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Abstract—In this paper, the power method is discussed in
mathematical detail with respect to the convergence, analysis,
numerical computations and multiplicity. Deflation as well
as avoiding deflation are described for symmetric positive
definite matrices. Variations of the power method are discussed.
Projections are applied to some distributions of the spectrum.

Index Terms—Power method, eigenvalues, projections, defla-
tion.

I. INTRODUCTION

THE spectrum of a matrix determines its eigendecompo-
sition which reveals much about the associated linear

transformation. Methods such as those due to Lanczos,
Arnoldi and Leverrier, amongst others, have been studied
extensively to obtain the spectrum [3]. Amongst all methods,
the QR algorithm is the gold standard to determine the
spectrum. A pioneering classic text on the computation of
eigenvalues is by Wilkinson [12]. However, there are cases
where only the dominant and least dominant eigenvalues are
needed. For example, the condition of a symmetric linear
system is determined by

∣∣∣ λ1

λN

∣∣∣, where λ1 is the dominant
eigenvalue and λN the least dominant of the matrix associ-
ated with the linear system. The power method is a simple
yet effective method to compute λ1 and λN . However, with
some simple adaptation, it can be used to determine other
eigenvalues as well. The convergence rate can be speeded up,
if the need arises. However, there is much more to the power
method, that we examine in this treatise. The PageRank is
calculated using the power method to determine the principal
eigenvector of the Google matrix [6]. The power iteration is
still used as part of more efficient techniques like Krylov
methods and the QR method. Householder attributed the
power method to Müntz in 1913 [4]. A parametric power
method has recently been proposed in [1] and is promising,
but only for certain distributions of the spectrum. The power
iteration using (·)2

k

has been shown to be faster than the
traditional power method in [8], as the rate of convergence

depends on
∣∣∣λ2

λ1

∣∣∣2k and is especially useful when |λ2

λ1
| is close

to unity, for not very large matrix dimensions. A modified
power method has been applied in Nuclear Physics and is still
a subject of current research [9]. Bounds on the eigenvalues
of preconditioned matrices are invaluable as illustrated in
[13]. The authors in [11], surprisingly used the power and
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the inverse power method to determine outer bounds for
irreducible positive definite matrices.

II. THEORY

It is well known that Hermitian matrices are unitarily diag-
onalizable and that their eigenvalues are real. Let A ∈ Rn×n

be Hermitian with N ≤ n distinct eigenvalues {λi}Ni=1. We
denote the algebraic multiplicity of λi by mi and assume
that they satisfy the descending arrangement

|λ1| > |λ2| > |λ3| > · · · > |λN−1| > |λN |.

The corresponding orthonormal eigenbasis of A is given by

S = {uj
i |i = 1, 2, · · · , N ; j = 1, 2, · · · , mi}.

We shall refer to λi as dominant to λj , whenever |λi| > |λj |.
We call the tuple (λi,u

j
i ) the (i, j)th eigenmode. Sometimes

we omit the superscript j if we are focussing on one
eigenvector and simply refer to the mode as the ith mode.
Define the subspaces

Sj =

j⊕
i=1

N(A− λiI) and Ŝj =
N⊕
i=j

N(A− λiI),

where N(A − λiI) denotes the nullspace of A − λiI with
dimension mi.

Theorem 1: Let A ∈ Rn×n be Hermitian with spectrum,
σ(A), satisfying λi > λi+1, i = 1, 2, · · · , N − 1. Then

λN−k ≤ ⟨Ax,x⟩ ≤ λ1, x ∈ SN−k, ∥x∥2 = 1 (1)

with equality holding on the left hand side of (1) when x ∈
N(A−λN−kI) and on the right hand side when x ∈ N(A−
λ1I). Also

λN ≤ ⟨Ax, x⟩ ≤ λk+1, x ∈ Ŝk+1, ∥x∥2 = 1 (2)

with equality holding on the left hand side of (2) when x ∈
N(A− λNI) and on the right hand side when x ∈ N(A−
λk+1I).

Proof: We shall only provide a prove for inequality
(1), since the proof for inequality (2) follows in a similar
manner. The eigendecomposition of A as given by the
spectral theorem [7] is

A =
N∑
i=1

λiGi (3)

where

Gi =

mi∑
j=1

uj
i (u

j
i )

t (4)

are the orthogonal projectors onto N(A − λiI) along the
range R(A − λiI), with the property that GiGj = δijGi,

IAENG International Journal of Applied Mathematics

Volume 54, Issue 7, July 2024, Pages 1303-1311

 
______________________________________________________________________________________ 



where δij , denotes the Kronecker delta. Furthermore, I =
N∑
i=1

Gi. Now, for x ∈ SN−k and ∥x∥2 = 1 implies that

x =
N−k∑
i=1

Gix.

Taking the inner product ⟨x, x⟩, we get

⟨x, x⟩ =
N−k∑
i=1

⟨Gix, x⟩

= 1.

