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Abstract—X-ray security inspection for detecting prohibited
items is widely used to maintain social order and ensure
the safety of people’s lives and property. Due to the large
number of parameters and high computational complexity,
most current object detection models are challenging to deploy
on portable mobile security inspection devices. Therefore, this
paper proposes an improved YOLOv7-tiny model for appli-
cation in prohibited item detection tasks. Firstly, the feature
extraction backbone network is replaced with the lightweight
GhostNet network to reduce computational complexity and
improve detection speed. Secondly, the FPN in the Neck is
replaced with BiFPN, further reducing computational complex-
ity and memory access through skip connections. Finally, a
lightweight CA attention mechanism is embedded between the
Backbone and Neck layers, and the Focal-EIoU Loss function
is employed to enhance the detection capability for small-sized
items. Experimental results on the SIXray public dataset show
a 14.8% reduction in model parameters, a 19.7% reduction
in computational complexity, and a 15.9% reduction in volume
after the improvements. The detection speed increases from 82.4
to 90.2, and the detection accuracy for prohibited items reaches
90.3%. The experimental results demonstrate that the improved
model achieves overall lightweighting while maintaining a high
detection rate and improving detection speed.

Index Terms—YOLOv7-tiny, GhostNet, BiFPN, CA attention
mechanism, Focal-EIoU Loss.

I. INTRODUCTION

SECURITY inspection is the first line of defense to
safeguard people’s lives and property. However, in real

life, there are frequent extreme cases where criminals clan-
destinely carry prohibited items at airports and stations,
threatening national security. Therefore, it is essential to
strengthen security inspections of passengers and luggage
in public places such as transportation hubs and crowded
areas[1]. Traditional methods of detecting prohibited items
primarily rely on X-ray transmission, mapping the pseudo-
color images of detected items onto computer screens, and
depending on trained security personnel for manual iden-
tification and inspection. However, during peak passenger
flows and rapid pedestrian movements, security personnel
may experience decreased attention due to fatigue, leading to
instances of oversight and compromising people’s safety and
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property[2]. Today, with the rapid development of computer
vision technology, target detection models based on deep
learning make intelligent analysis of X-ray security images
possible.

With the continuous enrichment of deep learning the-
ory and the continuous improvement of computer hardware
performance, target detection technology is gradually be-
ing iterated and applied to security inspection equipment.
However, most security inspection devices are edge terminal
devices, and high-precision target detection models with
large parameter and computational requirements are not
conducive to deployment on these devices. Additionally,
security inspection is a process that requires timeliness. For
busy areas, a fast inspection process is crucial for maintaining
order[3]. Therefore, lightweighting of detection models is
particularly important while ensuring the accuracy of pro-
hibited item detection. Given the relatively mature state of
X-ray security inspection technology today, the specifications
of corresponding security inspection machines tend to be
standardized. Improving the hardware of security inspection
machines is very difficult and costly. Therefore, without
changing the hardware configuration, using lightweight target
detection models is the most effective way to promote
intelligent security inspection. Furthermore, in the process
of detecting prohibited items in X-ray security images, the
problem of missing small targets is common. The transmis-
sion effect of X-rays can cause small objects to be imaged
unclearly. Traditional target detection models face challenges
in detecting small prohibited items in pseudo-color images,
making the results unsatisfactory[4]. In summary, seeking a
lightweight and high-precision compatible target detection
model for X-ray security image prohibited item detection is
of great significance to assist security personnel in complet-
ing security inspection tasks.

Target detection models based on deep learning principles
can be classified into two categories: two-stage and one-stage
models. Two-stage models, predominantly represented by the
R-CNN series, were pioneered by Girshick et al. in 2014 with
the introduction of R-CNN[5]. This marked the first instance
of the algorithmic concept of region proposal followed by
classification and detection, significantly improving detection
accuracy compared to traditional algorithms. In 2015, He
et al. improved upon R-CNN by introducing Faster R-
CNN, which drastically reduced the time spent on feature
extraction by introducing region of interest pooling layers,
further enhancing detection accuracy and efficiency[6]. De-
spite their high detection accuracy, two-stage models are
characterized by a large number of parameters, resulting
in lengthy algorithmic processes that are unsuitable for de-
ployment on terminal devices. In contrast, one-stage models
do not require region proposal selection; instead, they treat
target detection as a regression task, enabling end-to-end
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detection. Prominent examples include the YOLO series,
SSD[7], and RetinaNet[8] algorithms. One-stage models
have fewer parameters, saving significant time during the
detection process and making them suitable for deployment
on terminal devices. The YOLO series algorithms have gar-
nered widespread attention due to their excellent performance
and effective balance between accuracy and speed. Therefore,
this study will be based on the YOLO algorithm for research
purposes.

