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Abstract—This paper proposes a predictive control algorithm
for the speed and displacement tracking of urban rail trains.
Firstly, the train dynamics model is constructed considering the
resistance existing in the actual operational scenarios. Secondly,
based on the model predictive control (MPC) framework,
a control objective function for tracking the desired speed
and displacement and the stable change of control quantities
is designed. Finally, combined with constraints of the train
operation, the proposed MPC algorithm for the train tracking
control problem is transformed into quadratic programming
with inequality constraints, thereby facilitating a solution with
the commonly-used solvers. Experimental results demonstrate
that the proposed algorithm can effectively enhance the speed
and displacement control performance while improving energy
efficiency, ensuring the safety, stability, and riding comfort of
the train.

Index Terms—Automatic train operation (ATO), urban rail
train (URT), train speed and displacement control, and model
predictive control (MPC).

I. INTRODUCTION

THE speed and displacement tracking control of ur-
ban rail trains (URTs) is crucial in automatic train

operation (ATO) [1], [2], [3]. As the urban rail transit
evolves, traditional speed and displacement tracking control
algorithms may not adequately meet the real-world demands.
Therefore, to enhance the overall performance of the URT, it
is imperative to design an effective ATO control algorithm to
achieve safe, smooth, and efficient speed and displacement
tracking, ensuring the punctuality, riding comfort, and energy
efficiency of the train operation.

Because the resistance of the multi-carriage train running
on the urban rail is lower than the traction and braking force,
it is generally simplified as a single-point model, and its
longitudinal motion is approximated by Newton equation
[4]. This model has been widely used in the ATO control
technology for urban rail transit systems [5]. For example,
Albrecht et al. [6] presents a versatile train control model
that explores the energy-efficient control strategy for trains
within the stipulated travel time. Furthermore, Lian et al. [7]
devise a speed control algorithm based on the single-point
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model which can effectively enhance the anti-interference
ability and minimize the tracking error.

Notice that, there are lots of factors that may potentially
affect the performance of URTs, such as the motor saturation
characteristics, riding comfort, constraints on the train speed,
and the station stopping position. Therefore, the design
of control algorithms necessitates careful consideration of
both control objectives and constraints. Traditionally, the
proportional-integral-derivative (PID) control [8], [9], [10]
and slide mode control (SMC) [11], [12] are widely em-
ployed in the URT for speed and displacement tracking con-
trol, which boast simplicity in implementation and stability.
Nevertheless, the aforementioned control algorithms cannot
concurrently optimize multiple objectives and constraints
[13], [14]. Given these limitations, the model predictive
control (MPC) method has garnered significant attention
in recent years for its effectiveness in addressing complex
optimization control problems and diverse constraints [15],
[16], [17]. Zhang et al. [18] present an MPC algorithm in-
corporating multiple performance indicators and constraints
while introducing two penalty factors to reduce energy
wastage and mitigate train cycle vibrations. In [19], an MPC
algorithm based on constraint tightening is devised, enabling
speed tracking close to, but not exceeding the automatic
train protection (ATP) profile. Zhang et al. [20] introduce
a switching MPC algorithm, where the cost function in
train control problems is adjusted based on train operational
requirements. Notably, these MPC algorithms rely on train
traction/braking outputs for the speed control and do not
incorporate variations in traction/braking outputs related to
the riding comfort. Hence, using control input increments is
essential for the URT to achieve smooth, safe, and precise
control of the speed and displacement tracking.

In this paper, a predictive control algorithm based on
control input increment level is proposed for the ATO of
the URT. This approach achieves precise speed and dis-
placement tracking control for the URT during inter-station
travel and satisfies punctuality, riding comfort, and energy
efficiency in real-world scenarios. The structure of this paper
is as follows: Section II delineates the formulation of a
predictive control model for train speed and displacement.
Section III is dedicated to the meticulous design of objective
functions governing the speed and displacement tracking
control. Section IV meticulously crafts the constraints of the
ATO. Section V presents simulation outcomes along with
their corresponding analyses. In Section VI, we conclude
the whole paper. The framework of the predictive control
algorithm for the speed and displacement tracking of URTs
is shown in Fig. 1.