Hence, the inner product ⟨Ax, x⟩, yields that

⟨Ax, x⟩ =

〈
N−k∑
i=1

λiGix,
N−k∑
j=1

Gjx

〉

=
N−k∑
i=1

N−k∑
j=1

λi⟨Gix, Gjx⟩

=
N−k∑
i=1

λi⟨Gix, x⟩. (5)

It follows from (5) that

⟨Ax, x⟩ ≤ λ1

N−k∑
i=1

⟨Gix, x⟩ = λ1

and

⟨Ax, x⟩ ≥ λN−k

N−k∑
i=1

⟨Gix, x⟩ = λN−k.

If x ∈ N(A− λN−kI), then

x = GN−kx

and the inner product ⟨Ax, x⟩,

⟨Ax, x⟩ = ⟨λN−kGN−kx, x⟩
= λN−k⟨x, x⟩
= λN−k

If x ∈ N(A− λ1I), then

x = G1x

and the inner product ⟨Ax, x⟩,

⟨Ax, x⟩ = ⟨λ1G1x, x⟩
= λ1⟨x, x⟩
= λ1.

We note that, when k = 0 in (1) and (2) that,

λN ≤ ⟨Ax, x⟩ ≤ λ1, ∥x∥2 = 1, SN = Ŝ1 = Rn.

Furthermore, we observe that span{S}, Sj and Ŝj are A and
A− λI (λ ∈ R) invariant subspaces.
Let u be a normalized eigenvector of A with corresponding
eigenvalue λ, and let û be a normalized perturbation of order
ε of u. Therefore û = u+εu⊥

√
1+ε2

, where ⟨u⊥, u⟩ = 0 and
∥u⊥∥2 = ∥û∥2 = 1 (Note that it only suffices to consider
perturbations perpendicular to u).

Theorem 2: If u is a normalized eigenvector of A with
corresponding eigenvalue λ, and if û is the normalized
perturbation of order ε of u. Then the corresponding per-
turbation in λ is O(ε2).

Proof: Taking the inner product of Aû with û, we get

λ̂ = ⟨Aû, û⟩ (6)

=
⟨λu+ εAu⊥, u+ εu⊥⟩

1 + ε2

=
λ+ 2ελ⟨u⊥, u⟩+ ε2⟨Au⊥, u⊥⟩

1 + ε2

=
λ(1 + ε2) + (⟨Au⊥, u⊥⟩ − λ)ε2

1 + ε2

= λ+O(ε2). (7)

Theorem 3: Let A be a symmetric matrix with dominant
eigenvalue λ1 and G1 be the corresponding projector onto
N(A − λ1I). Then Ak

λk
1

converges linearly to G1 with

asymptotic error constant given by
∣∣∣λ2

λ1

∣∣∣.
Proof: For the kth power of matrix A, we get

Ak =
N∑
i=1

λk
iGi

= λk
1G1 +

N∑
i=2

λk
iGi.

Let

ek =
Ak

λk
1

−G1

=
N∑
i=2

(
λi

λ1

)k

Gi, (8)

then (8) is a spectral decomposition of the matrix ek. Hence,
the spectrum is given by

σ(ek) =

{(
λ2

λ1

)k

,

(
λ3

λ1

)k

, · · · ,
(
λN

λ1

)k

, 0

}

and ∥ek∥2 =
∣∣∣λ2

λ1

∣∣∣k < 1. It follows that, limk→∞ ∥ek∥2 =

0 and ek → 0. Furthermore, we get ∥ek+1∥2

∥ek∥2
=
∣∣∣λ2

λ1

∣∣∣. So

convergence is linear with asymptotic error constant
∣∣∣λ2

λ1

∣∣∣.
The latter is sometimes referred to as the convergence rate.

If A is replaced by Am in Theorem 3 then the convergence
is linear at the rate

∣∣∣λ2

λ1

∣∣∣m.

III. THE POWER METHOD

Consider the iterative process

xk =
Axk−1

∥Axk−1∥2
,x0 ∈ Rn (9)

where ∥x0∥2 = 1 and G1x0 ̸= 0.
Then taking the limit as k → ∞, we get

xk =
Akx0

∥Akx0∥2
(10)
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Fig. 1. Error vs ε for Example 1

↘
e1

↙
e2

and by Theorem 3

xk → λk
1G1x0

|λ1|k∥G1x0∥2
= u1 ∈ N(A− λ1I).

It follows that in the limit as k → ∞,

Axk → λ1u1

and
(Axk)p
(xk)p

→ λ1

where (xk)p denotes the pth component of xk such that
∥xk∥∞ = |(xk)p|. For k large enough, we write

û1 = xk =
u1 + εu⊥

1√
1 + ε2

,

where ε → 0 as k → ∞ so that

λ̂1 =
(A(u1 + εu⊥

1 ))p
(u1 + εu⊥

1 )p
(11)

=
(λ1u1 + εAu⊥

1 )p
(u1 + εu⊥

1 )p

=

λ1 +
ε(Au⊥

1 )p
(u1)p

1 +
ε(u⊥

1 )p
(u1)p

= λ1 +O(ε). (12)

Since ⟨Axk, xk⟩ = λ1+O(ε2) by theorem 2, it follows that
the Rayleigh number ⟨Axk, xk⟩ is a better approximation to
λ1 than (12).

