
 

 
Abstract—We applied an algebraic approach to solve a 

system consisting of four objective functions such that 
practitioners can absorb operational studies with two 
completed supply chains under service competition and relative 
price conditions. We extended the application of algebraic 
methods to a new environment that will arouse interested 
researchers to work on this research trend. Moreover, we 
checked a related inventory model to point out that the 
previously proposed solution procedure only considered the 
case where the numerator and denominator of the objective 
function both are positive real numbers. Hence, we provie a 
revision for their solution process to cover the overlooked four 
conditions. 

 
Index Terms—Risk structure, Market research, Game theory, 

Supply chain management  
 

I. INTRODUCTION 

N this paper, we will discuss an inventory problem 
consisting of two supply chains that are completed with 

each other to seize the market. The purpose of our study is to 
solve the optimal problem through algebraic methods such 
that those practitioners did not familiar with calculus and 
differential equations still can realize inventory models and 
their applications in the real world environment. 
Hafezalkotob and Makui [1] developed an inventory model 
with two completed supply chains under service level 
constraint. The first supply chain contains a manufacturer, 
Mଵ and a retailer, Rଵ. The second supply chain contains a 
manufacturer, Mଶ  and a retailer, Rଶ , under a completing 
environment with respect to market seizing and relative price. 
In the following, we provide a brief literature introduction of 
this research topic. Tsay and Agrawal [2] studied channel 
dynamics with service competition and relative price. Tsay [3] 
examined manufacturer return policies for distribution 
channel partnerships by risk sensitivity. Cachon and 
Netessine [4] considered supply chain analysis through game 
theory under electric business models. Bernstein and 
Federgruen [5] developed several equilibrium industry 
models under service competition and relative price. Leng 
and Parlar [6] studied supply chain management policies by 
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game theoretic applications. Allon and Federgruen [7] 
examined service industries under competition. Bernstein 
and Federgruen [8] considered supply chains coordination 
mechanisms with service competition and relative price. 
With marketing channels and supply chains, He et al. [9] 
presented a literature survey of stackelberg differential game 
models. Kogan and Tapiero [10] published a book of risk 
valuation, operations management, and supply chain games. 
Under uncertain demand and risk-averse retailers, Xiao and 
Yang [11] examined supply chains through service 
competition and relative price. Xiao and Yang [12] 
developed a supply chain with a single retailer and a single 
manufacturer under integrated competitors by information 
sharing and risk revelation.  
Following this research trend of Tsay and Agrawal [2], Tsay 
[3], Cachon and Netessine [4], Bernstein and Federgruen [5], 
Leng & Parlar [6], Allon and Federgruen [7], Bernstein and 
Federgruen [8], He et al. [9], Kogan and Tapiero [10], Xiao 
and Yang [11], and Xiao and Yang [12], Hafezalkotob and 
Makui [1] constructed their new inventory system, and then 
solved the optimal solution by analytic method with 
differential equations. The main contribution of this articlw is 
to derive the optimal solution by non-analytic approach such 
that those readers who are not familiar with analytic 
procedure, still can realize  and unilize the concept of supply 
chain in their future development. 

II. NOTATION AND ASSUMPTIONS 

    Owing to our article is an further discusison of 
Hafezalkotob and Makui [1], therefore, we used the same 
notation and assumotions as Hafezalkotob and Makui [1]. 

Notation 

For retailer i, the service level is denoted as s୧. 
The extra money provided by manufacturer i is denoted as 
MRM౟

. 
The extra money provided by retailer i is denoted as MRR౟. 
The profit of retailer i to sold one item is denoted as m୧. 
The price proposed by manufacturer i to the retailer i is 
denoted as w୧, under the restriction, w୧ ൐ c୧. 
For each manufacturer, to decrease the uncertainty of the 
demand, the efficiency of the added extra money is denoted 
as τM౟

, with  τM౟
൒ 0. 

