schwarz’s
lemma [15, p.212].

Lemma 4. Let f(z) be analytic in |z| ≤ 1, with f(0) = a
and |f(z)| ≤M , |z| ≤ 1. Then

|f(z)| ≤M
M |z|+ |a|
|a||z|+M

, |z| ≤ 1. (10)
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Proof: It follows easily from Lemma 3.

Lemma 5. If p(z) =
n∑

ν=0

aνz
ν is a polynomial of degree n

having all its zeros in |z| ≤ 1, then

|q′(z)| ≤ |p′(z)| on |z| = 1. (11)

The above lemma is due to Jain [7].

Lemma 6. If p(z) =
n∑

ν=0

aνz
ν is a polynomial of degree n,

then

max
|z|=1

|p′(z)|+max
|z|=1

|q′(z)| ≥ nmax
|z|=1

|p(z)|. (12)

The result is due to Govil et al. [6].

Lemma 7. If p(z) =
n∑

ν=0

aνz
ν is a polynomial of degree n

having all its zeros in |z| ≤ k, k > 0, then for any real or
complex number λ with |λ| < 1 and m = min

|z|=k
|p(z)|

kn|an| ≥ |λ|m+ |a0|. (13)

Proof: By hypothesis, p(z) =
n∑

ν=0

aνz
ν is a polynomial

of degree n having all its zeros in |z| ≤ k, k > 0. Then,
the polynomial P (z) = e−i arg a0p(z) has the same zeros as
p(z). Now,

P (z) = e−i arg a0

×
{
|a0|ei arg a0 + a1z + · · ·+ an−1z

n−1 + anz
n
}

= |a0|+ e−i arg a0

×
{
a1z + · · ·+ an−1z

n−1 + anz
n
}
. (14)

Now, on |z| = k for any real or complex number λ with
|λ| < 1 and m = min

|z|=k
|p(z)| ̸= 0, we have

|λ|m < m ≤ |P (z)|.

Then by Rouche’s theorem, R(z) = P (z) + |λ|m has all its
zeros in |z| < k and in case m = 0, R(z) = P (z). Thus,
in any case R(z) has all its zeros in |z| ≤ k. Now, applying
Vieta’s formula to R(z), we get

|a0|+ |λ|m
|an|

≤ kn, (15)

i.e.
kn|an| ≥ |λ|m+ |a0|. (16)

III. MAIN RESULT

In this paper, our focus is on the category of polynomials
with degree n ≥ 2 having zero of order s at the origin,
where 0 ≤ s ≤ n − 2 only. For a polynomial of degree 1,
expressed as p(z) = a0 + a1z, the evaluation of max

|z|=1
|p(z)|

becomes straightforward as |a0| + |a1|, and max
|z|=1

|p′(z)| is

simply |a1|. In the case where s = n−1, the polynomial takes
the form p(z) = an−1z

n−1 + anz
n, and consequently, we

trivially obtain max
|z|=1

|p(z)| = |an−1|+|an| and max
|z|=1

|p′(z)| =

(n− 1)|an−1|+ n|an|. In both the instances, precise values

are known, which eliminates the need for estimations. Our
primary objective is to establish the following generalization
and enhancement of Theorem 1. More precisely, we prove

Theorem 8. If p(z) =
n∑

ν=s

aνz
ν , 0 ≤ s ≤ n − 2, is a

polynomial of degree n ≥ 2 having all its zeros in |z| ≤ k,
k ≥ 1, then

max
|z|=1

|zp′(z)− sp(z)| ≥ (n− s)

×
(

|as|+ |an|kn−s+1

|as| (1 + kn−s+1) + |an| (kn−s+1 + k2n−2s)

)
×max

|z|=1
|p(z)|

+
|as|k + |an|kn−s

|as| (1 + kn−s+1) + |an| (kn−s+1 + k2n−2s)

×kn−s−4
(
k4 − 1

)
|as+1| , for s ≤ n− 3 (17)

and

max
|z|=1

|zp′(z)− sp(z)| ≥ (n− s)

×
(

|as|+ |an|k3

|as| (1 + k3) + |an| (k4 + k3)

)
max
|z|=1

|p(z)|

+
|as|k + |an|k2

|as| (1 + k3) + |an| (k4 + k3)

×(k2 − 1)|as+1|, for s = n− 2. (18)

Remark 9. Setting s = 0 in Theorem 8, we get the following
improvement of Theorem 1 recently proved by Jain [7] as
well as inequality (4), for polynomials of degree n ≥ 2.