Example 1: Consider the matrix

A =


8 4 4 1

4 8 1 4

4 1 8 4

1 4 4 8


where λ1 = 17 and u = u1 = [ 12 ,

1
2 ,

1
2 ,

1
2 ]

t. We choose
u⊥ = u⊥

1 = [− 1
2 ,

1
2 ,−

1
2 ,

1
2 ]

t and plot the errors e1 = |λ− λ̂|
obtained from equations (6), e2 = |λ − λ̂1| obtained from
equations (11), versus ε in Figure 1. The linear and quadratic
dependence on ε is clearly seen from the blue and red plots,
agreeing with equations (12) and (7), respectively.

Algorithm 1: power(A)
1: choose x0 ∈ Rn randomly, ∥x0∥2 = 1.

2: for k = 1 to K do
3: x1 = Ax0

4: x1 = x1

∥x1∥2

5: if ∥x1 − x0∥2 > ε then
6: x0 = x1

7: else
8: λ1 = ⟨Ax1,x1⟩
9: u1 = x1

10: stop
11: end if
12: end for
13: return u = u1, λ = λ1

It is necessary to scale the iterates in step 4 to prevent
numerical overflow.
Shifted iteration
Given p ∈ R one may determine the eigenvalue of A furthest
away from p by applying the power method to A−pI. This is
particularly useful for positive definite symmetric matrices,
when the average of the eigenvalues is skewed towards λ1.
This allows the determination of the smallest mode (λN ,uN )
by avoiding inverse iteration. In this case it is indeed true that

trace(A)
n − λN > λ1 − trace(A)

n ,

where the latter two expressions are the first and second
dominant eigenvalues of

A− trace(A)
n I.

Thus the power method on the latter matrix will yield the last
mode. Let us find the optimal value of p, such that λi− p >
λi+1 − p, i = 1, 2, . . . , N − 1, with the requirement that the
asymptotic error constant satisfies

λ2 − p

λ1 − p
<

λ2

λ1
. (13)

We have the following cases that restrict the values of p:
(a) p ∈ (−∞, 0) contradicts (13),
(b) p ∈ (λ2,∞), then λN − p is dominant,
(c) p ∈ (λN+λ2

2 , λ2), then λ2 − p is no longer the second
dominant eigenvalue.

Thus, for any p ∈ (0, λN+λ2

2 ], results in a smaller asymptotic
error constant. However, f(p) = λ2−p

λ1−p decreases on this
interval, thus the optimal value is given by p = λN+λ2

2 . It is
obvious that to use this result, reasonable approximations of
λN and λ2 are required. In other words, with this value of
p, the power method using A− pI will converge faster than
the power method using A, to the first mode.

Example 2: Consider the matrix

A =


7 4 3 2 1

4 8 0 4 3

3 0 9 6 5

2 4 6 10 7

1 3 5 7 11

 ,

where λ1 = 24.406875 to six decimal digits. Figure III
illustrates the convergence for values of p = 0, 5.2, 9. The
red curve clearly indicates that the optimal value of p for
convergence is p = 5.2, which is obtained from the exact
eigenvalues λ2 and λN . The values of p = 9 is obtained
from trace(A)

N .
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Fig. 2. Error vs ε for Example 2

←p = 0

↘
p = 5.2

↓
p = 9

IV. INVERSE ITERATION

In this section, we assume that λN−1 is dominant to λN .
It is clear that the power method applied to A−1 will yield
the dominant eigenvalue of A−1, equivalently the reciprocal
of the least dominant eigenvalue of A. Thus we are able to
recover the Nth eigenmode and the corresponding rate of
convergence is

∣∣∣ λN

λN−1

∣∣∣.
Algorithm 2: Inverse iteration

1: choose x0 ∈ Rn randomly, ∥x0∥2 = 1.
2: for k = 1 to K do
3: solve x0 = Ax1 for x1

4: x1 = x1

∥x1∥2

5: if ∥x1 − x0∥2 > ε then
6: x0 = x1

7: else
8: λN = ⟨Ax1, x1⟩
9: uN = x1

10: stop
11: end if
12: end for
Inverse power iteration is more costly than the power
method due to the solution of a linear system at step 3,
however, a LU decomposition can minimize this cost.

Inverse shifted iteration
If an approximation λ̂k to an eigenvalue λk is known
then the inverse power method on A− λ̂kI yields the least
dominant eigenvalue of A−λ̂kI, namely λk−λ̂k. The closer
λ̂k is to λk, the faster the convergence. Such approximations
to λk (especially λ1, λN ) are found in the literature [10].
However, if the eigenvalues are clustered near λk then it is
likely to converge to the wrong eigenmode, unless λ̂k is a
very good approximation to λk.

