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Abstract—A novel DIRECT-type algorithm is proposed to
tackle box-constrained optimization problems. The algorithm
incorporates bisection partitioning and diagonal sampling pro-
cedures, utilizing the Pareto approach to identify potential
hyperrectangles. Furthermore, each hyperrectangle’s size is
determined based on the length of its longest side, in accordance
with the infinity norm. This combination enhances convergence
speed, facilitating the generation of a global optimal solution.
The proposed algorithm’s effectiveness is evaluated through
numerical experiments, with detailed results demonstrating its
efficacy.

Index Terms—Global optimization, DIRECT-type algorithm,
bisection, diagonal sampling, Pareto approach.

I. INTRODUCTION

THIS study addresses the global optimization problems
of a real-valued function adhering to the Lipschitz

condition (even in cases where the Lipschitz constant is
unknown), formulated as

min
x∈D

f(x). (1)

The feasible region D = [a,b] ⊆ Rn is a hyperrectangle.
The function f(x) may exhibit nonlinearity, nonconvexity,
and nondifferentiability.

One interesting problem is that the objective function in
Eq. (1) is treated as a black-box function. A black-box
function lacks a known or exploitable analytical expression,
yet its function values within the feasible area are available
[1]. Determining the derivative of a black-box function is
impossible. Therefore, optimization algorithms relying on
derivative information find limited utility in such scenarios.

The DIRECT method is a well-known derivative-free
optimization algorithm that can solve black-box problems
[2]. Different from other derivative-free algorithms inspired
by nature, such as Genetic Algorithm (GA) [3], Ant
Colony Algorithm [4], and Simulated Annealing [5], the
DIRECT method is motivated by Lipschitz optimization
[6], notably the Piyavskii-Shubert algorithm [7], [8]. The
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Piyavskii–Shubert algorithm requires knowledge of the Lip-
schitz constant. However, obtaining this constant for many
optimization problems can be challenging. Jones et al. [2]
introduced a modification that eliminates the need for prior
knowledge of the Lipschitz constant of the objective function.

The DIRECT method partitions the search space into
smaller hyperrectangles. At each iteration, several points are
sampled simultaneously, some for local search and some
for global search. This balance between local and global
search does not require tuning parameters. Another strength
of the DIRECT method is that it does not require an initial
starting point during the initialization stage, unlike global
optimization algorithms such as the filled function method
[9].

In addition to its simplicity, the DIRECT method excels
in finding convergence points for global optimal solutions
[10]. The DIRECT method is also effective and efficient in
solving low-dimensional global optimization problems (2–6
variables) [11]. Rios and Sahinidis [12] compared the DI-
RECT method with other derivative-free global optimization
algorithms, revealing the superior accuracy of the DIRECT
method in obtaining global optimum solutions.

Although the DIRECT method is fast in finding global
optimum basins, it occasionally exhibits slowness in refining
solutions with high accuracy [13], [14], [15]. In the original
DIRECT [2], the center point of each hyperrectangle serves
as the sample point. However, slow convergence ensues if
the hyperrectangle containing the global optimum solution
yields an unfavorable objective function value at the center
point. This occurs because it is necessary to select other
hyperrectangles of the same or larger size with superior
objective function values at their center points. To address
this limitation, some authors [16], [17], [18] modified the
sampling procedure, employing a diagonal sampling scheme.
Numerical results demonstrate that this modification yields
highly competitive and promising performance compared to
the original DIRECT and its well-known modifications.

To expedite solution refinement, some authors modified
the original DIRECT method. First, the size of the hyper-
rectangle is expressed as the length of the longest side, in
accordance with the use of the infinity norm [19], [20]. The
original DIRECT uses the Euclidean distance between the
center and the vertex points. This modification results in
fewer hyperrectangles, thereby reducing the global barrier to
local refinement. Another modification pertains to the hyper-
rectangle partition scheme, favoring bisection over trisection
due to the hyperrectangle’s shape [21]. With a bisection
partition, fewer variations in hyperrectangle sizes are formed
compared with a trisection partition.
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One potential area for enhancing the original DIRECT
method lies in the lack of comprehensive global search,
resulting in delayed discovery of the global minimum [10].
This limitation arises from the omission of certain non-
dominated hyperrectangles in both objective function and
size within the procedure of potentially optimal hyperrec-
tangles (POHs) in the original DIRECT. This observation
prompted Mockus [22] to introduce the Pareto approach for
hyperrectangle selection, culminating in the development of
the Pareto–Lipschitzian optimization (PLO) algorithm and
its subsequent modifications [23], [24]. The Pareto approach,
adopted in this paper, facilitates the selection and exploration
of more hyperrectangles than the DIRECT method, proving
advantageous in parallel computing. Notably, this approach
operates without the need for additional parameters.