Corollary 10. If p(z) =
n∑

ν=0

aνz
ν is a polynomial of degree

n ≥ 2 having all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|p′(z)| ≥ n

(
|a0|+ |an|kn+1

|a0| (1 + kn+1) + |an| (kn+1 + k2n)

)
×max

|z|=1
|p(z)|+ |a0|k + |an|kn

|a0| (1 + kn+1) + |an| (kn+1 + k2n)

×kn−4
(
k4 − 1

)
|a1| , for n ≥ 3 (19)

and

max
|z|=1

|p′(z)| ≥ n

(
|a0|+ |a2|k3

|a0| (1 + k3) + |a2| (k4 + k3)

)
×max

|z|=1
|p(z)|+

(
|a0|k + |a2|k2

|a0| (1 + k3) + |a2| (k4 + k3)

)
×(k2 − 1)|a1|, for n = 2. (20)

Remark 11. Since k ≥ 1, it immediately follows that
Corollary 10 provides an enhanced bound compared to
Theorem 1 when a1 ̸= 0. To demonstrate that the bounds of
Corollary 10 represent an improvement over (4), it suffices
to establish that

|a0|+ |an|kn+1

|a0| (1 + kn+1) + |an| (kn+1 + k2n)
≥ 1

1 + kn
,

which is equivalent to

|an|
(
k2n+1 − k2n

)
≥ |a0|

(
kn+1 − kn

)
,

that is
kn|an| ≥ |a0|,
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which clearly holds by Lemma 7 with λ = 0.

Remark 12. In some cases, the enhancement can be quite
significant, as is illustrated through the following examples.

Example 13. Consider p(z) = z3 +3z2 + 11
4 z+

3
4 . Clearly

p(z) is a polynomial of degree 3 having all its zeros in |z| ≤
3
2 . We take k = 2 and find that

max
|z|=1

|p(z)| = 7.5.

min
|z|=2

|p(z)| = 0.75.

max
|z|=1

|p′(z)| ≥ 2.5, (by (4)). (21)

max
|z|=1

|p′(z)| ≥ 4.06, (by Theorem 1). (22)

max
|z|=1

|p′(z)| ≥ 6.17, (by (19) of Corollary 10). (23)

Example 14. Consider p(z) = z2 +2z+ 3
4 . Clearly p(z) is

a polynomial of degree 2 having all its zeros in |z| ≤ 3
2 . We

take k = 2 and find that

max
|z|=1

|p(z)| = 3.75.

min
|z|=3

|p(z)| = 0.75.

max
|z|=1

|p′(z)| ≥ 1.5, (by (4)). (24)

max
|z|=1

|p′(z)| ≥ 2.13, (by Theorem 1). (25)

max
|z|=1

|p′(z)| ≥ 3.2, (by (20) of Corollary 10). (26)

Further, we not only extend Theorem 8 to a more general-
ized result but also yields an improved result of some known
inequalities as particular cases.

Theorem 15. If p(z) =
n∑

ν=s

aνz
ν , 0 ≤ s ≤ n − 2, is a

polynomial of degree n ≥ 2 having all its zeros in |z| ≤ k,
k ≥ 1, then for 0 ≤ l < 1 and m = min

|z|=k
|p(z)|

max
|z|=1

|zp′ (z)− sp(z)| ≥ (n− s)

× |as|ks + lm+ |an|kn+1

(|as|ks + lm) (1 + kn−s+1) + |an| (kn+1 + k2n−s)

×
{
max
|z|=1

|p(z)|+ lm

ks

}
+

(|as|ks + lm)k + |an|kn

(|as|ks + lm) (1 + kn−s+1) + |an| (kn+1 + k2n−s)

×kn−s−4
(
k4 − 1

)
|as+1|, for s ≤ n− 3 (27)

and

max
|z|=1

|zp′ (z)− sp(z)| ≥ (n− s)

× |as|ks + lm+ |an|kn+1

(|as|ks + lm) (k3 + 1) + |an|kn+1(k + 1)

×
{
max
|z|=1

|p(z)|+ lm

ks

}
+

(|as|ks + lm) k + |an|kn

(|as|ks + lm) (k3 + 1) + |an|kn+1(k + 1)

×(k2 − 1)|as+1|, for s = n− 2. (28)

Remark 16. Putting l = 0, Theorem 15 reduces to Theorem
8.

Remark 17. Setting s = 0 in Theorem 15, we get the follow-
ing generalization of Corollary 10 as well as improvement of
inequality (5) and also a result recently proved by Mir [10,
Theorem 2], for polynomials of degree n ≥ 2.