Example 3: For the matrix of Example 2, λN = 0.903405
correct to six decimal places. Fig. 3 shows that inverse shifted
iteration on A− I converges after one iteration, compared
to a plain inverse iteration.

V. DEFLATION

We may determine all the eigenmodes of A by the process
of deflation, by having obtained the first mode (λ1,u

1
1) by

the power method, we will then determine all the other modes

Fig. 3. Eigenvalue vs iteration number for Example 3

← inverse

↙
inverse shifted

corresponding to λ1. It follows from (3) and (4), that

A− λ1u
1
1(u

1
1)

t =

m1∑
j=2

λ1u
j
1(u

j
1)

t +
N∑
i=2

λiGi. (14)

Hence, the spectrum of (A− λ1u
1
1(u

1
1)

t) is given by

σ(A− λ1u
1
1(u

1
1)

t) = {0, λ1, λ2, · · · , λN} ,

where λ1 and zero are eigenvalues of algebraic multiplicity
m1 − 1 and unity respectively. The power method applied
to B1 = A − λ1u

1
1(u

1
1)

t will yield an eigenvalue u corre-
sponding to λ1. From (14) we note that

(A− λ1u
1
1(u

1
1)

t)x0 =

m1∑
j=2

λ1⟨x0,u
j
1⟩u

j
1 +

N∑
i=2

λiGix0.

Hence, u ∈ span{uj
1}

m1
j=2 implies that u ⊥ u1. Let u2

1 = u

and proceed with further deflation, having obtained {uj
1}

k−1
j=1 ,

k = 2, 3, · · · , m1, uk
1 is obtained by applying the power

method to

Bk−1 = A− λ1

k−1∑
j=1

uj
1(u

j
1)

t

= λ1

m1∑
j=k

uj
1(u

j
1)

t +
N∑
i=2

λiGi.

Clearly, the spectrum of Bk−1 is given by σ(Bk−1) =
{0, λ1, λ2, · · · , λN} with λ1 having algebraic multiplicity
m1 − k + 1 and zero having algebraic multiplicity k − 1.
Deflation of λ1 is terminated with the power method on
Bm1−1 yielding um1

1 , thus G1 is obtained. Having obtained
(λ1,G1), we have from (3)

Bm1 = A− λ1G1

=
N∑
i=2

λiGi

and

σ(A− λ1G1) = {0, λ2, λ3, λN}.

The power method applied to Bm1
, will converge to (λ2,u

1
2).

Repetition of the deflation process described above will
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result in the complete deflation of λ2. Thus all modes up
to (λN ,umN

N ) can be determined. Clearly,

Bmk
= A−

k∑
i=1

λiGi

=
N∑

i=k+1

λiGi.

Thus x0 ∈ Ŝk+1 which implies that Bmk
x0 ∈ Ŝk+1 and

Ŝk+1 is Bmk
invariant.

Algorithm 3: Deflation
1: call power(A)
2: m = 1
3: for i = 1 to n− 1 do
4: z = u
5: β = λ
6: output m, β, z
7: A = A− βzzt

8: call power(A)
9: if |β − λ| ≤ ε then

10: m = m+ 1
11: else
12: m = 1
13: end if
14: end for

Theorem 4: Let (λ̂, û) approximate the eigenmode (λ,u),
where û approximates u to order O(ε). Then

B̂kx0 = Bkx0

− λε
(
⟨x0, u⟩Bk−1u⊥ + ⟨Bk−1x0,u

⊥⟩u
)
, (15)

where B̂ = A − λ̂ûût, is the actual deflation matrix and
B = A− λuut is the exact deflation matrix.

Proof: From theorem 2, we have that

û =
u+ εu⊥
√
1 + ε2

and that λ̂ = λ+O(ε2). Thus, we get

λ̂ûût =
(
λ+O(ε2)

) (u+ εu⊥)(u+ εu⊥)t

1 + ε2

= λuut + λε
(
u⊥ut + u(u⊥)t

)
to order ε.

Hence, we obtain

A− λ̂ûût = A− λuut − λε
(
u⊥ut + u(u⊥)t

)
.

It follows that

B̂x0 = Bx0 − λε
(
⟨x0, u⟩u⊥ + ⟨x0,u

⊥⟩u
)
. (16)

Hence, statement (15) is true for k = 1. Assume that (15) is
true for k, then for k + 1, we proceed as follows. Replace
x0 by B̂x0 in (15) to get

B̂k+1x0 = BkB̂x0

− λε
(
⟨B̂x0, u⟩Bk−1u⊥ + ⟨Bk−1B̂x0,u

⊥⟩u
)
. (17)

Note from (16) that

BkB̂x0 = Bk+1x0 − λε
(
⟨x0, u⟩Bku⊥ + ⟨x0, u⟩Bku

)
= Bk+1x0 − λε⟨x0, u⟩Bku⊥. (18)

Furthermore, from (16)