For each retailer, to decrease the uncertainty of the demand, 
the efficiency of the added extra money is denoted as τR౟, 
with  τR౟ ൒ 0. 
For each manufacturer, the variation with respect to his profit, 
the constant unconditional risk dislike is denoted as λM౟

, with  
λM౟

൐ 0. 
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For each retailer, the variation with respect to his profit, the 
constant unconditional risk dislike is denoted as λR౟ , with  
λR౟ ൐ 0. 
For each retailer, the sensitivity of demand with respect to his 
opponent service level is denoted as γ, under the condition, 
β ൐ ߛ ൐ 0. 
For each retailer, the sensitivity of demand with respect to his 
service level is denoted as β, under the condition, β ൐ 0. 
For two items, the substitutability coefficient is denoted as d. 
For manufacturer i, the unit item production cost is denoted 
as c୧, under the constraint, αనഥ ൒ c୧ ൐ 0. 
Before extra money added by retialer i, the original variance 
of the market is expressed as σ଴୧

ଶ . 
With variance σ୧

ଶ and expected value αనഥ , for each retailer i, 
the stochastic market id expressed as αన෥ . 
There are two supply chains proposed in this study that will 
be indicated as 1 and 2. 

Assumptions 

1. The strategy contains two steps. In the first step, within two 
supply chains, each manufacturer individually provides a 
planning price to its retailers during the period of the first 
step. Sometimes, careful manufacturer can spend extra 
money to reduce the fuzziness of the demand.  

 
2. In the second step, the retailers of two supply chains makes 

a individual decision for its service level and retailers price. 
On the other hand, careful retailer also can spend extra 
money to reduce the fuzziness of the demand.  

 
3. Two retailers on the same time to provide their items to the 

market for customers to purchase.  
 
4. The demand function is influent by the information 

obtained through mutual actions in the completion policies. 
 
5. The demand function is linearly related to service level and 

relative price of two retailers. 
 
6. According to Xiao and Yang [11, 12], service level and 

related price are two significant factor for the demand. For 
trtailrt i, the price of one item is expressed as 

p୧ ൌ w୧ ൅ m୧.                               (2.1) 
Based on Tsay and Agrawal [2], and Xiao and Yang [11], 
the retailers 1 and 2 assumed the demand as follows, 

qଵ෦ ൌ aଵ෥ െ pଵ ൅ dpଶ ൅ βsଵ െ γsଶ,              (2.2) 
and 

qଶ෦ ൌ aଶ෦െ pଶ ൅ dpଵ ൅ βsଶ െ γsଵ.              (2.3) 

III. OUR SOLUTION APPROACH  

    In this section, we will discuss a related inventory model 
studied by Hafezalkotob and Makui [1] with two completing 
supply chains under service constraint and relative price.  
In Hafezalkotob and Makui [1], under the condition of 

01 B  and 02 B , with  1
2

1 2 B  and 

 2
2

2 2 B , they used the analytic approach to solve 

the following system of four maximum problems, 
      212211111 sswmdwmawU M    

 11 cw    2
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2
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2
222  cwM  ,            (3.2) 

      21221111111 , sswmdwmamsmU R  

2
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2
11

2
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2


m
s

R ,                       (3.3) 

and 

      12112222222 , sswmdwmamsmU R  

2
02

2
22

2
22

2


m
s

R ,                        (3.4) 

simultaneously. We will apply an algebraic method to find 
the maximum solution for the above system.  
 
To simplify the expression, we assume that for 2,1i , 

iii cwt  ,                           (3.5) 

2111 dccaH  ,                       (3.6) 

and  

1222 dccaH  .                      (3.7) 

From Equation (3.3), we complete the square of 1s  to imply 

that 
      2221111111 , stmdtmHmsmU R   

2
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


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
 ,            (3.8) 

 

From the coefficient of 
2

1

1
1 











m

s  is 0
2

1 


, to achieve 

the maximum value, we should have 

1

1
1 

m
s  .                            (3.9) 

 
By the same argument, we rewrite Equation (3.4) as 
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
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
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
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From the coefficient of 
2

2

2
2 








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
m

s  is 0
2

2 


, to attain 

the maximum value, we should have 

2

2
2 

m
s  .                            (3.11) 

 
We plug the results of Equations (3.9) and (3.11) into 
Equations (3.8) and (3.10) to yield that 

      