As the demand for portable and high-precision detection in
the security inspection industry continues to grow, significant
progress has been made by experts and researchers in the
field. Ren et al. proposed the LightRay model based on
the YOLOv4 algorithm, using the lightweight MobileNetv3
network as the backbone for feature extraction[9]. They
introduced a shallow feature enhancement network that in-
tegrates Feature Pyramid Network (FPN) and Convolutional
Block Attention Module (CBAM), effectively addressing the
detection of small-sized prohibited items in lightweight mod-
els. Cui et al. embedded the lightweight MobileNetViTv3
into the end of the YOLOv7 backbone network to capture
comprehensive information, aiding in accurate positioning in
high-density scenes, with the aim of balancing performance
and practicality[10]. Sun et al. constructed the MobileNetv2
architecture for devices with limited computational capa-
bilities, utilizing pointwise group convolutions and chan-
nel shuffling functions to reduce computational costs while
maintaining accuracy[11]. The aforementioned research has
significantly improved the performance of detection algo-
rithms, laying a solid foundation for intelligent detection of
prohibited items. However, there is still a need to further
enhance the lightweight nature of models and the accuracy
of prohibited item detection.

Therefore, the paper proposes an improved algorithm
based on YOLOv7-tiny, effectively addressing the challenges
of model lightweighting and the detection of small target
prohibited items in contraband detection. In Chapter 5 of this
paper, comparative experiments with other similar algorithms
demonstrate the superiority of the improved algorithm. Ad-
ditionally, the effectiveness of each improvement point is
validated through ablation experiments.

II. BASELINE MODEL

In August 2022, Alexey Bochkovskiy and his team pro-
posed the YOLOv7 series algorithm, which is the latest target
detection network model and demonstrates significant advan-
tages in terms of detection accuracy and speed compared to
the previous YOLO series[12]. YOLOv7-tiny is characterized
by its lightweight design, making it suitable for embedded
devices and portable systems in resource-constrained envi-
ronments. The network model of YOLOv7-tiny consists of
three parts: the backbone, neck, and head. The backbone
network is responsible for extracting features from input
images, the neck fuses and processes the extracted features to
obtain small, medium, and large-sized features. Finally, the
fused features are passed to the detection head to produce
the final output. YOLOv7-tiny incorporates the Efficient
Lightweight Aggregation Network (ELAN) to enhance the
feature extraction capabilities of the network while reducing
computational complexity. In the backbone network’s feature
extraction, the MPConv module is introduced to expand the

receptive field of the current feature layer and fuse it with
information processed by conventional convolution, thereby
improving the network’s generalization. Additionally, the
SPPCSPC module is applied at the end of the backbone
network, introducing a series of convolution operations in
parallel pooling to avoid issues such as image distortion.
The neck network adopts the PANet pyramid structure for
effective feature fusion between different layers[13]. Finally,
in the prediction head, standard convolutions are used for
channel adjustment to simplify the model structure while
maintaining channel-adaptive effectiveness.

Compared to YOLOv7, YOLOv7-tiny sacrifices a certain
degree of accuracy but demonstrates a noticeable advan-
tage in terms of lightweight design and detection speed.
In this paper, we aim to enhance the YOLOv7-tiny model
and apply it to the detection of prohibited items in X-ray
security inspection images. Due to the tight connection of
each ELAN network with standard convolutions, there is
computational redundancy in feature processing, leading to
increased complexity in the network structure. Additionally,
the model lacks the capability to extract features from small
targets and items that are mutually occluded. Addressing
these issues, the proposed model in this paper aims to fur-
ther reduce model parameters and computational complexity
while ensuring rich feature representation.

III. IMPROVED MODEL

This paper introduces an improved model based on
YOLOv7-tiny, as shown in Figure 1, effectively addressing
the challenges of model lightweighting and the detection of
small target prohibited items. The improvements are outlined
as follows:

(1) Replace the backbone network for feature extraction
with the lightweight GhostNet network to reduce the number
of parameters and computational complexity.

(2) Replace the FPN in the Neck network with BiFPN to
reduce memory access and computational redundancy.

(3) Embed a lightweight Channel Attention mechanism
between the Backbone and Neck to enhance the detection
capability for small-sized targets.

(4) Replace the CIoU loss function with Local-EIoU
Loss to improve the accuracy and robustness of the model
detection.

A. GhostNet Network

Due to the use of regular convolutions for feature extrac-
tion in the backbone network of YOLOv7-tiny, the computa-
tional complexity increases, affecting the model’s detection
speed. Using the lightweight GhostNet network, channel
interaction information is preserved through depthwise con-
volution operations, resulting in a significant reduction in
floating-point computations compared to regular convolu-
tions[14]. The network consists of multiple stacked Bottle-
Neck structures, each of which is composed of Ghost Mod-
ules. The Ghost module is a core component of GhostNet,
designed to reduce the computational cost of the network.