In this paper, we introduce a new DIRECT-type algo-
rithm to solve global optimization problems. The algorithm
combines key strengths from various approaches: the Pareto
approach in hyperrectangle selection, bisection partition,
diagonal sampling schemes, and the use of the infinity norm
for hyperrectangle measurement. In each iteration, hyperrec-
tangles meeting the Pareto optimal criteria are selected and
subsequently partitioned into two smaller hyperrectangles.
This combination results in fewer hyperrectangle groups,
providing more comprehensive objective function informa-
tion and reducing the global drag in obtaining the optimum
solution. We named this algorithm the PLOBi algorithm.

The organization of this paper is as follows: Section 2
provides a detailed description of the PLOBi algorithm.
Section 3 discusses the convergence of the algorithm. Section
4 presents numerical experiments using the Hedar test set
function [25], comparing the results with two other DIRECT-
type algorithms. Finally, Section 5 presents conclusions.

II. DESCRIPTION OF THE PLOBI ALGORITHM

In this section, a detailed account of the PLOBi algorithm
is presented. The PLOBi algorithm combines bisection and
diagonal sampling, as in [18], with the Pareto optimal
approach for selecting hyperrectangles. In the initialization
step, the initial search space D = [a,b] ⊆ Rn is normalized
to a unit hypercube, D̄ = [0,1]. Two distinct points on the
hypercube D’s main diagonal are then selected. Denoting
the length of the main diagonal as Ld, the two selected
points are located at 1

3Ld and 2
3Ld from the end point of the

diagonal. For the n-dimensional problem, during the initial
iteration, the two sampling points are point l = (l1, . . . , ln) =(
1
3 , . . . ,

1
3

)
and point u = (u1, . . . , un) =

(
2
3 , . . . ,

2
3

)
.

The PLOBi algorithm encompasses three key procedures
in each iteration: selecting hyperrectangles for further explo-
ration, sampling, and partitioning procedures on each chosen
hyperrectangle. In the original DIRECT [2], hyperrectangles
are chosen for subsequent iterations based on each hyper-
rectangle’s estimated lower bound for f(x). In the PLO
algorithm [22] and its derivative, the PLOR algorithm [23],
[24], the selection of Pareto optimal hyperrectangles is driven
by the lower bound function. The authors in [24] defined
dominance hyperrectangle and Pareto optimal by treating the
two terms in the lower bound function as two simultaneously
optimized functions. In the PLO and PLOR algorithms, each
hyperrectangle is evaluated only at one point, namely, the
center point. In contrast, the PLOBi algorithm evaluates two

points in each hyperrectangle. Consequently, an adjustment
to the definition of hyperrectangle dominance is necessary
for the PLOBi algorithm, as outlined in Definition 2.1.

Definition 2.1: Suppose that in the most recent iteration,
the search space D̄ = [0,1] ⊆ Rn has been partitioned into
hyperrectangles D̄i = [ai,bi] ⊆ D̄ where i ∈ Ik represents
the index of the hyperrectangles formed after k iterations.
The points li and ui denote two different sample points on
the main diagonal of the hyperrectangle D̄i, and δi denote
the measure of the hyperrectangle D̄i. Hyperrectangle D̄j

dominates hyperrectangle D̄i, i, j ∈ Ik (denoted D̄j ≺ D̄i)
if

δj ≥ δi andmin {f(lj), f(uj)} < min {f(li), f(ui)} (2)

or

δj > δi andmin {f(lj), f(uj)} ≤ min {f(li), f(ui)} (3)

where

δj = max
p=1,...,n

dpj = max
p=1,...,n

| bpj − apj | . (4)

From Definition 2.1, if hyperrectangle D̄j does not
dominate hyperrectangle D̄i for i, j ∈ Ik, then Eqs.
(2) and (3) are not satisfied. If no hyperrectangle D̄j

dominates D̄i for all i, j ∈ Ik, then the hyper-rectangle
D̄i is regarded Pareto optimal. The formal definition of
Pareto optimal hyperrectangle is given in Definition 2.2 [24].

Definition 2.2: The hyperrectangle D̄i, i ∈ Ik is Pareto
optimal if there is no hyperrectangle D̄j for all j ∈ Ik
dominating D̄i.

Figure 1. The first four iterations of partitioning and selecting of Pareto
optimal hyperrectangles using the PLOBi algorithm for the Branin test
problem.

The partition and diagonal sampling procedures in the
PLOBi algorithm resemble those of the BIRECT algorithm
[18]. The implementation of the PLOBi algorithm for the
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first four iterations of the 2D Branin function is illustrated
in Fig. 1. The gray hyperrectangles represent Pareto optimal
hyperrectangles. In the initialization stage, the objective
function is evaluated at two points located on the main
diagonal. Trivially, hypercube D1 is chosen as the Pareto
optimal hyperrectangle. Next, the hypercube is partitioned
into two based on the smallest coordinate, namely the first
coordinate (horizontal coordinate). Next, new observation
points are sampled using the procedure described in [18].