The contributions of this paper can be summarized as
follows:

1) This paper introduces the traction/braking control input
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Fig. 1: Framework of the predictive control algorithm for urban rail trains.

increments into the existing train dynamics model,
aiming to prevent excessive changes in traction and
braking forces. Simultaneously, considering the slope
resistance during the train operation, a single-point
dynamics model for the URT is established. This model
not only ensures the precise tracking of train speed and
displacement but also incorporates the riding comfort
and additional slope resistance.

2) Taking into account various inter-station operational
scenarios for the URT, this paper formulates the track-
ing performance of the desired speed and displacement
profiles and the smoothness of control inputs, as con-
trol objectives. These objectives are transformed into
quadratic forms and integrated with constraints such
as the station stopping position, speed limitation, and
traction/braking control increments.

3) The experimental results demonstrate the superior abil-
ity of the proposed algorithm to track the desired
speed and displacement profiles, reducing errors of the
speed and displacement, and possessing excellent anti-
disturbance performance.

II. PREDICTIVE CONTROL MODEL FOR TRAIN SPEED
AND DISPLACEMENT

During the train operation, it is subject to the collective
influence of the traction, braking, and resistance. Therefore,
the dynamics equations for a train can be articulated as
follows:

ṡ(t) = v(t),mv̇(t) = ma(t) = u(t)− f, (1)

where v(t) represents the speed of the train; s(t) denotes the
position of the train; m signifies the mass of the train; a(t)
represents the acceleration of the train; u(t) represents the
traction force acting on the train. f stands for the resistance,
which specifically includes f = fr + fw; fr is the basic
resistance correlated with speed; fw, the additional resistance

Fig. 2: Force condition of the urban rail train.

related to track conditions, encompass slope resistance, tun-
nel resistance, and curve resistance [21]. The force condition
of the URT is illustrated in Fig. 2.

In the ATO system for the URT, train control solely
considers the impact of basic resistance and slope resistance
on the train. The resistances experienced by the train are
formulated as follows:

fr = a+ bv + cv2, (2)

fw = m · g · i · 10−3. (3)

Equation (2) presents the formula for calculating basic oper-
ational resistance, where a, b, and c denote basic resistance
coefficients, respectively. Equation (3) represents the compu-
tation of slope resistance, where g is the acceleration due to
gravity, and i represents the slope in percentage (positive for
uphill) [22]. Upon simplifying (1), we derive{

ṡ(t) = v(t),

v̇(t) = a(t) = u(t)
m − f

m .
(4)

By substituting (2) and (3) into (4), we obtain{
ṡ(t) = v(t),

v̇(t) = u(t)
m − a+bv(t)+cv2(t)+fw

m .
(5)

Given the presence of higher-order terms concerning the
speed, a first-order Taylor approximation of v(t) around vr(t)
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is performed using linearization methods [23], where vr(t)
represents the reference speed of the train, leading to

f(v(t)) ≈ f (vr(t)) +
df (vr(t))

dvr(t)
(v(t)− vr(t)) . (6)

Further, we obtain

{
ṡ(t) = v(t),

v̇(t) = u(t)
m − [b+2vr(t)c]v(t)

m +
(cvr(t)2−a−fw)

m .
(7)

Substituting this approximation into the dynamics equation,
we acquire the linearized state-space representation of the
train motion system, expressed as{

ẋ(t) = Ax(t) +Bu(t) + d,
y(t) = Cx(t),

(8)

where x = [s(t); v(t)],

A =

[
0 1

0 − b+2vr(t)c
m

]
, B =

[
0
1
m

]
,

C =

[
1 0
0 1

]
, d =

[
0

(cv2
r (t)−a−fw)

m

]
.

Applying discretization to (8), one has{
x(k + 1) = Adx(k) +Bdu(k),
y(k) = Cdx(k),

(9)

where Ad = I + AT,Bd = TB,Cd = C, and I represents
the identity matrix and T signifies the sampling period.