The GhostNet Bottleneck structure has two forms as
shown in Figure 2. When the stride is set to 1, two Ghost
Modules are directly used to increase the network depth.
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Fig. 1. The improved YOLOv7 network structure

When the stride is set to 2, a depth-wise separable convolu-
tion (DWConv) with a stride of 2 is added between two
Ghost Modules to compress the width and height of the
feature layer while meeting the requirements of the output
channel number. In the residual connection, a DWConv
with a stride of 2 and a regular convolution with a stride
of 1 are added. Both forms combine convolutional and
linear operations, where the linear operation helps remove
redundant feature layers, reducing the computational cost
associated with regular convolutions and thus improving the
model’s detection speed for contraband items.

In the Ghost Module, the input feature map undergoes a
1 × 1 Pointwise convolution operation to generate feature
compression of the input feature layer. Then, DWConv is
used to extract feature maps similar to the feature com-
pression. Finally, these similar feature maps are integrated
with the original feature compression to generate effective
feature maps. In comparison to regular convolutions that
use fixed-stride 3× 3× 3 convolutional kernels to convolve
3× 3× 3 input features, DWConv divides the input features
into three layers. It uses three 3 × 3 × 1 convolutional
kernels corresponding to three different channels and extracts
features from these layers through convolutional operations
to obtain the output features of each layer. Simultaneously,
it employs a 1 × 1 × 3 convolutional kernel to extract
feature information between each channel. Finally, the output
features of each layer are fused with inter-channel features
to obtain the final output features, effectively reducing the
model’s parameter count and computational complexity, thus
improving both training and inference speeds. The principles
of regular convolution and depth-wise separable convolution
are illustrated in Figure 3.

Fig. 2. The structure of GhostNet Moudle.

The later comparative ablation experiments have demon-
strated that using GhostNet as the backbone network for
feature extraction in YOLOv7-tiny reduces the model’s
parameter count and computational complexity, effectively
achieving lightweighting of the security inspection model.

B. BiFPN

Real-time performance is a crucial requirement for object
detection and poses a challenge when deploying algorithms
on embedded platforms. To enhance the inference speed of
the model and achieve real-time object detection, this paper
replaces the traditional Feature Pyramid Network (FPN)
with the Weighted Bidirectional Feature Pyramid Network
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Fig. 3. Comparison of Conv and DWConv.

(BiFPN)[15]. This adaptation aims to meet the real-time
requirements of more efficient and compact embedded object
detection.

BiFPN is a weighted bidirectional feature fusion structure
that enables simple and fast multi-scale fusion. The structure
is illustrated in Figure 4, and it is an improvement upon the
traditional Feature Pyramid Network (FPN). On one hand, it
removes the nodes located between the highest-dimensional
feature layer and the lowest-dimensional feature layer. On the
other hand, it adds residual edges connecting input and output
feature maps for each feature layer located at the middle
position.

Due to the varying resolutions of different input features,
their contributions to the output features are uneven. To
address this issue, BiFPN introduces additional weights for
each input under different conditions. These weights are used
to adjust the contribution to the output feature map. The
weighted fusion is achieved through a fast normalized fusion,
as shown in Formula 1. In terms of learning behavior and
accuracy, this approach performs similarly to softmax-based
optimizations, and it achieves a 30% speedup when running
on a GPU.

O =
∑

i
ωi

ε+
∑

jωj
· Ii (1)

In the formula, i and j represent the number of input feature
maps at the node of feature fusion,Ii represents the input
feature map matrix. To prevent the denominator from being
zero, ε represents a constant. ωi and ωj represent the weights
of each input feature map, where the initial range of weights
is 0 < Wi < 1, 0 < Wj < 1.

With the stacking of layers, convolutional networks can
capture richer semantic information. However, the reduction
in feature map resolution results in the loss of positional
information, which is particularly detrimental to the local-
ization task in object detection. BiFPN achieves the compre-
hensive fusion of feature maps with different resolutions. It
employs skip connections to achieve lightweighting, learning
more critical feature information by introducing weights to
the network. Considering the challenges in X-ray prohibited
item detection, such as object occlusion and the detection
of small-sized targets, precise identification of multiple pro-
hibited items is essential. Therefore, by leveraging BiFPN
to enhance the PANet in the improved YOLOv7-tiny model,
the original feature information from the backbone network

Fig. 4. Comparision of FPN and BiFPN.

is directly introduced into the PANet of the neck network,
effectively enhancing detection accuracy.

C. CA attention mechanism

Lightweight feature extraction backbone often lead to a
decrease in model performance, especially for small object
detection tasks. In order to make the model lightweight while
ensuring the performance of prohibited item detection, we
have introduced the CA module between the feature extrac-
tion backbone network and the feature fusion neck layer[16].
The CA attention mechanism not only captures inter channel
information but also takes into account directionally relevant
positional information, which can aid the model in better
object localization and recognition. Moreover, the CA atten-
tion mechanism is sufficiently adaptable and lightweight to
be seamlessly incorporated into the core structure of mobile
networks. Experimental results reveal that the CA attention
mechanism can effectively elevate model accuracy with only
a minimal increase in computational cost. The structure of
the CA attention mechanism is illustrated in Fig. 5.