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22111111 mtmdtmHmmUR 
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2
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2
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1

22
1

2
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
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m
m

R ,                     (3.12) 

and 

      







 1

1
11222222 mtmdtmHmmU R 
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2
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R .                   (3.13) 

 

We convert Equation (3.12) in the descending order of 1m  to 

derive that 

  2
1

1

2
2
01111 2

1 mmU RR 







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
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


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
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Under the condition    021 1

22
011  R , to attain the 

maximum value, we know that 

211 m ,                         (3.15) 

where 

  2
2

22111 mtmdtH



 ,             (3.16) 

and 









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1

2
2
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12

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,                 (3.17) 

are two abbreviations to simplify the expressions. 
 
By the same argument, we convert Equation (3.13) in the 

descending order of 2m  to derive that 
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Under the condition    021 2

22
022  R , to achieve 

the maximum value, we find that 

432 m ,                          (3.19) 

where 
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1
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
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
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are two abbreviations to simplify the expressions. 
 
We plug the results of Equations (3.9) and (3.11) into 
Equation (3.1) to derive that 
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and then rewrite Equation (3.22) in the descending order of 

1t  
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Based on Equation (3.23), because the coefficient of 2
1t  is 

  01 2
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 2
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is an abbreviation to simplify the expressions. 
 
Similarly, we plug the results of Equations (3.9) and (3.11) 
into Equation (3.2) to obtain that 

  6222  ttUM
2
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is an abbreviation to simplify the expressions. And then we 

rewrite Equation (3.26) in the descending order of 2t  
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Based on Equation (3.28), because the coefficient of 2
2t  is 

  01 2
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is an abbreviation to simplify the expressions. 
 
From Equations (3.15), (3.19), (3.24) and (3.29), we have a 
linear system of four variables, 
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We add Equations (3.31) with (3.33) to yield that 
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and then we also add Equations (3.32) with (3.34) to obtain 
that 
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We plug our results of Equations (3.35) and (3.36) into 
Equations (3.33) and (3.34) to imply that 
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and 
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with four abbreviations, 

 
2
011

2
0112

011
1

2

1 21

21
121







M

R
MC




 ,         (3.39) 

 













2
022

2
0222

2
2 21

1
2







M

MRdC ,             (3.40) 

 













2
011

2
0111

1
3 21

1
2







M

MRdC ,              (3.41) 
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From Equations (3.37) and (3.38), we find that 

3241
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m



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and 

3241

1321
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m


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Our findings of Equations (3.43), (3.44), (3.35), (3.36), (3.9) 
and (3.11) are the same as that proposed by Hafezalkotob and 
Makui [1] with analytic approach. 

IV. A RELATED INVENTORY MODEL 

In this section, we will discuss a related inventory model 

studied by Omar et al. [13] to provide a patchwork for their 

paper. Up to now, there are four papers that have cited Omar 

et al. [13] in their articles: Wee et al. [14], Wee et al. [15], 

Chung and Cárdenas-Barrón [16], and Cárdenas-Barrón [17]. 

Wee et al. [14] and Wee et al. [15] only cited Omar et al. [13] 

in their introduction without any specific discussion. 

Cárdenas-Barrón [17] mentioned that the algebraic 

development of Omar et al. [13] is complex. We remainder 

the readers that Omar et al. [13] only used one algebraic 

method of completing a square that will be further discussed 

in later section. We will demonstrate that the algebraic 

development of Omar et al. [13] is incomplete but that is not 

complex. Chung and Cárdenas-Barrón [16] pointed out that 

Omar et al. [13] is not of all complete among a list of five 

papers. However, Chung and Cárdenas-Barrón [16] did not 

provide an explanation what is the shortcoming of Omar et al. 

[13]. Cárdenas-Barrón [17] claimed the algebraic process of 

Omar et al. [13] is complicate. We remainder the researchers 

that Omar et al. [13] applied one skill as complete the prefect 

square to solve their inventory systems which cannot be 

classified to a complicate procedure. We will point out that 

the solution skill of Omar et al. [13] is unfinished and then it 

is not a complicated approach. Based on above literature 

review, we will provide a detailed examination to show the 

doubtful result of Omar et al. [13], and then present the 

improvements. 