⟨B̂x0,u⟩
= ⟨Bx0,u⟩ − λε

(
⟨x0, u⟩⟨u⊥,u⟩+ ⟨x0,u

⊥⟩⟨u,u⟩
)

= −λε⟨x0, u
⊥⟩. (19)

To arrive at (18) and (19) we have used the fact that B is
symmetric and u ∈ N(B). From (16)

Bk−1B̂x0 = Bkx0 − λε⟨x0, u⟩Bk−1u⊥

so that

⟨Bk−1B̂x0,u
⊥⟩ = ⟨Bkx0,u

⊥⟩ − λε⟨x0, u⟩⟨Bk−1u⊥,u⊥⟩.
(20)

Using (18)-(20) in (17), we finally have

B̂k+1x0 = Bk+1x0

− λε
(
⟨x0, u⟩Bku⊥ + ⟨Bkx0,u

⊥⟩u
)
+O(ε).

Apart from normalization of the iterates, we observe from
(15), that if Bkx0 converges to an eigenvector v of A, then
B̂kx0 converges to an eigenvector v̂ of A. Clearly, Bk−1u⊥

converges to say b, where b ⊥ u. Thus we write

v̂ = v − λε⟨x0,u⟩b
= v +O(ε)

Thus v̂ approximates v to O(ε) and the deflation process is
stable.

VI. CIRCUMVENTING DEFLATION

A. What doesn’t work

Suppose that we have determined (λ̂1, û
1
1) using the power

method. Define
S⋆ = span{(û1

1)
⊥} = {x ∈ Rn|⟨x, û1

1⟩ = 0}. Then x ∈ S⋆

which implies that

⟨Ax, û1
1⟩

= ⟨x,Aû1
1⟩

= λ̂1⟨x, û1
1⟩

= 0.

Thus, Ax ∈ S⋆ and S⋆ is A invariant. Therefore the
power method applied to x⋆

0 ∈ S⋆ should converge to the
next dominant mode (λ̂1, û

2
1). However, this is not true in

practice. We provide a brief analysis to understand why. It
is nearly impossible to generate a x⋆

0 ∈ S⋆. Recall that
λ̂1 = λ1+O(ε2) and û1

1 =
u1

1+ε(u1
1)

⊥
√
1+ε2

. In the discussion that
follows we shall work to O(ε). Given x0 ∈ Rn randomly
chosen, we generate x⋆

0 by Gram Schmidt orthogonalization.
Hence, we obtain that

x⋆
0

= x0 −
⟨x0,u

1
1 + ε(u1

1)
⊥⟩(u1

1 + ε(u1
1)

⊥)

1 + ε2

= x0 − ⟨x0,u
1
1⟩u1

1 − ε⟨x0, (u
1
1)

⊥⟩u1
1 − ε⟨x0,u

1
1⟩(u1

1)
⊥.
(21)

and

Akx⋆
0
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Fig. 4. Eigenvalue vs iteration number for Example 4

↘
x0 ↖x⋆

0

= Akx0 − λk
1⟨x0,u

1
1⟩u1

1 − ελk
1⟨x0, (u

1
1)

⊥⟩u1
1

− ε⟨x0,u
1
1⟩Ak(u1

1)
⊥. (22)

From (14) and the spectral theorem, we have that

Ak(u1
1)

⊥ = λk
1

m1∑
j=2

⟨uj
1, (u

1
1)

⊥⟩uj
1 +

N∑
i=2

λk
iGi(u

1
1)

⊥

= λk
1

m1∑
j=2

⟨uj
1, (u

1
1)

⊥⟩uj
1 for k large. (23)

Using (23), equation (22) becomes

Akx⋆
0 = Akx0 − λk

1⟨x0,u
1
1⟩u1

1 − ελk
1⟨x0, (u

1
1)

⊥⟩u1
1

− ελk
1⟨x0,u

1
1⟩

m1∑
j=2

⟨uj
1, (u

1
1)

⊥⟩uj
1. (24)

Since ελk
1 << λk

1 , we may ignore the O(ε) terms in (24) to
get

Akx⋆
0

= Akx0 − λk
1⟨x0,u

1
1⟩u1

1

= Akx0 − λk
1⟨x0,u

1
1⟩û1

1 + λk
1ε⟨x0,u

1
1⟩(u1

1)
⊥

= Akx0 − λk
1⟨x0,u

1
1⟩û1

1, (25)

where we have ignored ελk
1 as before. Since Akx0 in (25)

converges to a vector parallel to û1
1, we converge again to

the first mode.
Example 4: The matrix

A =


10 1 2 3 4

1 9 −1 2 −3

2 −1 7 3 −5

3 2 3 12 −1

4 −3 −5 −1 15

 ,

has eigenvalues λ1 = 19.242065 and λ2 = 15.915101, both
of multiplicity one. The power method is applied with x0

and x⋆
0 ⊥ x0. In Fig. 4 it is clearly seen that the power

method with x⋆
0 converges to the first mode, rather than to

the second mode.