Furthermore, considering the riding comfort, this paper
introduces a new state vector ξ(k) = [x(k);u(k−1)]. (9) can
be rewritten as a state equation with control input increments
[24], [25]: {

ξ(k + 1) = Ãξ(k) + B̃∆u(k),

η(k) = C̃ξ(k),
(10)

where

Ã =

[
Ad Bd

O1×2 1

]
, B̃ =

[
Bd

1

]
, C̃ =

[
Cd O2×1

O1×2 0

]
.

In the above expression, O denotes the zero matrix with the
appropriate dimension. Based on (10), for state prediction,
let Nc represent the control domain and Np denotes the
prediction domain, thereby simplifying them into a compact
form:

Ξ(k) = Fξξ(k) +Gξ∆U(k), (11)

where

Ξ(k) =

 ξ(k + 1)
...

ξ (k +Np)

 ,∆U(k) =

 ∆u(k)
...

∆u (k +Np − 1)

 ,

Fξ =

 Ã
...

ÃNp

 , Gξ =

 B̃ 0
...

. . .
ÃNp−1B̃ · · · B̃


.

Incorporating the output equation from (10) and (11), we
derive

Ψ(k) = Fηξ(k) +Gη∆U(k), (12)

where

Ψ(k) =

 η(k + 1)
...

η (k +Np)

 , Fη =

 C̃Ã
...

C̃ÃNp

 ,

Gη =

 C̃B̃ 0
...

. . .
C̃ÃNp−1B̃ · · · C̃ÃNp−NcB̃

 .

III. OBJECTIVE FUNCTION DESIGN

The objective function of this paper is to ensure the rapid
and smooth tracking of the desired trajectory. Therefore, the
overarching control goals are speed and displacement of the
train, incorporating optimization of deviations in system state
variables and control inputs. Simultaneously, to consider the
riding comfort and avoid excessive traction/braking changes,
the design of the objective function is formulated as

J =

Np∑
k=1

∥W (k)−Ψ(k)∥2Q +

Nc∑
k=1

∥∆U(k)∥2R, (13)

where W (k) =
[
wr(k + 1) . . .wr(k +Np)

]
. represents the

vector representation of the desired output values, and Q
and R are weighting matrices with appropriate dimensions
[26]. The first term on the right-hand side of (13) reflects the
system’s ability to track the desired trajectory. The second
term represents the requirement for smooth variations in
control inputs.

Quadratic programming is widely used in the field of
the MPC [27]. Therefore, this paper further transforms the
objective function in (13) into quadratic programming. First,
let E = Fηξ(k) and substitute (12) into the optimization
objective in (13), and we obtain

J = (W (k)−Ψ(k))⊤Q̃(W (k)−Ψ(k)) + ∆U(k)⊤R̃∆U(k)

= ∆U(k)⊤
(
G⊤

η Q̃Gη + R̃
)
∆U(k)

+ 2
[
E⊤Q̃Gη −W (k)⊤Q̃Gη

]
∆U(k)

+W (k)⊤Q̃W (k)− 2W (k)⊤Q̃E + E⊤Q̃E.
(14)

In these equations, Q̃ = INp ⊗ Q and R̃ = INc ⊗ R, where
⊗ represents the Kronecker product. Neglecting the constant
term in (14), and one has

J = ∆U(k)⊤
(
G⊤

η Q̃Gη + R̃
)
∆U(k)

+ 2
[
E⊤Q̃Gη −W (k)⊤Q̄Gη

]
∆U(k).

(15)

Let H = Gη
⊤Q̃Gη + R̃, and g = Gη

⊤Q̃ [E −W (k)], then
(15) can be rearranged as

J =
1

2
∆U(k)⊤H∆U(k) + g⊤U(k). (16)

IV. CONSTRAINTS DESIGN

The URT needs to arrive at the target station within the
specified time and remain aligned with the platform screen
door [28]. Therefore, the position constraint for the train at
the target station is designed as

0 ≤ s(k) ≤ smax, (17)
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where smax represents the stopping position of the train at
the station.

The speed of the train operation is constrained by the
maximum allowable speed of the track conditions, the speed
limits imposed by the ATP profile, and the restrictions based
on the maximum safe operating speed [29]. In this regard,
the speed constraint for the train is expressed as

0 ≤ v(k) ≤ vmax, (18)

where vmax = min {vl, vp, vt}, vl is the maximum allowable
speed determined by track conditions, vp is the speed limit
from the ATP profile, and vt is the maximum safe operating
speed of the URT.

