
A New Hyperchaotic System with Exponential
Function Non Linearity: Dynamical Properties,

Control Hyperchaos and Complete
Synchronization Study

Rayene Abir Meskine, Smail Kaouache, and Orhan Ozgur Aybar

Abstract—In this paper, we construct a new 4 − D hy-
perchaotic system with a nonlinear term in the form of an
exponential function. The system is derived from a modified
3−D Lü system. Firstly, we discuss the qualitative properties
of the proposed system, using tools such as hyperchaotic attrac-
tors, symmetry, dissipation, equilibrium points, and Lyapunov
spectrum for analysis. Next, we present an adaptive controller
for stability analysis of the system. An active controller is
designed to achieve complete synchronization between two
identical systems. All stability results are established using
Lyapunov stability theory. Finally, numerical examples and
computer simulations are provided to illustrate the main results.

Index Terms—Hyperchaotic system; adaptive control; active
control; Lyapunov function; sunchronization.

I. INTRODUCTION

CHAOS, a fascinating nonlinear phenomenon, has been
the hotbed of groundbreaking developments over the

last thirty years. Chaotic systems are inherently nonlinear
and exhibit intense sensitivity to their initial conditions, as
well as dense periodic orbits[1]. The remarkable sensitivity
of chaotic systems is truly impressive, particularly when we
observe a positive Lyapunov exponent, which quantifies the
dynamic nature of the system. It is mesmerising that even
small changes can lead to significantly different outcomes,
demonstrating the intricate elegance of chaos theory.

A hyperchaotic system is a truly remarkable entity, typ-
ically characterised as a chaotic system with at least two
positive Lyapunov exponents. This unique feature endows
hyperchaotic systems with unparalleled capabilities in terms
of capacity, security, and efficiency. As a result of these
exceptional attributes, hyperchaotic systems have become
prominent contenders for critical applications in various
fields, including cryptosystems [2], secure communications
[3] and encryption [4].

Since the first hyperchaos was reported by Rossler in 1979
[5], many 4 − D hyperchaotic systems have been reported
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in the literature such as hyperchaotic Lorenz system [6],
hyperchaotic Lü system [7], hyperchaotic Chen system [8]
and hyperchaotic Wang system [9], etc.

Recently, various feedback control methods have been
applied to stabilize or regulate the outputs of chaotic systems.
The prevalence of chaotic systems in various industries and
fields drives the need for effective control methods. These
control methods play a crucial role in maintaining stability
and predictability in dynamic and unpredictable environ-
ments. Examples include active control [10], adaptive control
[11], modified adaptive control [12], observe-rbased control
[13], impulsive control [14], H∞ control [15], quantized H∞
control [16] and finite-time control [17], etc.

In the field of control theory, adaptive control stands out
as a widely employed technique for stabilizing systems in
situations where the system parameters are not known [18],
[19], [20]. On the other hand, active control methods, is
applied when the parameters are accessible and measurable
[21], [22], [23].

Since the revolutionary work of Pecora and Carroll [24],
the concept of chaos synchronization in chaotic systems has
garnered significant attention within the academic and sci-
entific communities. This intriguing phenomenon has capti-
vated researchers across diverse fields such as cryptosystems
[25], encryption [26] and secure communication protocols
[27], [28], etc.

The realm of chaos literature explores a diverse range
of methodologies for synchronizing chaotic systems. These
approaches aim to establish coherence and coordination
among inherently unpredictable systems, facilitating a deeper
understanding of complex dynamical behaviors, such as
complete synchronization [29], anti-synchronization [30],
generalized synchronization [31], Q − S synchronization
[32], projective synchronization [33], generalized projective
synchronization [34], modified projective synchronization
[35], hybrid projective synchronization [36], inverse matrix
projective synchronization [37], Finite-time synchronization
[38], and combination synchronization [39], [40], [41] etc.