B. What works

Suppose we have determined the modes {(λ̂1, û
j
1)}

p−1
j=1 ,

p ≤ m1. Now consider the iterative process

x⋆
0 = x0 −

p−1∑
j=1

⟨x0, û
j
1⟩û

j
1

x⋆
k = Ax⋆

k−1 − λ̂1

p−1∑
j=1

⟨x⋆
k−1, û

j
1⟩û

j
1. (26)

It follows from (26) that

x⋆
k = Akx0 − λ̂k

1

p−1∑
j=1

⟨x0, û
j
1⟩û

j
1

and the from the inner product of x⋆
k and ûj

1, yields that

⟨x⋆
k, û

j
1⟩ = ⟨x0,A

kûj
1⟩ − λ̂k

1⟨x0,u
j
1⟩ = 0.

Hence, the iterates x⋆
k ∈ span

{
{(ûj

1)
⊥}p−1

j=1

}
, and so the

power method with orthogonalization is forced to converge
to the next mode (λ̂1, û

p
1). Similarly having obtained

{uj
i , u

r
q|i = 1, 2, · · · , q − 1;

j = 1, 2, · · · , mi ; r = 1, 2, · · · , p− 1},

the iterative process

x⋆
k= Ax⋆

k−1−
q−1∑
i=1

λ̂i

mi∑
j=1

⟨x⋆
k−1, û

j
i ⟩û

j
i−λ̂q

p−1∑
r=1

⟨x⋆
k−1, û

r
q⟩ûr

q

will converge to the mode ûp
q . A simple algorithm to deter-

mine the second mode is presented in Algorithm 4
Algorithm 4: orthogonalization

1: call power(A) with output λ1,u1

2: choose x0 ∈ Rn randomly, ∥x0∥2 = 1.
3: x0 = x0 − ⟨x0,u1⟩u1

4: for k = 1 to K do
5: x1 = Ax0 − λ1⟨x0,u1⟩u1

6: x1 = x1

∥x1∥2

7: if ∥x1 − x0∥2 > ε then
8: x0 = x1

9: else
10: λ2 = ⟨Ax1,x1⟩
11: u2 = x1

12: stop
13: end if
14: end for

Example 5: The power method with orthogonalization is
applied to the matrix of Example 4, to determine the second
mode. Results are depicted in Fig. 5. Compared to Fig. 4, we
notice that we now have convergence to the second mode.

C. Projectors

We now consider a special case where projectors are
useful. Consider the distribution

|λ1| >> |λ2| > |λ3| > · · · > |λN−1| > |λN |.

of the eigenvalues of A. From Lagrange interpolation, we
have that

G1 =
N∏
i=2

A− λiI

λ1 − λi
,
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Fig. 5. Power method with orthogonalization for Example 5

↘
λ1

↖λ2

so that G1 is approximately proportional to AN−1. Thus an
eigenvector u1

1 is given by

u1
1 =

G1x0

∥G1x0∥

≈ AN−1x0

∥AN−1x0∥
= û1

1

and the Rayleigh number λ̂1 = ⟨Aû1
1, û

1
1⟩ is a good

approximation to λ1. This may further be refined by a single
application of shifted inverse iteration to provide a fairly
accurate approximation (λ̂1, û

1
1). Thus having obtained the

first mode we may proceed to obtain a mode corresponding
to λ2. Note that

G2 =
N∏
i=1

i̸=2

A− λiI

λ2 − λi
.

Thus G2 is approximately proportional to (A− λ1I)A
N−2

and

u1
2 =

G2x0

∥G2x0∥

≈ (A− λ1I)A
N−2x0

∥(A− λ1I)AN−2x0∥
(27)

= û1
2.

As before the Rayleigh number λ̂2 = ⟨Aû1
2, û

1
2⟩ is an

approximation to λ2. This may be refined by a single or
double step shifted inverse iteration to yield a fairly accurate
approximation to the second mode. This is particularly suited
to the case mi = 1, namely N = n.

Example 6: Consider the matrix [5]
5 7 6 5

7 10 8 7

6 8 10 9

5 7 9 10

 (28)

where σ(A) = {0.010150, 0.843907, 3.858057, 30.288685}
accurate to six decimal digits. The power method
with N − 1 = 3 iterations results in an error
|λ̂1 − λ1| = 2.82 × 10−5. With one step of shifted
iteration we achieve |λ̂1 −λ1| = 5.45× 10−12. Likewise for
the second mode we obtain |λ̂2 − λ2| = 6.44 × 10−5 using

(27), |λ̂2 − λ2| = 7.07 × 10−11 after one shifted inverse
iteration and |λ̂2 − λ2| = 7.11 × 10−15 after two shifted
inverse iterations.