V. RECAP THE SOLUTION SKILL 

    Omar et al. [13] mentioned that to derive the inferior value 

of   bxxa   is ab2  which happens when bax  , 

with the constant parameters, a, and b.  
 
We remind the researchers that Omar et al. [13] neglected the 
positive sign or the negative sign  of a , and b  and then their 
derivation process is doubtful. We will use the next example 
with crisp coefficient to present a detailed explanation.    
 
Under the condition c and d are both positive numbers, we 
construct an auxiliary function, 

pሺxሻ ൌ dx ൅ ሺc x⁄ ሻ,                         (5.1) 
with the domain of positive x.  
We obtain that 

pሺxሻ ൌ ቀ√dx െ ඥሺc x⁄ ሻቁ
ଶ
൅ 2√cd.              (5.2) 

Based on the above derivations, we show that the inferior 
value is 2√cd and the minimum point satisfies 

√dx ൌ ඥሺc x⁄ ሻ,                                  (5.3) 
and then we simplify the above expression to find that 

x ൌ ඥሺc d⁄ ሻ.                                    (5.4) 
We remind the researchers the above example is 
corresponding to the situation solved by Omar et al. [13]. 
 
The rest scenarios are completely neglected by Omar et al. 
[13]. Consequently, we will provide a patch work for Omar et 
al. [13] to help research realize the whole scope of the 
completing square skill. 
 
We will divide into scenario (i) with c ൐ 0  and d ൌ 0 ; 
scenario (ii) with c ൐ 0 and d ൏ 0; scenario (iii) with c ൌ 0, 
and scenario (iv) with c ൏ 0. 
 
With respect to scenario (i) with c ൐ 0, and d ൌ 0, when x 
approaches to zero, we know that pሺxሻ will go to zero to 
imply the inferior value of pሺxሻ is zero. Hence, pሺxሻ cannot 
attain its minimum value for the domain of positive x. 
 
With respect to scenario (ii) with c ൐ 0 and d ൏ 0, when x 
approaches to infinite, we know that pሺxሻ will go to negative 
infinite to imply the inferior value of pሺxሻ is negative infinite. 
Hence, pሺxሻ cannot attain its minimum value for the domain 
of positive x. 
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With respect to scenario (iii) with c ൌ 0, when x approaches 
to zero, we know that pሺxሻ will go to zero to imply that the 
inferior value of pሺxሻ is zero. Hence, pሺxሻ cannot attain its 
minimum value for the domain of positive x. 
 
With respect to scenario (iv) with c ൏ 0, when x approaches 
to zero, we know that pሺxሻ will go to negative infinite to 
imply the inferior value of pሺxሻ is negative infinite. Hence, 
pሺxሻ  cannot attain its minimum value for the domain of 
positive x. 
 
Based on our detailed explanations, we go over the main 
points in the following theorem. 
 
Theorem 1. We consider the minimum value of pሺxሻ ൌ dx ൅
ሺc x⁄ ሻ, with the domain of positive x, such that if c and d are 
both positive numbers, and then 2√cd is the minimum value 

where xכ ൌ ඥሺc d⁄ ሻ is the minimum point. With respect to 
the rest scenarios, we proved that the minimum value 
problem did not have solutions. 
 
Based on our above derivations, we show a patch work for 
Omar et al. [13] which have been presented by this paper. 

VI. A RELATED DISCUSSION WITH LOGARITHM FUNCTION 

    In this section, we will find a lower bound and un upper 
bound for logarithm function from a geometric point of view 
without referring to calculus.  

We will prove that (a)   01ln  xx , for 0x , (b) 

  01ln  xx , for 10  x .  

First, we recall the definition of a logarithm function, for 
0x , 

 dttx
x

 1
1ln .                            (6.1) 

Based on Equation (6.1), we derive that that  t1ln , with 

0t  which represents the area of the region, denoted as 1 , 

among four curves: (i) 1x , (ii) tx 1 , (iii) 0y , 

and (iv) xy 1 .  