The maximum traction/braking force under the influence
of the saturation characteristics of the train traction motors
is constrained as

umin ≤ u(k) ≤ umax, (19)

where umin and umax respectively represent the output
thresholds for maximum traction/braking force achievable
due to the physical limitations of the traction motors.

To ensure the riding comfort, it is necessary to impose
constraints on the variation of traction/braking force, as
outlined below

∆umin ≤ ∆u(k) ≤ ∆umax, (20)

where ∆umax represents the maximum allowable change in
traction force, and ∆umin represents the maximum allowable
change in braking force.

In the objective function, as the control input increments
within the control horizon are taken as the decision variables
to be solved, it is necessary to transform the constraint
conditions into the form of control input increments. The
aforementioned constraints in (17)-(20) can be rearranged as

ξmin ≤ Zξ(k + 1 + i) ≤ ξmax, (21)

umin ≤ u(k + i) ≤ umax, (22)

∆umin ≤ ∆u(k + i) ≤ ∆umax, (23)

where i = 0, 1, · · · , N − 1 . Z ensures that the con-
straints on train displacement and train speed, with Z =[
1 0 0; 0 1 0

]
. ξmin represents the minimum val-

ues for train displacement and train speed, defined as
ξmin = [ 0 0 ]

⊤ . ξmax represents the maximum values
for train displacement and train speed, defined as ξmax =
[smax vmax]

⊤.
Within the prediction horizon, as indicated by (19), the

constraint can be represented as

ξmin ≤ Ãkξ(k) + B̃k∆U(k) +D ≤ ξmax, (24)

where

Ãk =
[
ZÃ; ZÃ2; · · · ;ZÃNp

]
,

D =
[
d; d; · · · ; d

]⊤
,

B̃k =


ZB̃ 0 · · · 0

ZÃB̃ ZB̃
. . .

...
...

...
. . . 0

ÃNp−1B̃ ZÃNp−2B̃ · · · ZÃNp−NcB̃

 .

The relationship between control inputs and control input
increments is shown as

u(k + i) = u(k + i− 1) + ∆u(k + i),

i = 0, 1, · · · , N − 1.

Equation (23) can be represented in vector form as

Umin ≤ Ut + L∆U(k) ≤ Umax, (25)

where Ut = 1Nc ⊗ u(k − 1),

L =

1
...

. . .
1 · · · 1


Nc×Nc

.

1Nc is a column vector containing Nc rows, where all
elements are 1; u(k− 1) represents the actual control inputs
at the previous time step. Umin and Umax are the sets of
minimum and maximum values for control inputs within the
control horizon, respectively. The constraint on control input
increments can be represented as

∆Umin ≤ ∆U(k) ≤ ∆Umax, (26)

where ∆Umin and ∆Umax represent the sets of minimum
and maximum values for control input increments within the
control horizon.

Finally, the constrained optimization problem regarding
the train speed and displacement can be transformed into
quadratic programming:

min
U(k)

J =
1

2
∆U(k)⊤H∆U(k) + g⊤∆U(k)

ξmin ≤ Ãkξ(k) + B̃k∆U(k) +D ≤ ξmax

s.t. Umin ≤ Ut + L∆U(k) ≤ Umax

∆Umin ≤ ∆U(k) ≤ ∆Umax

(27)

After solving the optimization problem within each control
cycle with existing solvers, such as the ’Quadprog’ function
in Matlab, a series of the control input increments within the
control horizon is obtained

∆U∗(k) =


∆u∗(k)

∆u∗(k + 1)
· · ·

∆u∗ (k +Nc − 1)

 .

The first element of this control sequence is applied as the
actual control input increment to the system, i.e.,

u(k) = u(k − 1) + ∆u∗(k).

Upon entering the next control cycle, the above process is
repeated, thus cyclically achieving tracking control of the
train’s speed and displacement trajectory.