In Fig. 5, Residual denotes the embeddable residual
blocks, X Avg Pool signifies one-dimensional horizontal
global pooling, and Y Avg Pool represents one-dimensional
vertical global pooling. To avoid compressing all spatial
information into channels and to capture more accurate po-
sitional information from distant interactions, global pooling
is decomposed. This is achieved by using X AvgPool and Y
AvgPool to decompose the input feature mapping into two
one-dimensional feature coding processes. Dimensionally
reduction is performed in both horizontal and vertical direc-
tions to obtain two feature vectors with dimensions (H, 1)
and (1,W ) respectively. These processes aggregate features
along the horizontal and vertical directions respectively. The
formulas for X-direction and Y -direction pooling are shown
as follows.

Zw
c (w) =

1

H

∑
0≤j<H

xc(j, w) (2)

Zh
c (w) =

1

W

∑
0≤i<W

xc(h, i) (3)

Then, the extracted features are concatenated along the
spatial dimension and mapped to the channel attention
through a 1×1 convolution layer. The pooled result obtained
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Fig. 5. CA structure diagram.

from Concat is subjected to shared 1× 1 convolution, Batch
Normalization layer, and non-linear activation function oper-
ations to generate an intermediate feature map. Subsequently,
the intermediate feature map is separated along the spatial
dimension, resulting in two tensors representing spatial in-
formation in the horizontal and vertical directions. Each of
these tensors is then processed with the 1 × 1 convolution
and combined with a sigmoid activation function to generate
two attention weights. Finally, these two attention weights are
multiplied and weighted with the original feature map, result-
ing in a feature map with coordinate awareness. It allows the
network to focus more on relevant feature channels. The CA
mechanism creates one branch carrying horizontal positional
information and another branch carrying vertical positional
information. This achieves the complete preservation of spa-
tial positional information, enriching the position sensitivity
of deep convolutions and enhancing the model’s localization
performance and detection accuracy. In improved model, the
lightweight CA attention mechanism is embedded between
the backbone network responsible for feature extraction and
the neck network responsible for feature fusion. Subsequent
ablation experiments confirm that adding the CA attention
mechanism enhances the model’s ability to detect prohibited
items while maintaining its lightweight nature.

D. Focal-EIoU Loss

In the YOLOv7-tiny network, the loss function is com-
posed of location loss, confidence loss and classification
loss, as shown in Eqn. (4). In the proposed model, both
confidence loss and classification loss are calculated using
the BCEWithLogit loss function, while the location loss
function is calculated using the Complete Intersection over
Union (CIoU), as expressed in Eqn. (5).

Lossobject = Lossloc + Lossconf + Lossclass (4)

LossCIoU = 1− IoU +
ρ2 (b, bgt)

c2
+ αv (5)

where b and bgt respectively denote the center coordinates
of the predicted box and GT box. ρ2 (b, bgt) represents the
Euclidean distance between the two center points, and c
denotes the diagonal length of the minimum bounding rect-
angle for the two rectangles. Additionally, the loss is adjusted
based on the aspect ratio αv. Due to CIoU only considering

the overlapping area, center-point distance, and aspect ratio,
without taking into account the bounding box, which is a
crucial factor affecting the detection rate of prohibited items
in security checks. Therefore, this paper introduces the Focal-
EIoU loss function to replace the original loss function[17].
Focal-EIoU not only incorporates the advantages of CIoU but
also focuses on high-quality bounding box detection, speed-
ing up model convergence while improving the detection rate
of prohibited items. The formula for calculating Focal-EIoU
is shown in Eqn. (6).

LEIoU = 1−IoU+
ρ2 (b, bgt)

(wc)2 + (hc)2
+
ρ2 (w,wgt)

(wc)2
+
ρ2 (h, hgt)

(hc)2
(6)

where w and h represent the width and height of the
minimum bounding box, respectively. The Focal-EIoU loss
function, by increasing the similarity in aspect ratio, effec-
tively reduces the genuine differences between (w × h) and
(wgt×hgt) through the regression form of focal loss. This is
beneficial for improving the model’s detection rate for small-
sized prohibited items.