Corollary 18. If p(z) =
n∑

ν=0

aνz
ν is a polynomial of degree

n ≥ 2 having all its zeros in |z| ≤ k, k ≤ 1, then for
0 ≤ l < 1 and m = min

|z|=k
|p(z)|

max
|z|=1

|p′ (z)| ≥ n

× |a0|+ lm+ |an|kn+1

(|a0|+ lm) (1 + kn+1) + |an| (kn+1 + k2n)

×
{
max
|z|=1

|p(z)|+ lm

}
+

(|a0|+ lm) k + |an|kn

(|a0|+ lm) (1 + kn+1) + |an| (kn+1 + k2n)

×kn−4
(
k4 − 1

)
|a1|, for n ≥ 3 (29)

and

max
|z|=1

|p′ (z)| ≥ n
|a0|+ lm+ |a2|k3

(|a0|+ lm) (k3 + 1) + |an|k3(k + 1)

×
{
max
|z|=1

|p(z)|+ lm

}
+

(|a0|+ lm) k + |a2|k2

(|a0|+ lm) (k3 + 1) + |a2|k3(k + 1)

× (k2 − 1)|a1|, for n = 2. (30)

Remark 19. Since k ≥ 1, to show that the inequalities
of Corollary 18 are improvements of inequality (5), it is
sufficient to verify that

|a0|+ lm+ |an|kn+1

|a0| (1 + kn+1) + |an| (kn+1 + k2n)
≥ 1

1 + kn
,

which is equivalent to

|an|
(
k2n+1 − k2n

)
≥ (|a0|+ lm)

(
kn+1 − kn

)
,

that is
kn|an| ≥ |a0|+ lm,

which clearly holds by Lemma 7.

Remark 20. Similarly, in certain instances, the enhancement
is noteworthy, and we demonstrate this with the aid of the
previous examples 13 and 14.

Example 21. For Example 13 and k = 2, we have

max
|z|=1

|p′(z)| ≥ 2.75, (by (5)), (31)

whereas

max
|z|=1

|p′(z)| ≥ 6.65, (by (29) of Corollary 18 for l = 1).

(32)

Example 22. While for Example 14 and k = 2, we have

max
|z|=1

|p′(z)| ≥ 1.8, (by (5)), (33)
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whereas

max
|z|=1

|p′(z)| ≥ 3.4, (by (30) of Corollary 18 for l = 1).

(34)

IV. PROOFS OF THE THEOREMS

We first prove Theorem 15.

Proof of Theorem 15: Firstly, we shall prove inequality
(27).
Since in inequality (27) s ≤ n − 3, our polynomial p(z) =
n∑

ν=s

aνz
ν must be of degree n ≥ 3. By hypothesis, p(z) has

all its zeros in |z| ≤ k, k ≥ 1. Now,

p(z) = zsj(z), (35)

where
j(z) = as + as+1z + · · ·+ anz

n−s, (36)

is a polynomial of degree n− s ≥ 3. Consider a polynomial

R(z) = p(z) +
m

ks
λzs, (37)

where λ is any real or complex number with |λ| < 1 and
m = min

|z|=k
|p(z)|.

Suppose m ̸= 0, then for |z| = k

|m
ks
λzs| < m ≤ |p(z)|.

Then by Rouche’s theorem, it follows that R(z) has all its
zeros in |z| < k and in case m = 0, R(z) = p(z). Thus in
any case, R(z) has all its zeros in |z| ≤ k, k ≥ 1.
Now,

R(z) =
λm

ks
zs + asz

s + as+1z
s+1 + · · ·+ anz

n

= zsh(z), (38)

where

h(z) =
λm

ks
+ as + as+1z + · · ·+ anz

n−s, (39)

and

g(z) = zn−sh

(
1

z

)
. (40)

From (36) and (39), we have

j′(z) = h′(z). (41)

We observe that
H(z) = h(kz), (42)

is a polynomial of degree n − s ≥ 3 having all its zeros in
|z| ≤ 1 and

G(z) = zn−sH

(
1

z

)
= kn−s

( z
k

)n−s

h

(
k

z

)
= kn−sg

( z
k

)
, (by (40)). (43)

By Lemma 5, we have

G′(z) ≤ H ′(z), |z| = 1. (44)

Using (44) we can say that a zero zj , with |zj | = 1
and multiplicity mj , of H ′(z) will also be a zero, with
multiplicity (≥ mj), of G′(z), thereby helping us to write

H ′(z) = ϕ(z)H1(z), (45)

G′(z) = ϕ(z)G1(z), (46)

where

ϕ(z) =

{
1,∏p

j=1(z − zj)
mj ; |zj | = 1 ∀ j,

(47)

for H ′(z) ̸= 0 on |z| = 1 and H ′(z) has certain number of
zeros on |z| = 1 respectively.