This work presents a novel 4 − D hyperchaotic system
derived from the modified 3−D Lü system[7]. The system
exhibits exponential function non-linearity. We conduct a
comprehensive analysis of the system’s qualitative properties,
stability, and feasibility for complete synchronization. This
in-depth exploration sheds light on the intricate characteris-
tics and dynamics of this complex system. The manuscript
is organized as follows: Section II introduces a novel hyper-
chaotic system with exponential function non-linearity and
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analyzes its basic dynamic properties. Section III presents an
adaptive controller designed to stabilize the proposed system
with unknown parameters. Section IV develops an active con-
troller for synchronizing two identical hyperchaotic systems.
The feasibility and effectiveness of both control schemes
are verified by numerical simulations. Finally, Section V
concludes the research.

II. A NEW HYPERCHAOTIC LÜ SYSTEM WITH
EXPONENTIAL FUNCTION NON LINEARITY

The 3 − D Lü system has been introduced in [7] and
mathematically modeled by the following three dimensional
differential system ẋ1 = a(x2 − x1),

ẋ2 = −x1x3 + bx2,
ẋ3 = x1x2 − cx3,

(1)

where x1, x2, x3 are the states and a; b; c assumed to be
positive constant parameters.

When a = 36, b = 3 and c = 20, the Lü system has a
typically critical chaotic attractor [7].

It is well known that to generate hyperchaos from dissi-
patively autonomous systems, the state equation must satisfy
the following conditions:

(1) The dimension of the state equation is at least 4.
(2) The system has at least two positive Lyapunov expo-

nents and the sum of all Lyapunov exponents is less than
zero.

Based on above two basic conditions, our new hyper-
chaotic system generated from the modified Lü system [7]
is given by 

ẋ1 = a(x2 − x1) + x4,
ẋ2 = −x1x3 + bx2,
ẋ3 = −1 + exp(x1x2)− cx3,
ẋ4 = dx1,

(2)

where x1, x2, x3, x4 are the state variables, a, b, c and d
are positive real. In addition, we demonstrate that the system
(2) exhibits hyperchaotic behavior when the parameters are
chosen as

(a, b, d) = (25, 20, 8) and c ∈ [0.5, 2.5] , (3)

For the numerical simulations, we use the fourth order
Runge-Kutta algorithm. In particular, when the initial values
of the hyperchaotic system (2) are selected as

x1(0) = x2(0) = x3(0) = x4(0) = 0.001 (4)

and the parameter values are taken as

(a, b, c, d) = (25, 20, 1.78, 8), (5)

the hyperchaotic attractors of the system (2) are represented
in Fig. 1 in various coordinate planes.

The system under consideration demonstrates the follow-
ing dynamical properties:

A. Symmetry

The system (2) remains invariant under the function:
(x1, x2, x3, x4) → (−x1, −x2, x3, −x4). In addition,
this system is symmetric with respect to the x3 - axis.
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Fig. 1. Different attractors of the hyperchaotic system (2).

B. Dissipativity
The system (2) can be written in its vector form as

ẋ = f(x) =


f1(x1, x2, x3, x4)
f2(x1, x2, x3, x4)
f3(x1, x2, x3, x4)
f4(x1, x2, x3, x4))

 ,

where x(t) = (x1, x2, x3, x4) and
f1(x1, x2, x3, x4) = a(x2 − x1) + x4,
f2(x1, x2, x3, x4) = −x1x3 + bx2,
f3(x1, x2, x3, x4) = −1 + exp(x1x2)− cx3,
f4(x1, x2, x3, x4) = dx1.

The divergence of the 4−D system (2) is given by

∇f =
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

+
∂f4
∂x4

= −a+ b− c. (6)

By using Liouville’s theorem, we obtain

V (t) = V0 exp((−a+ b+ c)t) (7)

If ∇f < 0, the system (2) will be dissipative. In this case,
all the trajectories of the system tend to an attractor, when
t→ +∞.

C. Equilibrium Points and Stability
The equilibrium points of the system (2) are obtained by

solving the following system of equations
a(x2 − x1) + x4 = 0
−x1x3 + bx2 = 0
−1 + exp(x1x2)− cx3 = 0
dx1 = 0,

It is easy to see that the system (2) has only one equilibrium
point P (0, 0, 0, 0).
The Jacobian matrix at this point is

−a a 0 1
0 b 0 0
0 0 −c 0
d 0 0 0

 , (8)
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and its characteristic polynomial is given by

P (λ) = (λ− b) (λ+ c)
(
λ2 + aλ− d

)
. (9)

The eigenvalues corresponding to the equilibrium point P
are

λ1 = −c, λ2 = −a
2
− 1

2

√
4d+ a2, λ3 = b,

and λ4 = −a
2

+
1

2

√
4d+ a2. (10)

Here, λ1 and λ2 are negative real numbers, λ3 and λ4 are
positive real numbers.
Hence, the equilibrium point P is an unstable saddle point.