IV. DATASETS AND EVALUATION METRICS

A. Experimental datasets

We apply SIXray dataset to verify the performance of
the proposed model. It encompasses a total of 1,059,231 X-
ray luggage images, out of which 8,929 annotated images
are dedicated to object detection tasks[18]. These annotated
images cover five categories of prohibited items: firearms,
knives, wrenches, pliers, and scissors. These images were
acquired through X-ray scanning of personal luggage at
real security inspection locations. The employed dual-energy
security inspection apparatus continues to be a prevalent
technology for cargo luggage screening, extensively utilized
in facilities such as airports, train stations, and subway
stations. As a result, the SIXray dataset holds considerable
research value and meets the demands of research inquiries.
During the experiments, we partitioned these sample images
into training, testing, and validation sets using a random ratio
of 8:1:1. Examples of the five categories of prohibited items
in SIXray are shown in Fig. 6.

B. Evaluation metrics

In this paper, the main evaluation metrics for the pro-
hibited item detection in X-ray images include Precision
(P ), Recall (R), Average Precision (AP ), Mean Average
Precision (mAP ), model Parameter count (Params), model
computational complexity (FLOPs), Frames Per Second
(FPS), and Model storage Size (ModelSize). As the eval-
uation metric for model accuracy, the mAP is divided into
mAP@0.5 and mAP@0.5 : 0.95. mAP@0.5 represents the
mAP value when the threshold is set to 50%. mAP@0.95
represents the mAP calculated as the threshold increases
from 50% to 95% in increments of 5%, resulting in mAP
values at different thresholds. In this study, we have chosen
mAP@0.5 as the evaluation metric for model accuracy. A
higher mAP value indicates higher overall model accuracy.
The related metrics are calculated as follows:

P =
TP

TP + FP
(7)
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Fig. 6. Examples of prohibited items in the SIXray dataset.

R =
TP

TP + FN
(8)

AP =
TP + TN

TP + TN + FP + FN
(9)

mAP =

∑Num(class)
n=1 AP (n)

TP + TN + FP + FN
(10)

where, TP represents the number of true positive sam-
ples correctly identified; TN represents the number of true
negative samples correctly identified; FP represents the
number of false positive samples incorrectly identified as
positive; FN represents the number of false negative samples
incorrectly identified as negative.

V. EXPERIMENT AND RESULT ANALYSIS

This paper designed two types of experiments to verify the
performance of the proposed model. The first type is a com-
parative experiment, where the TinyRay model proposed in
this paper is compared with typical object detection models.
Additionally, to demonstrate the rationality behind selecting
GhostNet as the feature extraction network, YOLOv7-tiny is
used as the baseline model, and experimental comparisons
are conducted using other lightweight network models as
backbone networks. The second type is ablation experiments,
where improvements are incrementally added to the baseline
model to verify the effectiveness of each module in the
proposed model.

A. Experimental configuration

The experiments were conducted on the Win10 operating
system with the PyTorch 1.12 framework, and the GPU
utilized was an NVIDIA RTX 3080. The batch size was set
to 8, and the training was conducted for 300 epochs using
Stochastic Gradient Descent (SGD) to adjust the network
parameters. The image size was set to 640×640 pixels. The
initial learning rate was set to 0.01, with a weight decay
coefficient of 0.0005. The learning rate was adjusted using
the cosine annealing algorithm.

B. Comparative experiment

To verify the effectiveness of the proposed model in
this paper, a comparative experiment was conducted. In
addition, the experiment selects current mainstream object
detection algorithms, including Faster R-CNN[6], SSD[7]
and DenseNet[19], as well as four lightweight variants from
the YOLO series: YOLOv3-tiny[20], YOLOv4-tiny[21],
YOLOv5s[22], YOLOv7-tiny, to make comparison with the

proposed model. Faster R-CNN utilizes ResNet50 as the
backbone network for feature extraction. The Region Pro-
posal Network (RPN) is used to generate candidate boxes
from features. After obtaining the feature matrix, predictions
are made through fully connected layers. SSD employs
VGG16 as the backbone network, with additional convolu-
tional layers built on top of VGG16 to generate multiple
feature maps for detection. DenseNet achieves feature reuse
by densely connecting features across channels, resulting in
a significant reduction in the number of parameters and com-
putational costs. YOLOv3-tiny enhances the detection capa-
bility of objects of different sizes by combining Darknet53
architecture and reference space pyramid feature extraction
module. YOLOv4-tiny took a significant leap forward by
integrating the cross-stage local network CSP module into its
foundational Darknet53 backbone. This strategic maneuver
aimed to eliminate the challenge posed by the redundant du-
plication of gradient information during the intricate process
of optimizing the network. YOLOv5s adopts the optimized
CSPDarkNet53 as the backbone network and draws inspira-
tion from the lightweight model EfficientDet. This addition
transfers low-level localization features upward, allowing the
pyramid to simultaneously possess semantic and localization
information, thereby improving feature extraction. YOLOv7-
tiny utilizes the Efficient-Aggregation Network and employs
Spatial Pyramid Pooling in the neck network (SPPCSPC)
to enhance feature extraction capabilities. The experimental
results of the six algorithms and the improved algorithm
proposed in this paper on the SIXray dataset are presented
in Table 1.