From   11 x  for tx  11 , we know that 1  is 

bounded by the rectangular among four line segments: (i) 
1x , (ii) tx 1 , (iii) 0y , and (iv) 1y  such that  

  tt 1ln ,                             (6.2) 

with 0t  is verified. 
 

Similarly, we consider the second function,  t 1ln  with 

10  t , represents the area of the region, denoted as 2 , 

among four curves: (i) tx 1 ,(ii) 1x , (iii) 0y , 

and (iv) xy 1 . 

From   11 x  for 11  xt , we derive that a 

rectangular among four line segments: (i) tx 1 , (ii)

1x , (iii) 0y , and (iv) 1y  is bounded by 2  such 

that 

 tt  1ln                              (6.3) 

with 10  t  is proved. 
For later discussion, we first review the following definition 
of the Mean Value Theorem of Integration.  
 
Mean Value Theorem of Integration 

For a continuous function  xf , defined on a compact 

interval, denoted as bxa   with ba  , then there is a 

point c  with bca  , satisfying 

     cfabdttf
b

a
 .                    (6.4) 

 
Next, we recall two related theorems: (a) the Extreme Value 
Theorem, and (b) the Intermediate Value Theorem for 
continuous functions. 
 
The Extreme Value Theorem 

For a continuous function  xf , defined on bxa   

with ba  , then there are two points 1x  and 2x  with 

 baxx ,, 21   such that 1x  is the minimum point to attain 

the minimum value, m  and 2x  is the maximum point to 

attain the maximum value, M  as 

     21 xfMxfmxf  ,                    (6.5) 

for any  bax , . 

 
The Intermediate Value Theorem 

For a continuous function  xf , defined on bxa   

with ba  , with the minimum value, m  and the maximum 

value, M , given any number L  with MLm  , then 

there is a point, say c  with  bac ,  satisfying  

  Lcf  .                            (6.6) 

 
If we accept the Extreme Value Theorem and the 
Intermediate Value Theorem for the moment, then we know 
that  

  Mtfm  ,                         (6.7) 

for bxa  . Based on Equation (6.7), we derive that 

     abMdttfabm
b

a
  .                   (6.8) 

According to Equation (6.8), it yields that  

    Mabdttfm
b

a
  .                     (6.9) 

Recall the Intermediate Value Theorem, we know that there 
is a point, say c , satisfying 

     cfabdttf
b

a
 .                      (6.10) 

Hence, we derive that  

     cfabdttf
b

a
 ,                     (6.11) 

which is the Mean Value Theorem of Integration. 
 
From the above discussion, how to use algebraic method to 
prove (a) the Extreme Value Theorem, and (b) the 
Intermediate Value Theorem for continuous functions will be 
an interesting question for the future research. 
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VII. DIRECTION FOR FURTHER STUDIES 

    In this section, we will refer to several recently published 
articles to help researchers recognize possibly hot topics for 
their future academic examination. According to cyber 
attacks, Bhukya et al. [18] considered guard electric 
automobile control models for incorporating the internet of 
things. Based on full state conditions and nonlinear models, 
Liu et al. [19] applied prescribed presentation for adaptive 
event triggered management. Referring to unstructured 
natural conditions, Wen et al. [20] studied tea bud recognition 
under a inconsequential system. Related to capacity mistake 
and first order autoregressive time possessions, Kurnia et al. 
[21] found out a pretend unit level system with tiny region 
prediction. Through seizure prediction, Ge et al. [22] gained 
multiple mixture concentration processes to temporal and 
space spectral hierarchy. Under proposal, Yang and Liu [23] 
derived consistency and arrangement with self supervised 
hyper graphical transformer. With respect to discontinuous 
commencement mappings, Wang and Yan [24] developed 
neural networks to synchronize inertial delay. Owing to 
diseases and diverse patient environment, Poningsih et al. [25] 
employed outpatient services facility administration to 
optimize models. In complex convolution calculation, Bhat et 
al. [26] examined cubic theta mappings for some Eisenstein 
identities. To learn swarm intelligent optimization 
procedures, Shang-Guan et al. [27] constructed drudging 
procedure for neural network with spongy feeler of multi 
layer discernment. To realize nonlinear programming 
performances, Martinez et al. [28] adopted numerical studies 
and a sixth dimensional boundary value dilemma to obtain 
analytic answers. For customer elevation net programming, 
Qi et al. [29] used element fill in blank questions to acquire a 
blank element choice procedure. We provide the following 
possible directions for future research: (1) By algebraic 
method to prove the Mean Value Theorem of Integration, (2) 
Transform intuitionistic fuzzy sets by crisp value, and (3) Do 
not apply compute similarity measures and then result in 