D. Lyapunov Exponents

In this section, we assume that the parameters a, b, d
remain constant and c is varied in [0.5, 4.5]. By using Wolf
algorithm [42], the Lyapunov exponents spectrum of system
(2) with a = 25, b = 20 and d = 8 is represented in Fig. 2.
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Fig. 2. The three largest lyapunov exponents of the system (2) versus c.

In particular, for the parameter values are taken as in case
(5), the values of Lyapunov exponents of non-linear system
(2) are given by 

L1 = 1.90,
L2 = 0.39,
L3 = 0,
L4 = −9.312.

(11)

Since L1 +L2 +L3 +L4 < 0 and L1 > 0, L1 > 0, then the
proposed system is dissipative and hyperchaotic.

The Kaplan-Yorke dimension of the hyperchaotic system
is obtained as:

DKY = 3 +
L1 + L2 + L3

|L4
|

= 3.25,

which is a fractal dimension.

III. CONTROL HYPERCHAOS

In this section, we construct an adaptive control law in
the objective to stabilize the proposedsystem with unknown
system parameters. The main adaptive control result is es-
tablished via Lyapunov stability theory.

Consider the controlled hyperchaotic system as follows
ẋ1 = a(x2 − x1) + x4 + u1,
ẋ2 = −x1x3 + bx2 + u2,
ẋ3 = −1 + exp(x1x2)− cx3 + u3,
ẋ4 = dx1 + u4,

(12)

where x1, x2, x3, x4 are the state variables, a, b, c, d
are unknown constant parameters and ui, i = 1, 2, 3, 4 is
adaptive control law to be determined using estimates â(t),
b̂(t), ĉ(t) and d̂(t) of the unknown parameters a, b, c and d,
respectively.

Hypothesis 1: Consider the following conditions
1. Assume that the adaptive controllers ui, i = 1, 2, 3, 4 are
taken by 

u1 = −â(x2 − x1)− x4 − k1x1,
u2 = x22
u3 = 1− exp(x1x2) + ĉx3 − k3x3,
u4 = −d̂x1 − k4x4,

(13)

where k1, k2, k3, k4 are positive gain constants, and â, b̂,
ĉ, d̂ are estimates of the unknown parameters a, b, c, d,
respectively.
2. Assume that the parameter update law are chosen as

˙̂a = x1x2 − x21,
˙̂
b = x22,
˙̂c = −x23,
˙̂
d = x1x4,

(14)

then, we have the following result.
Theorem 1: The controlled hyperchaotic system (12) is

globally and exponentially stabilized under the adaptive
control law (13) and the parameter update law (14).

Proof: Substituting (13) into (12), we obtain
ẋ1 = ea(x2 − x1)− k1x1,
ẋ2 = ebx2 − k2x2,
ẋ3 = −ecx3 − k3x3,
ẋ4 = edx1 − k4x4,

(15)

where ea, eb, ec, ed are the parameter estimation errors
defined by 

ea = a− â,
eb = b− b̂,
ec = c− ĉ,
ed = d− d̂.

(16)

Differentiating (16) with respect to t, we obtain
ėa = − ˙̂a,

ėb = − ˙̂
b,

ėc = − ˙̂c,

ėd = − ˙̂
d.

Consider the quadratic Lyapunov function defined by

V =
1

2

(
x21 + x22 + x23 + x24 + e2a + e2b + e2c + e2d

)
, (17)

which is positive definite on R8.
Differentiating (17) along the trajectories of (15) and (16),
we get

V̇ = −k1x21 − k2x22 − k3x23 − k4x24
+ea

(
x1x2 − x21 − ȧ

)
+ eb

(
x22 − ḃ

)
+ec

(
−x23 − c

)
+ ed

(
x1x4 − ḋ

)
. (18)
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Fig. 3. Time-history of the controlled hyperchaotic system (12).
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Fig. 4. Temporal evolution of the parameter estimates (14).