From Table 1, it is evident that the YOLO series de-
tection algorithms outperform the Faster R-CNN and SSD
algorithms significantly in terms of lightweight design and
detection speed for SIXray dataset. Among the YOLO algo-
rithms, the novel YOLOv7-tiny algorithm not only achieves
a mAP to 90.1%, which is the highest among all the
mentioned algorithms, but also surpasses other algorithms
in terms of lightweight design. The YOLOv7-tiny algorithm
has 6.1 million parameters, a computation complexity of 13.2
billion operations, a model size of 12.3 megabytes, and a
detection speed of 82.4 FPS. The performance of YOLOv7-
tiny has laid a solid foundation for the model proposed in
this paper. Through comparison, the proposed model reduces
the model’s parameter count, computation complexity, and
model size by 14.8%, 19.7%, and 17.1%, respectively, re-
sulting in 5.2 million parameters, 10.6 billion operations,
and a model size of 10.2 megabytes. Simultaneously, the
detection speed increases from 82.4 FPS to 90.2 FPS, while
maintaining a detection accuracy of 90.3% for prohibited
items. To sum up, proposed model effectively achieves a
balance between lightweight design and detection accuracy.

Table 2 records the accuracy of detecting different pro-
hibited items under various YOLO algorithms. With the
updates in the YOLO series, the detection accuracy of the five
prohibited item categories has improved to varying degrees.
Notably, the proposed model in this paper achieves a detec-
tion accuracy as high as 99.0% for guns. At the same time,
the detection accuracy of knife,pliers,scissors and wrench is
as high as 88.3%, 90.5% ,85.5% and 88.0%, respectively,
which is the highest value among many algorithms.Although
the pliers and wrench have a certain degree of precision
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TABLE I
RESULTS OF COMPARATIVE EXPERIMENTS ON DIFFERENT ALGORITHMS BASED ON SIXRAY DATASET

Algorithms Params (MB) FLOPs (G) Modelsize (MB) FPS (frames·s−1) mAP@0.5(%)

Faster R-CNN 135.7 125.3 511.3 17.1 87.2
SSD 41.1 387.0 270.2 47.1 83.4

DenseNet 27.2 124.6 112.0 40.5 77.4
YOLOv3-tiny 8.7 13.4 17.0 50.3 78.8
YOLOv4-tiny 6.0 13.7 23.8 58.7 81.5

YOLOv5s 7.2 15.9 14.8 67.5 88.2
YOLOv7-tiny 6.1 13.2 12.3 82.4 89.2

ours 5.2 10.6 10.2 90.2 90.3

TABLE II
DETECTION RESULTS AP FOR DIFFERENT CATEGORY OF PROHIBITED ITEMS

Algorithms
AP (%)

gun knife pliers scissors wrench

YOLOv3-tiny 95.2 71.4 79.8 77.4 70.1
YOLOv4-tiny 96.0 74.5 82.6 80.2 74.5

YOLOv5s 97.7 83.7 88.4 86.3 84.8
YOLOv7-tiny 98.7 87.2 91.1 79.8 89.0

ours 99.0 88.3 90.5 85.5 88.0

TABLE III
COMPARISON OF DIFFERENT LIGHTWEIGHT BACKBONE NETWORKS ON YOLOV7-TINY.

Backbone Params/ MB FLOPs/ G Model size/ MB FPS/ frames·s−1 mAP@0.5/ %

Mobilenetv2 6.4 18.0 15.4 80.3 85.9
Mobilenetv3 5.9 13.2 12.0 85.4 87.8
EffectiveVit 5.6 10.2 11.6 88.3 86.7

Shufflenet v1 6.5 14.2 14.6 79.8 88.1
Shufflenet v2 5.9 13.2 12.1 86.7 88.4

GhostNet 4.3 9.6 9.2 94.2 88.2

Fig. 7. Comparison of PR curves before and after improvement.

loss compared with the baseline model, the overall model
proposed in this paper perfectly meets the task of contraband
detection in security images.

To demonstrate the rationality behind selecting GhostNet
as the feature extraction network, this paper conducted com-
parative experiments on the SIXray dataset by using other

types of lightweight feature extraction backbones, namely
Mobilenet v2, Mobilenet v3, EfficientVit, Shufflenet v1, and
Shufflenet v2, based on the YOLOv7-tiny model. MobileNet
v2 improves the network’s representational capacity on a
lightweight basis through the use of linear bottlenecks and
inverted residuals. Mobilenetv3, proposed by A. Howard et
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TABLE IV
RESULTS OF ABLATION EXPERIMENTS ON THE SIXRAY DATASET