complicate computation, instead, directly compare A  and 

Av , from A  and Av  to decide pattern, where   

and   are synthesized results from all alternatives. 

VIII. AN IMPROVMENT FOR INVENTORY MODELS 

    In this section, we will provide a revision for a relative 
inventory system. Cárdenas-Barrón [30] applied algebraic 
method with respect to the Cauchy-Bunyakovsky-Schwarz 
inequality and the arithmetic-geometric mean  inequality to 
deal with economic ordering quantity and economic 
production quantity models without referring to differential 
equations and calculus such that those researchers without 
background with respect to calculus and differential 
equations can understand inventory models. In this section, 
we provide a further simplification of his approach such that 
more practitioners can realize his important findings and then 
apply algebraic methods in their research. 

IX. ASSUMPTIONS AND NOTATION 

    To be compatible with Cárdenas-Barrón [30], we took the 
same notation as his except two new expressions to convert 
an economic production quantity model to an economic 
ordering quantity model. 
d  demand rate per time unit, 

A  ordering cost per order, 
h  per unit holding cost per unit time, 
v  per unit backorder cost per unit time, 
p  production rate per unit time, 

Q  order quantity, 

B  backorders level. 
The two new expressions proposed by our article: 

 pdAA  10 , 

 pdQQ  10 . 

 
The Cauchy-Bunyakovsky-Schwarz inequality is defined as 
follows. If two vectors, A and B with 

A ൌ ሺaଵ, aଶ, … , a୬ሻ,                            (9.1) 
with a୨ ൒ 0, for j ൌ 1,2, … , n, and 

B ൌ ሺbଵ, bଶ, … , b୬ሻ,                            (9.2) 
with b୨ ൒ 0, for j ൌ 1,2, … , n.  
The Cauchy-Bunyakovsky-Schwarz inequality claimed that 

൫∑ a୨
ଶ୬

୨ୀଵ ൯൫∑ b୨
ଶ୬

୨ୀଵ ൯ ൒ ∑ a୨b୨
୬
୨ୀଵ .                (9.3) 

Moreover, the above inequality becomes equality, if and only 
if, there is a number, denoted as c, which satisfies 

൫a୨ b୨⁄ ൯ ൌ c,                               (9.4) 
for j ൌ 1,2, … , n. 
On the other hand, the arithmetic-geometric mean  inequality 
mentioned that if a ൒ 0, and b ൒ 0, then 

ሾሺa ൅ bሻ 2⁄ ሿ ൒ √ab.                         (9.5) 
 

X. REVIEW OF PREVIOUS RESULTS 

    For an economic ordering quantity model with backorders, 
we recall the excellent approach proposed by 

Cárdenas-Barrón [30]. The total inventory cost,  BQTC , , 

is denoted as 

   
Q

vB

Q

BQh

Q

Ad
BQTC

22
,

22




 .      (10.1) 

In the following, we provide an outline of his sophistic 
derivations. For the detailed derivations, please refer to 
equations (2-11) of Cárdenas-Barrón [30].  
 