Let li and ui denote two points within the hyperrect-
angle Di, where i epresents the hyperrectangle’s index at
an iteration. From Fig. 1, the black points within each
hyperrectangle denote points with the best objective function
values, i.e., those satisfying min{f(li), f(ui)}. In the 2nd

iteration in Fig. 1, D2 and D3 have the same size. Based
on Eq. (2), D2 dominates D3 because min{f(l2), f(u2)} <
min{f(l3), f(u3)} ↔ 2.92 < 26.80. Therefore, D2 is
selected as the optimal Pareto hyperrectangle. Analogously,
in the 3th iteration, D4 dominates D5, and none of the
hyperrectangles dominate D6. Thus, D4 and D6 are selected
as the optimal Pareto. In the 4th iteration, based on Eq.
(4), all hyperrectangles have the same size. Therefore, based
on Eq. (2), the hyperrectangle with the smallest objective
function value, i.e., D7 is selected as the optimal Pareto
hyperrectangle.

The measure of the hyperrectangle j, δj in Eq. (4) cor-
responds to the infinity norm. Two hyperrectangles with
different characteristics can belong to the same group using
this measure. This allows for the formation of fewer groups
of hyperrectangles with the same size, despite an increase
in the number of hyperrectangles belonging to one group.
In the fourth iteration (the fourth column in Fig. 1), charac-
teristically, there are two types of hyperrectangles. However,
according to Eq. (4), all the hyperrectangles formed possess
the same maximum side length. In other words, there is
only one hyperrectangle group and only one Pareto optimal
hyperrectangle.

Fig. 2 presents a geometric interpretation of Definition
2.1 and Definition 2.2 of the PLOBi algorithm. The Fig. 3
illustrates the selection of POHs using the BIRECT algorithm
for the Branin test function in the 10th iteration. Each point
on both graphs represents a hyperrectangle. The horizontal
axis denotes the size of the hyperrectangle (see Eq. (4)),
and the vertical axis represents the best function value at
the sample points for each hyperrectangle. The filled black
circles represent the hyperrectangles selected for further
searches. In the 10th iteration of the Branin test function, the
group of hyperrectangles formed by the PLOBi algorithm is
smaller than that of the BIRECT algorithm. This outcome
translates to fewer rectangles being selected for subsequent
searches, enabling a reduction in the number of functions
evaluated.

III. CONVERGENCE OF THE PLOBI ALGORITHM

Many researchers [2], [17], [18] have discussed and proven
the convergence properties of DIRECT-type algorithms. Gen-
erally, the PLOBi algorithm procedures follow those of the
DIRECT and PLO algorithms. Therefore, the convergence
of the PLOBi algorithm is determined by the convergence of
the DIRECT-type algorithms.

Figure 2. Geometric interpretation of Pareto optimal hyperrectangles
selected by the PLOBi algorithm on the Branin test problem in the tenth
iteration.

Figure 3. Geometric interpretation of potentially optimal hyperrectangles
by the BIRECT algorithm on the Branin test problem in the tenth iteration.

In each iteration of the PLOBi algorithm, the hyperrect-
angle that satisfies the optimal Pareto is selected for further
search. The following Lemma is provided to ensure that there
is always a selected hyperrectangle in each iteration of the
PLOBi algorithm.

Lemma 3.1: Let Ik represent the set of the hyperrectangle
indices at iteration k. In each iteration, there is always the
largest hyperrectangle that becomes Pareto optimal.

Proof: Let Imax
k ⊆ Ik represent the set of the hyper-

rectangle indices with the largest size, δkmax, at the iteration
k. Based on Eqs. (2) and (3), there are no hyperrectangles
Di, i ∈ Ik where δi < δkmax which dominate hyperrectangle
Dimax

k
, imax

k ∈ Imax
k . Therefore, there always exists the

largest hyperrectangle Djmax
k

that becomes Pareto optimal,
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namely the hyperrectangle that satisfies:

min
{
f(ljmax

k
), f(uimax

k
)
}
< min

{
f(limax

k
), f(uimax

k
)
}

(5)

where imax
k , jmax

k ∈ Imax
k .

Furthermore, a convergence theorem is provided to guar-
antee that the PLOBi algorithm will not terminate before
reaching its stopping criteria.

Theorem 3.2: Let D be a feasible region of objective
function f . Then, for any point x ∈ D and any ϵ > 0, there
exists an iteration number k(ϵ) ≥ 1 and a hyperrectangle
index ik(ϵ) ∈ Ik(ϵ) such that

max
{∥∥lik(ϵ)

− x
∥∥ ,∥∥uik(ϵ)

− x
∥∥} ≤ ϵ. (6)

Proof: Let Imax
k represent the set of the hyperrectangle

indices with the largest size, δkmax, at the iteration k. Based on

Lemma 3.1, there exist a hyperrectangle with index imax
k ∈

Imax
k selected for further search, where

δkmax = max
{
δki ; i ∈ Ik

}
= max

{
δki ; i ∈ Imax

k

}
. (7)