Model Params/ MB FLOPs/ G Model size/ MB FPS/ frames·s−1 mAP@0.5/ %

YOLOv7-tiny 6.1 13.2 12.3 82.4 89.2
YOLOv7-tiny+A 4.3 9.6 9.2 94.2 88.2

YOLOv7-tiny+A+B 5.2 10.2 10.0 91.3 89.0
YOLOv7-tiny+A+B+C 5.2 10.4 10.2 90.6 89.9

YOLOv7-tiny+A+B+C+D 5.2 10.6 10.2 90.2 90.3

al. improves upon the Mobilenetv2 structure with an inverted
residual design containing DWConv and linear bottleneck.
EfficientVit is based on the EfficientViT block, each block
is composed of a sandwich structure and a cascaded group
attention mechanism. The authors achieve a more efficient
balance of channel, block, and stage quantities through
parameter redistribution. Shufflenet v1, proposed by Zhang
et al. introduces Pointwise group convolution and chan-
nel shuffle to enable the network to have more channels.
This helps extract more information during the encoding
stage while reducing computational complexity. Shufflenet
v2 further optimizes the network by introducing channel
split and feature reuse, reducing the number of parameters
while enhancing detection accuracy. Table 3 shows the com-
parative experimental results of using GhostNet compared
to the aforementioned lightweight networks on the basis of
YOLOv7-tiny.

The comparative experiments in Table 3 reveal that using
Mobilenetv3 and Shufflenet v2 as the feature extraction
backbone network for YOLOv7-tiny results in minimal fluc-
tuations in parameters, computational complexity, and detec-
tion speed, with less-than-ideal performance. Shufflenet v1’s
various evaluation metrics are even worse than the original
model, failing to guarantee satisfactory detection results.
Although the EfficientVit network has lower parameter count
and computational complexity, it incurs significant accuracy
loss. In contrast, using GhostNet as the backbone network
for feature extraction, the number of parameters decreased
from 6.1M to 4.3M, the computational complexity decreased
from 13.2G to 9.6G, the model volume decreased from
12.3M to 9.2M, the FPS increased from 82.4 to 94.2, and
the detection accuracy remained at 88.2%. Based on the
original YOLOv7-tiny, it can effectively reduce the number
of parameters, computational complexity and model size,
and improve the detection speed without losing too much
accuracy. Therefore, adopting GhostNet as feature extraction
network and improving it is a more reasonable choice for
this paper.

C. Ablation experiments
To validate the effectiveness of each improvement com-

ponent on network performance, the original YOLOv7-tiny
is taken as the baseline model, and ablation experiments
are conducted by gradually incorporating each improvement
module into YOLOv7-tiny. The experimental results are
shown in Table 3, where Method A represents replacing the
backbone network with the lightweight GhostNet network,
method B means to replace FPN structure in Neck network
with BiFPN structure, method C means to embed lightweight
CA attention mechanism between Backbone layer and Neck
layer, and method D means to replace CIoU loss function

with Local-EIoU loss function It is obvious that “YOLOv7-
tiny+A+B+C+D” in Table IV represents the proposed model
in this paper.

The ablation experiments reveal the following observa-
tions. In Experiment A, after replacing the backbone network
with the lightweight GhostNet network, there is a significant
decrease in parameters, computational complexity, and model
size. The parameter count and computational complexity
decrease by 29.6% and 27.3% respectively, with a 25.3%
reduction in model size. The detection speed increases from
82.4 FPS to 94.2 FPS, while a 1.9% decrease in detection
accuracy is observed. In experiment B, the FPN structure
in Neck layer is replaced by BiFPN structure. Although
the number of parameters and computational complexity are
increased, the precision is effectively improved by 1.7%. In
experiment C and experiment D, the lightweight CA atten-
tion mechanism and modified loss function were embedded,
and the detection accuracy was improved by 1.2% and 0.4%
respectively without affecting the lightweight of the model.
In conclusion, the ablation experiments demonstrate that the
improved model achieves model lightweighting and enhances
the prohibited item detection speed while maintaining a high
detection accuracy.

D. Visual analysis

To visually illustrate the differences between the model
before and after improvement, four images were selected to
generate detection result visualizations using a visualization
algorithm, as shown in Figure 8. A comparison reveals
that the improved model in this study is able to detect
prohibited items that were not detected by YOLOv5s, and
there is an overall improvement in the detection accuracy
for each category of prohibited items. In summary, the
improved model in this study maintains excellent detection
performance while being lightweight.

VI. CONCLUSION

This paper proposes a lightweight object detection model
based on YOLOv7-tiny framework. Drawing inspiration from
the lightweight network GhostNet, the backbone network is
improved, which can effectively reduce model parameters
and computational complexity while accelerating prohibited
item detection speed. BiFPN structure is adopted in the
neck network, and the detection capability of contraband is
enhanced by embedding lightweight CA attention mechanism
and Local-EIoU loss function, while maintaining lightweight
design.Experimental results demonstrate that the improved
model successfully achieves a balance between lightweight
design and detection accuracy for prohibited item detection
tasks in X-ray images.
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Fig. 8. Visualization of case.