Substituting (14) into (18), we obtain

V̇ = −k1x21 − k2x22 − k3x23 − k4x24, (19)

which is a negative semi-definite function on R8.
We define k = min(k1, k2, k3, k4). Then it follows from

(19) that

V̇ = −k1x21 − k2x22 − k3x23 − k4x24
≤ −kx21 − kx22 − kx23 − kx24
= −k ‖x‖2 , (20)

where x = (x1, x2, x3, x4).
From (20), it follows that

‖x‖2 ≤ V̇ . (21)

Integrating the inequality (21) from 0 to t, we get

t∫
0

‖x(s)‖2 ds ≤ V (0)− V (t). (22)

From (22), it follows that x(t) ∈ L2, while from (15), it can
be deduced that ẋ(t) ∈ L∞.

Thus, by Barbalat’s lemma [43], we conclude that x(t)→
0 exponentially, as t → ∞, for all initial conditions x(0) ∈
R4. This completes the proof.

To validate the theoretical findings mentioned above, we
implement the proposed adaptive control law (13) to stabilize
the unstable equilibrium point P (0, 0, 0, 0) .

The system of differential equations (12) and (14), along
with the control law (13), are solved numerically using a
Matlab code based on the classical fourth-order Runge-Kutta
method with a step size of h = 0.02.

For numerical simulations, the parameter values of the new
hyperchaotic system are taken as in the hyperchaotic case (5).
We take the gain constants as

ki = 0.5 for all i = 1, 2, 3, 4.

The initial conditions of the system are taken as

(x1(0), x2(0), x3(0), x4(0)) = (1, 0.09, 1, 1)

Additionally, regarding the initial conditions for the param-
eter estimates, we select(

â(0), b̂(0), b̂(0), ĉ(0)
)

= (25.9, 19, 3, 10) .

Fig. 3 describes the time-history of the controlled states
x1, x2, x3, x4 of the system (12), whereas Fig. 4 shows the
time-history of the parameter estimates (14).

IV. COMPLETE SYNCHRONIZATION STUDY

This section focuses on achieving synchronization between
two hyperchaotic systems using an active control approach.
The effectiveness of the control strategy is rigorously estab-
lished through the application of Lyapunov stability theory.

A. General Method of Synchronization

Consider a class of master-slave hyperchaotic systems
described by

ẋ(t) = Ax(t) + f(x(t)), (23)
ẏ(t) = Ay(t) + g(y(t)) + u(t), (24)

where x, y ∈ Rn are state variables of the master system
and the slave system, respectively, A ∈ Rn×n, is the linear
part of the proposed systems , f, g : Rn → Rn are non linear
functions and u = (u1, u2, ..., un)

T ∈ Rn is a control input
vector.

The error between the master system (23) and the slave
system (24) can be defined as

e(t) = y (t)− x (t) . (25)

The aim in this section is that, for different initial conditions
of systems (23) and (24), the two systems can be synchro-
nized by designing a suitable active control u, such that

lim
t→∞

||e(t)|| = 0. (26)

We have the following result.
Theorem 2: The synchronization between the master sys-

tem (23) and the slave system (24) can be achieved if the
following conditions are satisfied

u(t) = Θe(t)− g(y(t)) + f(x(t)), (27)

where Θ is an unknown control matrix, which is selected
such that (A+ Θ)T + (A+ Θ) is a negative definite matrix.
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Proof: The error dynamical system can be derived as

ė(t) = ẏ(t)− ẋ(t)

= Ae(t) + g(y(t))− f(x(t)) + u(t), (28)

Substituting (27) into Eq. (28), we get

ė(t) = (A+ Θ) e(t). (29)

Consider the quadratic Lyapunov function defined by

V (t) = eT (t)e(t), (30)

which is positive definite on Rn.
Differentiating V along the trajectories of (23) and (24), we
get

V̇ (t) = ėT (t)e(t) + eT (t)ė(t)

= eT (t)(A+ Θ)T e(t) + eT (t)(L+ Θ)e(t)

= eT (t)
(
(A+ Θ)T + (L+ Θ)

)
e(t)

< 0.