Cárdenas-Barrón [30] assume that  

aଵ ൌ ඥv ሺv ൅ hሻ⁄ ,                          (10.2) 

aଶ ൌ ඥh ሺv ൅ hሻ⁄ ,                        (10.3) 
bଵ ൌ √hሺQ െ Bሻ Qൗ ,                       (10.4) 

and 
bଶ ൌ √vB Q⁄ .                          (10.5) 

It follows that 
aଵଶ ൅ aଶ

ଶ ൌ 1,                             (10.6) 
and  

bଵଶ ൅ bଶ
ଶ ൌ

୦ሺQିBሻమ

Qమ
൅

୴Bమ

Qమ
.                     (10.7) 

 
Cárdenas-Barrón [30] inserted Equations (10.6) and (10.7) in 
to Equation (10.1) to obtain that 

TCሺQ, Bሻ ൌ ሺAd Q⁄ ሻ ൅
Q

ଶ
ሺaଵଶ ൅ aଶ

ଶሻሺbଵଶ ൅ bଶ
ଶሻ.    (10.8) 

and then he applied the Cauchy-Bunyakovsky-Schwarz 
inequality to show that 

TCሺQ, Bሻ ൒ ሺAd Q⁄ ሻ 
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൅
Q

ଶ
ቆ √୦୴

√୴ା୦
ቀ
QିB

Q
ቁ ൅ √୦୴

√୴ା୦
ቀ
B

Q
ቁቇ

ଶ

.                (10.9) 

The results of Equation (10.9) can be further simplified as 
TCሺQ, Bሻ ൒ ሺAd Q⁄ ሻ ൅ hvQ 2ሺv ൅ hሻ⁄ .        (10.10) 

 
Moreover, the inequality of Equation (10.10) becomes 
equality, that is, attaina the minimum, when 

ሺbଵ aଵ⁄ ሻ ൌ ሺbଶ aଶ⁄ ሻ,                      (10.11) 
to yield that the minimum solution occurs at 

ൣ√hሺQ െ Bሻ √vQൗ ൧ ൌ ൣ√vB √hQ⁄ ൧.          (10.12) 
 
Hence, Cárdenas-Barrón [30] derived that 

  ** BvhhQ  .                  (10.13) 

 
Cárdenas-Barrón [30] applied the arithmetic-geometric mean  
inequality to Equation (10.10), and then it shows that  

 vh

hvQ

Q

Ad




2

*

*
                       (10.14) 

and 

 
vh

Adhv
BQTC




2
, ** .                (10.15) 

For an economic production quantity model, the total cost is 
expressed as 

   pdQ

vB

Q

Ad
BQTC




12
,

2

 

  
 pdQ

BpdQh





12

1 2

.                (10.16) 

In Cárdenas-Barrón [30], he repeated his approach to derive 
similar results in equations (13-22) of his paper. The purpose 
of our revisions is to provide a simplification for his solution 
procedure of the economic production quantity model. 

XI. OUR REVISIONS 

    We adopt two new notation:  

 pdAA  10 ,                       (11.1) 

and  

 pdQQ  10 ,                      (11.2) 

then we convert Equation (10.16) as 

   
0

2

0

2
0

0

0

22
,

Q

vB

Q

BQh

Q

dA
BQTC 


 .      (11.3) 

If we overlook the subscript, then Equation (11.3) is identical 
to Equation (10.1). Hence, we find the minimum point 

  **
0 BvhhQ  ,                       (11.4) 

 vh

hvQ

Q

dA




2

*
0

*
0

0 ,                        (11.5) 

and 

 
vh

dhvA
BQTC


 0**

0

2
, .                 (11.6) 

Our findings of Equations (11.4-11.6) are the same results as 
equations (20-22) of Cárdenas-Barrón [30]. 

XII. CONCLUSION 

We provide an alternative process to derive the optimal 
solution that will motivate further studies to apply 
non-analytic method to deal with operational research 
questions. We demonstrate that after a sophisticated 
arrangement, some complicated systems still can solved by 
pure algebraic approach that will help practitioners join the 
examination of supply chain inventory models. On the other 
hand, we present a patch work for the inventory model splved 
by an algebraic method by Omar et al. [13]. We pointed out 
there are four other conditiond which are overlooked by 
Omar et al. [13], and then we show our improvements. We 
apply two new expressions to find the relation between 
economic ordering quantity and economic production 
quantity models such that the derivation proposed by 
Cárdenas-Barrón [30] can be directly used to the solution 
approach for the economic production quantity model. 
Consequently, his tedious solution approach for the 
economic production quantity model can be deleted. Our 
findings will help readers understand the power of 
Cárdenas-Barrón’s algebraic procedure of the economic 
ordering quantity model. 
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