REFERENCES

[1] Q. Wang and T. P. Breckon, “Contraband materials detection within
volumetric 3d computed tomography baggage security screening im-
agery,” in 2021 20th IEEE International Conference on Machine
Learning and Applications (ICMLA). IEEE, Dec. 2021.

[2] S. Akcay and T. Breckon, “Towards automatic threat detection: A
survey of advances of deep learning within x-ray security imaging,”
Pattern Recognition, vol. 122, p. 108245, Feb. 2022.

[3] G. Batsis, I. Mademlis, and G. T. Papadopoulos, “Illicit item detection
in x-ray images for security applications,” in 2023 IEEE Ninth Inter-
national Conference on Big Data Computing Service and Applications
(BigDataService). IEEE, Jul. 2023.

[4] L. Shen, W. Cui, Y. Tao, T. Shi, and J. Liao, “Surface defect detection
algorithm of hot-rolled strip based on improved yolov7.” IAENG
International Journal of Computer Science, vol. 51, no. 4, 2024.

[5] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Conference on
Computer Vision (ICCV). IEEE, Dec. 2015.

[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, p.
1137–1149, Jun. 2017.

[7] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part I 14. Springer, 2016, pp.
21–37.

[8] M. Cheng, J. Bai, L. Li, Q. Chen, X. Zhou, H. Zhang, and P. Zhang,
“Tiny-retinanet: a one-stage detector for real-time object detection,” in
Eleventh International Conference on Graphics and Image Processing
(ICGIP 2019), Z. Pan and X. Wang, Eds. SPIE, Jan. 2020.

[9] Y. Ren, H. Zhang, H. Sun, G. Ma, J. Ren, and J. Yang, “Lightray:
Lightweight network for prohibited items detection in x-ray images
during security inspection,” Computers and Electrical Engineering,
vol. 103, p. 108283, 2022.

[10] C. Liqun and J. Yaqin, “Improved x-ray prohibited items detection
algorithm for yolov7,” in 2023 IEEE 6th International Conference
on Automation, Electronics and Electrical Engineering (AUTEEE).
IEEE, Dec. 2023.

[11] P. Sun, H. Zhang, J. Yang, and D. Wei, “Mobilevit based lightweight
model for prohibited item detection in x-ray images,” in Asian Con-
ference on Pattern Recognition. Springer, 2023, pp. 45–58.

[12] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
in 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, Jun. 2023.

[13] K. Liu, Q. Sun, D. Sun, L. Peng, M. Yang, and N. Wang, “Underwater
target detection based on improved yolov7,” Journal of Marine Science
and Engineering, vol. 11, no. 3, p. 677, Mar. 2023.

[14] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet:
More features from cheap operations,” in 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). IEEE, Jun.
2020.

[15] J. Chen, H. Mai, L. Luo, X. Chen, and K. Wu, “Effective feature
fusion network in bifpn for small object detection,” in 2021 IEEE
International Conference on Image Processing (ICIP). IEEE, Sep.
2021.

[16] Q. Hou, D. Zhou, and J. Feng, “Coordinate attention for efficient
mobile network design,” in 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, Jun. 2021.

[17] Q. Weimin, C. Hangong, Y. Yuting, and Y. Guoshuai, “Indoor ob-
ject recognition based on yolov5 with eiou loss function,” in Third
International Conference on Advanced Algorithms and Signal Image
Processing (AASIP 2023), K. Subramaniam and P. Loskot, Eds. SPIE,
Oct. 2023.

[18] C. Miao, L. Xie, F. Wan, C. Su, H. Liu, J. Jiao, and Q. Ye, “Sixray:
A large-scale security inspection x-ray benchmark for prohibited item
discovery in overlapping images,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp.
2119–2128.

[19] G. Huang, S. Liu, L. v. d. Maaten, and K. Q. Weinberger, “Con-
densenet: An efficient densenet using learned group convolutions,”
in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE, Jun. 2018.

[20] H. Gong, H. Li, K. Xu, and Y. Zhang, “Object detection based on
improved yolov3-tiny,” in 2019 Chinese Automation Congress (CAC).
IEEE, Nov. 2019.

[21] S. Ali, A. Siddique, H. F. Ates, and B. K. Gunturk, “Improved
yolov4 for aerial object detection,” in 2021 29th Signal Processing and
Communications Applications Conference (SIU). IEEE, Jun. 2021.

[22] T.-H. Wu, T.-W. Wang, and Y.-Q. Liu, “Real-time vehicle and distance
detection based on improved yolo v5 network,” in 2021 3rd World
Symposium on Artificial Intelligence (WSAI). IEEE, Jun. 2021.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 7, July 2024, Pages 1279-1287

 
______________________________________________________________________________________ 