Therefore, by stability result of Lyapunov, we can conclude
that all solutions of error system (29) tend towards zero ex-
ponentially as t→∞. Hence, the complete synchronization
between the identical hyperchaotic systems (23) and (24) is
achieved under the condition (27). This completes the proof.

B. Numerical Example and Simulation Results
To verify the effectiveness and the feasibility of the presented
synchronization method, we take the new hypechaotic system
as a master system and its controlled system as a slave
system. The master system is defined by

ẋ1 = a(x2 − x1) + x4,
ẋ2 = −x1x3 + bx2,
ẋ3 = −1 + exp(x1x2)− cx3,
ẋ4 = dx1,

(31)

The slave system is described by
ẏ1 = a(y2 − y1) + y4 + u1,
ẏ2 = −y1y3 + by2 + u2,
ẏ3 = −1 + exp(y1y2)− cy3 + u3,
ẏ4 = dy1 + u4.

(32)

where u1, u2, u3, u4 are the active control functions.
The linear part of the systems (31) and (32) is given by

A =


−a a 0 1
0 b 0 0
0 0 −c 0
d 0 0 0

 .

According to the synchronization technique proposed in the
previous section, we define the error states as

e1 = y1 − x1,
e2 = y2 − x2,
e3 = y3 − x3,
e4 = y4 − x4.

To ensure the stability condition, we choose the feedback
gain matrix Θ as

Θ =


0 − 3a

2 0 −1
−a

2 −b− a 0 0
0 0 0 0
−d 0 0 −a

 . (33)

From the condition (27) of the Theorem2, the vector con-
troller u = (u1, u2, u3, u4) can be constructed as follows


u1 = − 3a

2 e2 − e4,
u2 = −a

2e1 − (b+ a)e2 + y1y3 − x1x3,
u3 = − exp(y1y2) + exp(x1x2),
u4 = −de1 − ae4.

(34)

The resulting error dynamics can be expressed as
ė1 = −ae1 − a

2e2,
ė2 = −a

2e1 − ae2,
ė3 = −ce3,
ė4 = −ae4.

(35)

The linear part of the systems (35) is given by

(A+ θ) =


−a −a

2 0 0
−a

2 −a 0 0
0 0 −c 0
0 0 0 −a


Thus

(A+ θ)
T

+ (A+ θ) =


−2a −a 0 0
−a −2a 0 0
0 0 −2c 0
0 0 0 −2a


It is easy to see that the symetic matrix (A+ θ)

T
+ (A+ θ)

is defined negative, therefore the condition of the Theorem2
is satisfied, which ensures the stability of the error system
(35).
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Fig. 5. Time-history of the synchronization error (35).

For the numerical simulations, the parameter values of the
master and slave systems are taken as

(a, b, c, d) = (25, 20, 1.78, 8),

the initial states of the master system are taken as

x1(0) = 0.1, x2(0) = 0.1, x3(0) = 0.1 and x4(0) = 0.1,
(36)

the initial states of the slave system are taken as

y1(0) = 0.2, y2(0) = 0.3, y3(0) = 0 and y4(0) = −0.1,
(37)
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.
thus, the error system has the initial states

e1(0) = 0.1, e2(0) = 0.2, e3(0) = −0.1 and e4(0) = −0.2.
(38)

Fig. 5 describes the time-history of the synchronization error
(35).
From Fig. 5, we show that the evolution of all variables of
error dynamic system (35) quickly tend towards zero, which
indicate that the synchronization between the hyperchaotic
systems (31) and (32) is achieved.

V. CONCLUSION

In the chaos literature, there is a great importance in the
modelling and wide applications of hyperchaotic systems.
This paper introduces a new hyperchaotic system with a non-
linear term in the form of an exponential function and a
single unstable equilibrium point. The system’s qualitative
characteristics are meticulously investigated. An adaptive
control algorithm is designed to regulate the hyperchaotic
behavior. Furthermore, an active control approach guarantees
the asymptotic stability of synchronization errors between
two identical systems. This convergence implies that the
follower system’s trajectories asymptotically approach those
of the leader system. Numerical simulations validate the
effectiveness of the proposed control methods in achieving
the desired outcomes for both the controlled system and
its corresponding error model. Future work will explore
potential applications of this novel hyperchaotic system, par-
ticularly its suitability for secure communication protocols.
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