Sequentially, each hyperrectangles imax
k ∈ Imax

k undergoes
bisection partitioning, resulting in half the volume of the
previous hyperrectangles. After a finite number of iterations,
Imax
k becomes an empty set. This process is applied itera-

tively to the new group containing the largest hyperrectan-
gles. Consequently, as the number of partitions increases, the
size of the largest hyperrectangles decreases. In other words,
for any ϵ > 0, there exists a finite number of iterations
k(ϵ) ≥ 1 such that after k(ϵ) iterations of the PLOBi
algorithm, the largest hyperrectangles will have a size smaller
than ϵ, i.e.,

δk(ϵ)max = max
p=1,...,n

∣∣∣bpimax
k(ϵ)

− apimax
k(ϵ)

∣∣∣ ≤ ϵ. (8)
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Table I
KEY CHARACTERISTICS OF HEDAR TEST FUNCTION

Problem Problem name Dimen- Feasible region No. of local Optimum
no. sion n D = [a,b] optima value, f∗

1,2,3 Ackley* 2,5,10 [−15, 35]n Multimodal 0.0
4 Beale 2 [−4.5, 4.5]2 Multimodal 0.0
5 Bohachevsky 1* 2 [−100, 110]2 Unimodal 0.0
6 Bohachevsky 2* 2 [−100, 110]2 Multimodal 0.0
7 Bohachevsky 3* 2 [−100, 110]2 Multimodal 0.0
8 Booth 2 [−10, 10]2 Unimodal 0.0
9 Branin 2 [−5, 10]× [10, 15] 3 0.39789
10 Colville 4 [−10, 10]4 Multimodal 0.0
11,12,13 Dixon & Price 2,5,10 [−10, 10]n Multimodal 0.0
14 Easom 2 [−100, 100]2 Multimodal −1.0
15 Goldstein & Price 2 [−2, 2]2 4 3.0
16 Griewank* 2 [−600, 700]2 Multimodal 0.0
17 Hartmann 3 [0, 1]3 4 −3.86278
18 Hartmann 6 [0, 1]6 4 −3.32237
19 Hump 2 [−5, 5]2 6 −1.03163
20,21,22 Levy 2,5,10 [−10, 10]n Multimodal 0.0
23 Matyas* 2 [−10, 15]n Unimodal 0.0
24 Michalewics 2 [0, π]2 2! −1.80130
25 Michalewics 5 [0, π]5 5! −4.68765
26 Michalewics 10 [0, π]5 10! −9.66015
27 Perm 4 [−4, 4]4 Multimodal 0.0
28,29 Powell 4,8 [−4, 5]n Multimodal 0.0
30 Power Sum 4 [0, 4]4 Multimodal 0.0
31,32,33 Rastrigin* 2,5,10 [−5.12, 6.12]n Multimodal 0.0
34,35,36 Rosenbrock 2,5,10 [−5, 10]n Multimodal 0.0
37,38,39 Schwefel 2,5,10 [−500, 500]n Multimodal 0.0
40 Shekel, m = 5 4 [0, 4]4 5 −10.15320
41 Shekel, m = 7 4 [0, 4]4 7 −10.40294
42 Shekel, m = 10 4 [0, 4]4 10 −10.53641
43 Shubert 2 [−10, 10]2 760 −186.73091
44,45,46 Sphere* 2,5,10 [−5.12, 6.12]n Unimodal 0.0
47,48,49 Sum squares* 2,5,10 [−10, 15]n Unimodal 0.0
50 Trid 6 [−36, 36]6 Multimodal −36.0
51 Trid 10 [−100, 100]10 Multimodal −210.0
52,53,54 Zakharov* 2,5,10 [−5, 11]n Multimodal 0.0

From Eq. (8), for any x ∈ D,x is located in a hyperrect-
angle ik(ϵ) ∈ Ik(ϵ), and its size does not exceed ϵ, i.e.,

δ
k(ϵ)
i ≤ δk(ϵ)max (9)

The two points lik(ϵ)
and uik(ϵ)

are also in the hyperrectangle
ik(ϵ), so

max
{∥∥lik(ϵ)

− x
∥∥ ,∥∥uik(ϵ)

− x
∥∥} ≤ δ

k(ϵ)
i . (10)

Thus, from Eqs. (8)-(10), Eq. (6) is obtained.

Theorem 3.2 guarantees that the PLOBi algorithm con-
verges to any point in the feasible region, implying “every-
where dense” convergence. As the sampled points taken by
the PLOBi algorithm form a dense subset of the hypercube,
the PLOBi algorithm will converge to the global optimal
function value, f(x∗) provided that the function f is contin-
uous in the neighbourhood of the global minimum, x∗. The
formal statement is summarized in the following Corollary
3.3.

Corollary 3.3: Suppose that f is continuous in the neigh-
bourhood of the global minimum x∗. The PLOBi algorithm
can sample a point x̃ ∈ D, such that for any ϵ > 0, the
following inequality holds:

|f (x̃)− f(x∗)| < ϵ. (11)

The complete procedure of the PLOBi algorithm is given
in Algorithm 1. The algorithm can be equipped with various

stopping criteria, specified as initial input values: error tole-
rance (ϵtol), the maximum limit of the function evaluation,
(Nfmax), or the maximum number of iterations, (tmax). Upon
reaching the stopping criteria, the PLOBi algorithm returns
the current best function value, fmin, and solution point, xmin

together with algorithmic performance measures: the number
of function evaluations (Nf ), and execution time (t).