Now,
H1(z) ̸= 0, |z| = 1. (48)

By (44), (45) and (46), we have

G1(z) ≤ H1(z), |z| = 1. (49)

Now as H(z) has all its zeros in |z| ≤ 1, by Gauss-Lucas
theorem, H ′(z) will also have all its zeros in |z| ≤ 1.
Therefore by (45), (47) and (48), we can conclude that

ψ(z) =
G1(z)

H1(z)
(50)

is analytic in |z| > r, for certain r, with 0 < r < 1, including
∞ and accordingly

f(z) = ψ

(
1

z

)
, (51)

with

f(0) = ψ(∞) = lnz→∞ ψ(z),

= lnz→∞
G′(z)

H ′(z)
,

(by (50), (45) and (46)),

=
λm
ks + as

ankn−s
(52)

is analytic in |z| < 1
r ,

1
r ≥ 1. Further |ψ(z)| ≤ 1, |z| = 1 by

(49) and therefore

|f(z)| ≤ 1, |z| = 1, (by (51)), (53)

which by (52) and Lemma 4, help us to write

|f(z)| ≤
|z|+

∣∣∣ as+
λm
ks

ankn−s

∣∣∣
1 +

∣∣∣ as+
λm
ks

ankn−s

∣∣∣ |z| , |z| ≤ 1,

i.e. ∣∣f (reiθ)∣∣ ≤ |an|knr + |asks + λm|
|asks + λm|r + |an|kn

, (54)

r ≤ 1 and 0 ≤ θ ≤ 2π,

i.e. ∣∣∣∣ψ(
1

r
e−iθ

)∣∣∣∣ ≤ |an|knr + |asks + λm|
|asks + λm|r + |an|kn

,

0 < r ≤ 1 and 0 ≤ θ ≤ 2π, (by (51)),

i.e. ∣∣ψ (
Re−iθ

)∣∣ ≤ |an|kn + |asks + λm|R
|asks + λm|+ |an|knR

,

R ≥ 1 and 0 ≤ θ ≤ 2π,
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i.e. ∣∣G1

(
Re−iθ

)∣∣ ≤ |an|kn + |asks + λm|R
|asks + λm|+ |an|knR

×
∣∣H1

(
Re−iθ

)∣∣ , R ≥ 1, (by (50)),

i.e. ∣∣G′ (Re−iθ
)∣∣ ≤ |an|kn + |asks + λm|R

|asks + λm|+ |an|knR
×
∣∣H ′ (Re−iθ

)∣∣ , R ≥ 1, by(45)and(46),

i.e.

|G′ (z)| ≤ |an|kn + |asks + λm||z|
|asks + λm|+ |an|kn|z|

× |H ′ (z)| , |z| ≥ 1,

i.e.

kn−s−2
∣∣∣g′ ( z

k

)∣∣∣ ≤ |an|kn + |asks + λm||z|
|asks + λm|+ |an|kn|z|

|h′ (kz)| , |z| ≥ 1, (by(42)and(43)). (55)

By taking z = keiθ in (55), we get

kn−s−2
∣∣g′ (eiθ)∣∣ ≤ |an|kn + |asks + λm|k

|asks + λm|+ |an|kn+1∣∣h′ (k2eiθ)∣∣ , 0 ≤ θ ≤ 2π,

which implies

kn−s−2 max
|z|=1

|g′ (z)| ≤ |an|kn + |asks + λm|k
|asks + λm|+ |an|kn+1

× max
|z|=k2

|h′ (z)| . (56)

Applying (7) of Lemma 2 to (56), we have

kn−s−2 max
|z|=1

|g′ (z)| ≤ |an|kn + |asks + λm|k
|asks + λm|+ |an|kn+1

×
{
k2n−2s−2 max

|z|=1
|h′(z)|

−
(
k2n−2s−2 − k2n−2s−6

)
|as+1|

}
, (57)

i.e.

max
|z|=1

|g′ (z)| ≤ |an|kn + |asks + λm|k
|asks + λm|+ |an|kn+1

×
{
kn−s max

|z|=1
|h′(z)|

−
(
kn−s − kn−s−4

)
|as+1|

}
. (58)