D. Distinct Eigenvalues

The following method is useful when mi = 1, that is, the
eigenvalues are distinct. Use the power method on A with
x0 ∈ Rn, chosen randomly and ∥x0∥2 = 1, to determine the
first mode (λk1 ,uk1), k1 = 1. Let {ki}ni=2 ∈ {2, 3, · · · , n},
then apply the power method on A − λk1

I to determine
the next mode (λk2

,uk2
). Next apply the power method on

(A−λk1
I)(A−λk2

I) to determine the next mode (λk3
,uk3

).
Having determined the modes (λki ,uki)

p−1
i=1 , use the power

method on

B̃p =

p−1∏
i=1

(A− λkiI) (29)

to determine (λkp
,ukp

). Note that B̃px0 ⊥ {uki
}p−1
i=1 as

⟨B̃x0, ukm
⟩ = ⟨x0,

p−1∏
i=1

(A− λki
I)ukm

⟩ 1 ≤ m ≤ p− 1

= ⟨x0,

p−1∏
i=1
i̸=m

(A− λki
I)(Aukm

− λkm
ukm

)⟩

= 0.

Thus all iterates are in a subspace perpendicular to
span{uki

}p−1
i=1 .

Lemma 1: Let B̃p be defined as in (29), then

B̃p =

n∑
j=p

p−1∏
i=1

(λkj − λki)Gkj , p > 1.

Proof:

A− λk1I =

n∑
j=1

λkjGkj −
n∑

j=1

λk1Gkj

=
n∑

j=2

(λkj
− λk1

)Gkj

=
n∑

j=2

1∏
i=1

(λkj
− λki

)Gkj
.

Hence, (29) is true for p = 2. Assume that (29) is true for
p, then

B̃p+1

=

p∏
i=1

(A− λki
I)

= (A− λkp
I)B̃p

= (A− λkp
I)

n∑
j=p

p−1∏
i=1

(λkj
− λki

)Gkj

= (A− λkp
I)

[
p−1∏
i=1

(λkp
− λki

)Gkp

+
n∑

j=p+1

p−1∏
i=1

(λkj
− λki

)Gkj
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=

p−1∏
i=1

(λkp − λki)(AGkp − λkpGkp)

+
n∑

j=p+1

p−1∏
i=1

(λkj − λki)(AGkj − λkpGkj )

=
n∑

j=p+1

p−1∏
i=1

(λkj − λki)(AGkj − λkpGkj )

=
n∑

j=p+1

p∏
i=1

(λkj
− λki

)Gkj

where we have used the fact that, AGkj
= λkj

Gkj
.

Thus from Lemma 1, 0 ∈ σ(B̃p) and has multiplicity p− 1
and convergences to the mode (λkp

,ukp
), which is guar-

anteed, provided
p−1∏
i=1

(λkp
− λki

) is dominant. Furthermore,

there is no need to evaluate B̃p explicitly, thus avoiding
matrix - matrix multiplications as the iterates B̃px0 may be
computed as a sequence of matrix - vector multiplications.
Algorithm 5 briefly indicates the procedure to be used to
cyclically determine the eigenvalues.

Algorithm 5: cyclic
1: call power(A)
2: L[1] = λ
3: A = A− L[1]I
4: call power(A)
5: L[2] = λ
6: for k = 2 to N − 1 do
7: A = A(A− L[i]I)
8: call power(A)
9: L[i+ 1] = λ

10: end for
11: output vector L
It is obvious that the first two modes determined are λ1 and
λN . Thereafter the modes are determined according to the
dominant eigenvalues of the matrix B̃p and are stored in the
vector L.

Example 7: Consider the matrix

A =


9 4 3 2 1

4 10 0 4 3

3 0 11 6 5

2 4 6 12 7

1 3 5 7 13

 ,

where σ(A) = {26.406875, 11.513724, 8.848950, 5.327046,
2.903405}. Table I indicates the results using Algorithm 5
to determine all modes. We have used ε = 10−6 as tolerance
for eigenvector convergence in power(A).

TABLE I
ERRORS AND MODES FOR EXAMPLE 7

Iterations Mode Error
2 1 1.7× 10−10

72 5 1.5× 10−10

45 2 5.3× 10−15

112 4 4.7× 10−11

17 3 4.4× 10−12

VII. ACCELERATING CONVERGENCE

From (10), we have

xk =

λk
1G1x0 +

n∑
2
λk
iGix0(

λ2k
1 ∥G1x0∥22 +

n∑
2
λ2k
i ∥Gix0∥22

) 1
2

(30)

=

(
λ1

|λ1|

)k
G1x0

∥G1x0∥2
+

n∑
i=2

(
λi

|λ1|

)k
Gix0

∥G1x0∥2(
1 +

n∑
i=2

(
λi

λ1

)2k ∥Gix0∥22
∥G1x0∥22

) 1
2

.

It follows from (30), after a binomial expansion, we may
write

xk = u1 + βkC+ gk, (31)

where u1 =
(

λ1

|λ1|

)k
G1x0

∥G1x0∥2
, β = λ2

|λ1| , C = G2x0

∥G1x0∥2
is an

eigenvector corresponding to λ2 and gk is the appropriate
error vector. Furthermore, βk → 0 and gk → 0 as k → ∞.
Aitken acceleration [2] is one of the simplest procedures to
improve the convergence of linearly converging sequences.
Define the forward difference operator ∆ by

∆xk = xk+1 − xk.