IV. NUMERICAL RESULTS

In this section, the performance of the PLOBi algorithm
is tested by numerical experiments conducted on the Hedar
test set function, encompassing 54 problems with dimensions
ranging from 2 to 10. The characteristics of the test problems
used are detailed in Table I. Several problems required
modifications to their feasible regions due to the global
minimum point being the initial point in the initial sampling.
Modified problems are denoted by the asterisk symbol (*).

In measuring the performance and efficiency of PLOBi al-
gorithm, it is compared with other DIRECT-type algorithms.
The PLOBi and BIRECT algorithms have similar sampling
and partitioning procedures. Each hyperrectangle is parti-
tioned into two equal sizes, and two sample points are taken
on the main diagonal. The difference between the two lies in
the technique for hyperrectangle selection and the size of the
hyperrectangle used. The PLOBi algorithm uses the Pareto
approach for optimal hyperrectangle selection and uses the
infinity norm to measure the size of the hyperrectangle. By
contrast, the BIRECT algorithm uses the same approach as
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Table II
COMPARISON BETWEEN PLOBI, BIRECT-(NEW), AND DIRECT ALGORITHMS IN THE HEDAR TEST SET PROBLEMS WHEN pe = 10−4

Problem PLOBi BIRECT-(New) DIRECT
No. fmin Nf fmin Nf fmin Nf

1 2.54× 10−5 728 2.54× 10−5 202 7.53× 10−5 255
2 2.54× 10−5 3,058 2.54× 10−5 1,256 7.53× 10−5 8,845
3 2.54× 10−5 25,632 2.54× 10−5 45,128 7.53× 10−5 80,927
4 9.17× 10−5 372 9.17× 10−5 436 9.29× 10−5 655
5 4.01× 10−5 394 4.02× 10−5 468 3.09× 10−5 327
6 3.35× 10−5 390 3.35× 10−5 472 2.58× 10−5 345
7 3.66× 10−5 402 3.67× 10−5 474 8.21× 10−5 693
8 6.10× 10−5 130 6.10× 10−5 188 6.58× 10−5 295
9 0.39790 220 0.39790 242 0.39789 195
10 9.82× 10−5 472 9.82× 10−5 794 6.08× 10−5 6,585
11 9.07× 10−5 318 4.84× 10−5 722 6.25× 10−5 513
12 9.20× 10−5 5,788 7.15× 10−5 4,060 6.45× 10−5 19,661
13 0.03409 > 100, 000 0.00024 > 100, 000 0.00024 > 100, 000
14 −0.99999 670 −0.99999 558 −0.99999 32,845
15 3.00025 202 3.00019 274 3.00009 191
16 7.76× 10−7 2,362 7.76× 10−7 4,982 4.84× 10−6 9,215
17 -3.86242 206 -3.86242 352 -3.86245 199
18 -3.32206 610 -3.32206 764 -3.32207 571
19 -1.03162 146 -1.03154 196 -1.03162 321
20 9.09× 10−5 130 9.09× 10−5 152 2.10× 10−5 105
21 1.83× 10−5 484 1.83× 10−5 968 3.65× 10−5 705
22 3.55× 10−5 1,412 3.55× 10−5 6,402 6.23× 10−5 5,589
23 2.71× 10−5 68 2.71× 10−5 90 3.81× 10−5 107
24 -1.80118 218 -1.80118 126 -1.80127 69
25 -4.64589 > 100, 000 -4.68736 82,562 -4.68721 13,537
26 -8.1114 > 100, 000 -7.32661 > 100, 000 -7.87910 > 100, 000
27 0.00729 > 100, 000 0.00240 > 100, 000 0.04325 > 100, 000
28 8.34× 10−5 738 4.86× 10−5 2,114 9.02× 10−5 14,209
29 7.77× 10−5 12,578 9.87× 10−5 44,950 0.02142 > 100, 000
30 9.00× 10−5 11,810 9.00× 10−5 10,856 0.00215 > 100, 000
31 4.81× 10−5 242 4.81× 10−5 180 2.30× 10−5 987
32 1.18× 10−5 1,126 1.18× 10−5 1,162 4.97479 > 100, 000
33 2.36× 10−5 5,992 2.36× 10−5 15,658 9.94967 > 100, 000
34 9.65× 10−5 168 9.65× 10−5 180 2.30× 10−5 987
35 2.41× 10−5 766 2.41× 10−5 1,690 8.80× 10−5 20,025
36 5.42× 10−5 1,938 5.42× 10−5 9,100 8.29× 10−5 > 100, 000
37 5.64× 10−5 300 3.09× 10−5 236 2.88× 10−5 255
38 6.41× 10−5 11,122 7.73× 10−5 3,730 7.21× 10−5 31,999
39 947.5068 > 100, 000 0.08232 > 100, 000 1187.6320 > 100, 000
40 -10.15307 444 -10.15307 1,272 -10.15234 155
41 -10.40269 416 -10.40269 1,204 -10.40196 145
42 -10.53618 434 -10.53618 1,140 -10.53539 145
43 -186.72441 82,450 -186.72441 1,780 -186.72153 2,967
44 1.72× 10−5 88 1.15× 10−5 118 8.74× 10−5 209
45 2.87× 10−5 350 2.87× 10−5 602 9.39× 10−5 4,653
46 5.74× 10−5 1,896 5.74× 10−5 8,742 6.32× 10−5 99,123
47 7.94× 10−6 176 7.94× 10−6 226 3.52× 10−5 107
48 3.97× 10−5 538 3.97× 10−5 1,000 7.19× 10−5 833
49 9.11× 10−6 2,100 9.11× 10−6 5,538 7.76× 10−5 8,133
50 -49.99512 920 -49.99512 1,170 -49.99525 5,693
51 -204.67437 > 100, 000 -209.98007 32,170 -209.98085 90,375
52 2.88× 10−6 216 2.88× 10−6 338 7.95× 10−5 237
53 1.01850 > 100, 000 6.44× 10−5 26,088 9.71× 10−5 > 100, 000
54 10.50758 > 100, 000 9.43949 > 100, 000 28.96394 > 100, 000