By Lemma 6, we have

max
|z|=1

|g′(z)|+max
|z|=1

|h′(z)| ≥ (n− s) max
|z|=1

|h(z)|,

which on using (58), we get

max
|z|=1

|h′ (z)| ≥ (n− s)×

|asks + λm|+ |an|kn+1

|asks + λm| (1 + kn−s+1) + |an| (kn+1 + k2n−s)

×max
|z|=1

|h(z)|

+
|asks + λm|k + |an|kn

|asks + λm| (1 + kn−s+1) + |an| (kn+1 + k2n−s)

×kn−s−4
(
k4 − 1

)
|as+1|. (59)

By (38) and (41), we have

max
|z|=1

|j′ (z)| ≥ (n− s)×

|asks + λm|+ |an|kn+1

|asks + λm| (1 + kn−s+1) + |an| (kn+1 + k2n−s)

×max
|z|=1

|R(z)|

+
|asks + λm|k + |an|kn

|asks + λm| (1 + kn−s+1) + |an| (kn+1 + k2n−s)

×kn−s−4
(
k4 − 1

)
|as+1|. (60)

Again by (35) and (37), we have

max
|z|=1

|zp′ (z)− sp(z)| ≥ (n− s)×

|asks + λm|+ |an|kn+1

|asks + λm| (1 + kn−s+1) + |an| (kn+1 + k2n−s)

×max
|z|=1

∣∣∣∣p(z) + λm

ks
zs
∣∣∣∣

+
|asks + λm|k + |an|kn

|asks + λm| (1 + kn−s+1) + |an| (kn+1 + k2n−s)

×kn−s−4
(
k4 − 1

)
|as+1|. (61)

For every real or complex number λ, we have

|asks + λm| ≤ |as|ks + |λ|m,

and since both the functions(
x+|an|kn+1

x(1+kn−s+1)+|an|(kn+1+k2n−s)

)
and(

xk+|an|kn

x(1+kn−s+1)+|an|(kn+1+k2n−s)

)
are decreasing functions

of x for k ≥ 1, it follows from (61) that for every λ with
|λ| < 1 and |z| = 1,

max
|z|=1

|zp′ (z)− sp(z)| ≥ (n− s)×

|as|ks + |λ|m+ |an|kn+1

(|as|ks + |λ|m) (1 + kn−s+1) + |an| (kn+1 + k2n−s)

×max
|z|=1

∣∣∣∣p(z) + λm

ks
zs
∣∣∣∣

+
(|as|ks + |λ|m)k + |an|kn

(|as|ks + |λ|m) (1 + kn−s+1) + |an| (kn+1 + k2n−s)

×kn−s−4
(
k4 − 1

)
|as+1|. (62)

Suppose z0 on |z| = 1 is such that

max
|z|=1

|p(z)| = |p(z0)|. (63)

Now, ∣∣∣∣p(z0) + λmzs0
ks

∣∣∣∣ ≤ max
|z|=1

∣∣∣∣p(z) + λmzs

ks

∣∣∣∣ . (64)

In the left hand side of inequality (64), for suitable choice
of the argument of λ, we have∣∣∣∣p(z0) + λmzs0

ks

∣∣∣∣ = |p(z0)|+
|λ|m
ks

. (65)

Using (63) and (65) to (64), we have

max
|z|=1

|p(z)|+ |λ|m
ks

≤ max
|z|=1

∣∣∣∣p(z) + λm

ks
zs
∣∣∣∣ . (66)
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Using (66) to (62), we get

max
|z|=1

|zp′ (z)− sp(z)| ≥ (n− s)×

|as|ks + |λ|m+ |an|kn+1

(|as|ks + |λ|m) (1 + kn−s+1) + |an| (kn+1 + k2n−s)

×
{
max
|z|=1

|p(z)|+ |λ|m
ks

}
+

(|as|ks + |λ|m)k + |an|kn

(|as|ks + |λ|m) (1 + kn−s+1) + |an| (kn+1 + k2n−s)

×kn−s−4
(
k4 − 1

)
|as+1|. (67)

Setting |λ| = l, 0 ≤ l < 1 in (67) gives (27).
In order to prove inequality (28) where s = n − 2, our
polynomial must be of degree n ≥ 2 and its proof follows
in a similar way as above but using inequality (8) instead of
(7) of Lemma 2 to inequality (56).
This completes the proof of Theorem 15.

Proof of Theorem 8: The proof of Theorem 8
follows on the same lines as that of Theorem 15, simply
by considering the polynomial p(z) of equality (35) in place
of polynomial R(z) of equality (37).
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