Theorem 5: The Aitken iterates x̂k given by

x̂k = xk − (∆xk)
2

∆2xk
, (32)

converge faster to u1 than xk. Note that in (32) and what
is to follow, multiplication and division of vectors, refers to
componentwise operations.

Proof: From (31) and (32), it follows that

x̂k−u1

xk−u1
(33)

=1− (xk+1−xk)
2

(xk+2−2xk+1+xk)(xk−u1)

=1− β2k(β−1)2C2+2βk(β−1)C∆gk+(∆gk)
2

(βk(β−1)2C+∆2gk)(βkC+gk)

=βk(β−1)2Cgk+βkC∆2gk+gk∆
2gk−2βk(β−1)C∆gk−(∆gk)

2

β2k(β−1)2C2+βk(β−1)2Cgk+βkC∆2gk+gk∆2gk

=
(β−1)2Cgk−2(β−1)C∆gk+C∆2gk+

gk∆2gk
βk − (∆gk)2

βk

βk(β−1)2C2+(β−1)2Cgk+C∆2gk+
gk∆2

βk gk

.

Since gk, β
k → 0 as k → ∞, we get from (33)

lim
k→∞

|x̂k − u1|
|xk − u1|

= lim
k→∞

∣∣∣∣∣∣∣∣
gk∆

2gk

βk
− (∆gk)

2

βk

gk∆
2gk

βk

∣∣∣∣∣∣∣∣
= lim

k→∞

∣∣∣∣gk∆
2gk − (∆gk)

2

gk∆2gk

∣∣∣∣
= lim

k→∞

∣∣∣∣ gkgk+2 − g2
k+1

gkgk+2 − 2gkgk+1 + g2
k

∣∣∣∣ . (34)

IAENG International Journal of Applied Mathematics

Volume 54, Issue 7, July 2024, Pages 1303-1311

 
______________________________________________________________________________________ 



Fig. 6. Aitken acceleration for Example 7

↖
acc

↖
non-acc

We now assume that gk → 0 monotonically and linearly at
a rate δ, so that we may write for k large

gk+1 = δgk.

Then (34) becomes

lim
k→∞

|x̂k − u1|
|xk − u1|

= lim
k→∞

∣∣∣∣ δ2g2
k − δ2g2

k

δ2g2
k − 2δg2

k + g2
k

∣∣∣∣
= 0.

Then x̂k → u1 at least super-linearly.
Example 8: For the matrix of Example 4 the rate of

convergence to the first mode is |λ2

λ1
| ≈ 0.824. Aitken

acceleration is applied to the power method iterates to speed
up the convergence. This is depicted in Fig. 6 where the
accelerated version has already converged by the 21st iterate,
shown in blue, as compared to the non accelerated version.

Let f(z) be a function defined on σ(A). Since, A is
diagonalizable, it follows from the spectral theorem that

f(A) =

N∑
i=1

f(λi)Gi.

Now, suppose that f(z) is increasing on σ(A), with f(λ2)
f(λ1)

<
λ2

λ1
and that A is a symmetric positive definite matrix, then

f(λi) > f(λi+1), i = 1, 2, · · · , N − 1. Thus the power
method with f(A) converges to the mode (f(λ1),u1). The
asymptotic error constant is given by f(λ2)

f(λ1)
. Thus λ1 is easily

determined.
Example 9: Consider f(z) = zp, p ∈ N, p ≥ 2, then the

asymptotic error constant is
(

λ2

λ1

)p
< λ2

λ1
. Thus convergence

is faster.
However, evaluating f(A) = Ap requires (p − 1)O(n3)
multiplications [4] and is not practical for n large. When
λ2

λ1
is close to unity, then it may be acceptable to use p = 2

to achieve faster convergence, due to a larger separation of
the eigenvalues.

The modified power iteration [9] has the potential to
generate both the first and the second eigenmodes, with the
potential to decrease the asymptotic error constant to |λ3|

|λ1| .

This is particularly useful when |λ2|
|λ1| ≈ 1 and |λ2| >> |λ3|.

However, the method can be unstable and converge to the
first eigenmode only, despite the extra numerical effort.

VIII. CONCLUSION

We have presented some aspects of the power method,
including some variations. In particular, we have shown that
deflation is stable by examining the actual deflation process
from a numerical analysis point of view. Furthermore, we
have presented a way of avoiding the standard deflation
process, which yields the same results as deflation. The
knowledge of projection operators have been shown to be
invaluable, in applying the power method, for cetain distri-
butions of the spectrum of the matrix. A brief discussion of
accelerating convergence is also presented. Our presentation
is in detail, though not exhaustive. Till today the power
method enjoys much interest and research from scientists.
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