the original DIRECT to select potentially optimal hyper-
rectangles (using a significant parameter). Both algorithms
use the Euclidean norm to measure the hyperrectangle. The
performance of the PLOBi algorithm is compared with those
of the original DIRECT algorithm and the BIRECT-(New)
algorithm in [26].

The numerical results of the algorithms are shown in Table
II. The global optimization problem used is the set of Hedar
test functions whose global minimum value (f∗) is known.
Therefore, the stopping criteria for the algorithms are met
when the point x̃ is obtained such that percent error (pe)

where

pe =

{
f(x̃)−f∗

|f∗| , f∗ ̸= 0

|f∗| , f∗ = 0
(12)

is smaller than the tolerance value (ϵtol), or when the
number of function evaluations exceeds the specified limit of
100,000. The best (smallest) number of function evaluations
for each function is highlighted in bold font. If after reaching
the specified function evaluation limit, the pe value has not
met the tolerance value (ϵtol), the algorithm is considered
unsuccessful in obtaining the global minimum point.

The numerical analysis for the Hedar test set in this
section is grouped into three categories based on the number
of problem dimensions: low-dimensional for n = 2, 3,
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Table III
NUMBER OF FUNCTION EVALUTIONS USING THE PLOBI, THE BIRECT-(NEW) AND THE DIRECT ALGORITHMS

Problem PLOBi BIRECT-(New) [26] DIRECT [2]
no./pe 10−4 10−6 10−8 10−4 10−6 10−8 10−4 10−6 10−8

1 728 1,502 2,282 202 314 550 225 443 655
2 3,058 5,540 8,456 1,256 1,910 2,696 8,845 11,289 14,619
3 25,632 39,602 61,530 45,128 70,090 92,328 80,927 > 105 > 105

4 372 984 1,508 436 874 1,500 655 1,143 1,823
5 394 568 782 468 690 994 327 457 551
6 390 446 782 472 532 988 345 489 589
7 402 828 1,078 474 1,202 1,524 693 1,073 1,645
8 130 274 482 188 410 744 295 511 917
9 220 488 > 105 242 7,742 > 105 195 377 38,455

10 472 864 1,378 794 1,282 1,968 6,585 18,261 24,485
11 318 484 702 722 898 1,334 481 597 1,143
12 5,788 6,652 7,744 4,060 5,344 7,416 18,237 19,407 23,605
13 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105

14 670 670 1,198 558 558 > 105 32,859 59,347 > 105

15 202 372 540 274 2,332 > 105 191 305 10,437
16 2,362 2,362 2,708 5,106 5,106 5,464 9,215 9,341 9,341
17 206 488 > 105 352 26,940 > 105 199 4,165 88,883
18 610 3,834 5,788 764 > 105 > 105 571 > 105 > 105

19 146 274 562 196 > 105 > 105 293 997 54,487
20 130 212 396 152 266 532 127 155 267
21 484 952 1,306 968 1,900 2,416 705 1,021 1,921
22 1,412 3,266 4,786 6,402 14,274 18,676 5,589 10,431 18,475
23 68 176 256 90 238 334 107 209 391
24 218 316 338 126 458 458 67 109 109
25 > 105 > 105 > 105 82,562 83,170 > 105 13,537 > 105 > 105

26 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105

27 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105

28 738 7,850 16,588 2,114 9,470 20,052 13,675 67,515 > 105

29 12,578 > 105 > 105 44,950 > 105 > 105 > 105 > 105 > 105

30 11,810 18,260 28,860 5,664 10,858 19,990 > 105 > 105 > 105

31 242 378 648 180 310 602 987 1,181 1,565
32 1,126 1,490 2,444 1,162 1,588 2,850 > 105 > 105 > 105

33 5,992 7,910 14,816 15,658 18,820 30,220 > 105 > 105 > 105

34 168 322 496 180 254 410 1,621 1,913 3,005
35 766 1,318 1,652 1,690 2,786 3,318 19,693 24,681 35,575
36 1,938 3,370 5,286 9,100 14,268 20,534 > 105 > 105 > 105

37 300 > 105 > 105 236 > 105 > 105 255 447 597
38 11,122 > 105 > 105 3,730 > 105 > 105 27,543 30,307 31,199
39 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105

40 444 838 > 105 1,272 6,482 > 105 155 255 > 105

41 416 > 105 > 105 1,204 1,744 > 105 145 4,875 > 105

42 434 692 720 1,140 1,616 > 105 145 4,939 > 105

43 82,450 82,644 83,014 1,780 1,892 > 105 2,967 3,867 68,667
44 88 252 402 118 374 594 209 417 633
45 350 968 1,538 602 1,924 3,202 4,653 10,583 20,123
46 1,896 6,490 8,910 8,742 26,996 35,756 99,123 > 105 > 105

47 176 252 452 226 332 624 107 195 321
48 538 1,012 1,312 1,000 1,894 2,522 833 1,489 2,463
49 2,100 2,934 4,798 5,538 7,172 12,076 7,795 14,691 22,651
50 920 2,112 3,530 1,170 > 105 > 105 4,897 > 105 > 105

51 > 105 > 105 > 105 32,170 99,906 > 105 90,375 > 105 > 105

52 216 350 518 338 546 802 237 303 653
53 > 105 > 105 > 105 26,088 26,918 27,876 > 105 > 105 > 105

54 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105 > 105

Average results
Overall 17,950 24,282 31,133 15,149 28,939 44,840 28,398 37,182 49,625

Unimodal 638 1,437 2,104 1,886 4,448 6,317 12,606 14,284 16,450
Multimodal 21,679 31,060 39,148 17,802 33,837 52,545 32,084 41,761 56,260

n ≤ 3 3,943 8,463 17,355 571 10,967 31,194 2,290 3,828 16,745
4 ≤ n ≤ 6 17,847 29,073 35,859 12,489 29,415 47,070 27,409 47,086 65,972
n > 6 45,963 55,298 58,344 47,308 62,628 67,466 81,985 85,427 86,761
Failed 8 12 15 5 11 21 11 17 22

medium-dimensional for n = 4, 5, 6, and higher dimen-
sional for n > 6. The 23 test problems are classified as
low-dimensional. The PLOBi, BIRECT-(New) and DIRECT
algorithms excel at 11, 6, and 6 test functions respectively.
The PLOBi algorithm outperforms the BIRECT-(New) and
DIRECT algorithms. This superiority is attributed to the
smaller number of hyperrectangle groups formed based on

Eq. (4) compared with using the Euclidean norm size, leading
to a reduced number of function evaluations.

In the category of problems with medium-dimensional,
there are 19 test problems, and the PLOBi, BIRECT-(New)
and DIRECT algorithms excel at 8, 5, and 5 test functions re-
spectively. However, the PLOBi and the DIRECT algorithms
failed to reach the minimum value with a pre-determined
pe in three test problems when the maximum number of
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Figure 4. Operational characteristics of the PLOBi, BIRECT-(New), and
DIRECT algorithms.

function evaluations is limited to 100,000. The BIRECT-
(New) algorithm failed to converge only on one test problem,
the Perm function (No.27).

Moving on to the higher dimensional problems (n > 6)
comprising 12 test problems, the DIRECT algorithm often
fails to achieve convergence. It failed in seven test functions
and only succeeded in five test functions. The BIRECT-
(New) algorithm fails to converge on four test functions,
and the PLOBi algorithm failed on five test functions. In the
Powell function (No.28), only the BIRECT-(New) algorithm
achieves convergence. These results indicate that for higher
dimensional problems, when the PLOBi algorithm converges
successfully, the resulting number of evaluations is 2 to 15
times better than those of the other two algorithms.

Fig. 4 illustrates the operational characteristics of the
PLOBi, BIRECT-(New), and DIRECT algorithms. When
the function evaluation is limited and very low (Nfmax

<
1, 600), the proportion of Hedar test set problems solved
by the PLOBi, BIRECT-(New), and DIRECT algorithms is
63%, 57%, and 39%, respectively. As the budget for the
function evaluation increases, specifically for (Nfmax

<
100, 000), the number of problems solved by the BIRECT-
(New) algorithm reaches 91%, followed by the PLOBi algo-
rithm with 83%, and then the DIRECT algorithm with 70%.

One of the weaknesses of the original DIRECT method
is its slow convergence with a high level of accuracy. We
investigated the behavior of the PLOBi, the BIRECT-(New)
[26] and the DIRECT [2] algorithms with three different pe
values: 10−4, 10−6, 10−8, the results are shown in Table III.

Based on Table III, the overall average number of function
evaluations of the PLOBi algorithm is best when the error
rate (pe) is smaller, namely when pe = 10−6 and pe =
10−8. For low-dimensional problems (n ≤ 3), the average
performance of the PLOBi algorithm is not better than
the other two algorithms. This is caused by one particular
function whose function evaluation is excessive, namely the
Shubert function. Based on Fig. 5, the horizontal curve shows
no improvement in the fmin value after several iterations.
Over-function evaluation by the PLOBi algorithm on the
Shubert function occurs because the algorithm is stuck at
a local minimum value. This can happen because the PLO-

Figure 5. The historical curves of the minimum function values (fmin)
identified on the Shubert (2D) function.

Bi algorithm does not use parameter such as the DIRECT
and BIRECT-(New) algorithms to prevent searches that are
too local. However, without using parameters it does not
affect the performance of the PLOBi algorithm on other test
functions.

For higher-dimensional problems (n ≥ 4), the average
performance of the PLOBi algorithm is 1.5 times to 1.8
times superior to that of the DIRECT algorithm for each pe
value. In other words, to obtain solutions with high accuracy
levels, the performance of the PLOBi algorithm is better
than the DIRECT algorithm. Additionally, the failure rate at
each pe value for the PLOBi algorithm is also lower than
the DIRECT algorithm. For a sufficiently small pe level,
specifically pe = 10−8, the PLOBi algorithm fails in 15
test problems, compared to the failure of the BIRECT-(New)
and the DIRECT algorithms, which fail in 21 and 22 test
problems, respectively. In the case of unimodal functions, the
performance of the PLOBi algorithm is also the best among
the three pe values compared to the other two algorithms.
The performance of the PLOBi algorithm in multimodal
function cases is also relatively good, only lagging behind
when pe = 10−4 compared to the BIRECT-(New) algorithm.

From Table III, the performance of the PLOBi and
BIRECT-(New) algorithms is mostly better than the DIRECT
algorithm. Furthermore, these two algorithms are compared
on several other test functions. Table IV presents the char-
acteristics of several test functions found in [27], and the
numerical experiment results of the PLOBi and BIRECT-
(New) algorithms are presented in Table V. Based on Table
V, the PLOBi algorithm outperforms the BIRECT-(New)
algorithm in almost all test problems with three different
variations of pe.

V. CONCLUSION

A novel DIRECT-type algorithm is introduced to solve
box-constrained global optimization problems. The algorithm
incorporates the Pareto approach, utilizing non-dominated
hyperrectangles for further search. Each selected hyperrect-
angle undergoes bisection, dividing it into two equal sizes,
and two points on the main diagonal are sampled. The size of
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Table IV
KEY CHARACTERISTICS OF SOME TEST FUNCTIONS USED IN [27].

Problem name Dimension n Feasible region D = [a,b] Type No. of local Optimum
optima value, f∗

Bukin 2 [−15, 5]× [10, 15] Convex Multimodal 0.0
Drop-Wave* 2 [−5.12, 6.12]2 Non-convex Multimodal -1.0
Langermann 2 [0, 10]2 Non-convex Multimodal -4.1558
McCormick 2 [−1.5, 4]× [−3, 4] Convex Multimodal -1.91322
Rotated-Ellipsoid* 2,5,10 [−65.536, 75.536]n Convex Unimodal 0.0
Styblinski Tang 2 [−5, 5]2 Non-convex Multimodal −39.1661n
Sum Powers* 2,5,10 [−0.55, 1.45]n Convex Unimodal 0.0

Table V
NUMBER OF FUNCTION EVALUTIONS USING THE PLOBI, AND THE BIRECT-(NEW) ALGORITHMS WITH DIFFERENCE pe.

Problem name / PLOBi BIRECT-(New) [26]
pe 10−4 10−6 10−8 10−4 10−6 10−8

Bukin > 100, 000 > 100, 000 > 100, 000 > 100, 000 > 100, 000 > 100, 000
Drop-Wave* 362 406 536 190 210 444
Langermann 334 434 434 686 798 798
McCormick 104 158 158 130 224 224
Rotated-Ellipsoid* n = 2 172 290 638 218 384 946
Rotated-Ellipsoid* n = 5 854 854 1,812 1,448 1,448 3,276
Rotated-Ellipsoid* n = 10 2,020 3,378 4,218 4,594 7,958 10,248
Styblinski Tang 20 118 118 26 124 124
Sum Power* n = 2 32 100 228 42 132 330
Sum Power* n = 5 94 286 628 42 132 330
Sum Power* n = 10 154 578 4,984 618 73,302 > 100, 000

the hyperrectangle is measured using an infinity norm, facili-
tating the formation of fewer groups of hyperrectangles. The
convergence of this algorithm is guaranteed. The combina-
tion of these procedures results in a new algorithm called the
PLOBi algorithm. The performance of the PLOBi algorithm
is tested using numerical experiments. The numerical results
show that the PLOBi algorithm is not only effective but also
highly compatible and competitive when compared with the
other two DIRECT-type algorithms.
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