V. EXPERIMENT VERIFICATION

The data used in this paper is sourced from operational
data from a specific urban rail line. Further, an 8-carriage
train composition is chosen, employing a D-Type train
model, with specific parameters provided by the vehicle
manufacturer, as shown in Table I. It is assumed that the
speed and displacement information of the train is obtained
through sensors, and the actuators are considered to be
healthy and free of faults.
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Fig. 3: Comparison of performance in different horizons.

This paper verifies the algorithm’s performance through
the following experiments: (1) The experiment of the MPC
algorithm in different horizons. (2) The comparative experi-
ment of different algorithms without slope resistance. (3) The
comparative experiments of different algorithms with slope
resistance. (4) The comparative experiments of different
algorithms with the nonlinear disturbance.

TABLE I: Parameters of train

Parameters Value
m (t) 378
a (N/t) 9.888

b (Ns/mt) 0.005
c (Ns2/m2t) 0.00195
umax (kN) 420
umin (kN) 400

∆umax (kN/s) 60
∆umin (kN/s) 60

In particular, we specify the commonly used indicators to
evaluate the performance of the control algorithm, described
as follows [2]:

1) Punctuality: Punctuality is defined as the error between
the actual speed and displacement of the train and the
desired speed and displacement. The smaller the speed
and displacement errors, the better the punctuality of
the ATO control algorithm. The specific formula is as
follows:

Ev =

∑T
k=0 |vr(k)− v(k)|

T
,

Es =

∑T
k=0 |sr(k)− s(k)|

T
,

where Ev represents the average speed error and Es

represents the average displacement error.

2) Riding comfort: The average change of the control
input increment can be used to evaluate the riding
comfort of the train operation process. As long as the
control input increment does not exceed the limits, it
can be considered that the ATO control algorithm can
meet the riding comfort.

3) Energy efficiency: We consider the energy consump-
tion generated during the traction and braking process
of the train, without considering the energy consump-
tion of basic equipment, and one has

Eu =

∫
u2dt,

where Eu represents input cost. The greater the input
cost, the lower the energy efficiency.

A. Experiment Verification in Different Horizons

For this simulation, 4, 8, and 20 are chosen for the predic-
tion and control horizons, respectively. The effectiveness of
the control algorithm is validated while keeping other weight
parameters unchanged. The output and control weighting
matrix parameters are denoted as Q and R, respectively.

Figure 3(a) illustrates the comparison of train speed con-
trol performance under different prediction horizons and con-
trol horizons while ensuring compliance with the maximum
safe operating speed requirement. The thicker black dashed
line represents the speed limit curve, with a maximum speed
limit of 45.8 m/s. From Fig. 3(a), it is evident that the
actual speed under different horizons can accurately track
the desired speed profile. As the prediction and control
horizons increase, the speed-tracking effectiveness improves
significantly.
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Fig. 4: Comparison of performance in different algorithms without slope resistance.

Figure 3(b) displays the train displacement control perfor-
mance in different horizons, showing that an increase in pre-
diction and control horizons effectively enhances displace-
ment control accuracy. Figures 3(c) and 3(d) depict the vari-
ations in traction/braking force and traction/braking change
throughout the train operation. Figure 3(c) reveals that the
proposed algorithm can effectively control train speed and
displacement within the constraint, meeting the saturation
characteristics of the train traction motors. In Fig. 3(d), the
traction/braking change, representing riding comfort, remains
within the constraint, demonstrating the adaptability of the
traction/braking control unit’s performance.

Figures 3(e) and 3(f) show the speed error and displace-
ment error during the train operation. It can be observed that
an increase in the prediction and control horizons effectively
reduces speed error and displacement error, maintaining a
speed error of 0.004 m/s during the train cruising phase.

B. Experiment Verification without Slope Resistance

In this section, we explore the differences without slope re-
sistance between the PID-based train speed and displacement
control algorithm [9] (referred to as the PID algorithm), the
SMC-based train speed and displacement control algorithm
[11] (referred to as the SMC algorithm), and the algorithm
proposed in this paper, along with their performance in terms
of control effectiveness.

Figure 4(a) presents the comparison of train speed con-
trol effects for different algorithms, Fig. 4(b) compares
the displacement control effects, Fig. 4(c) illustrates the
traction/braking effects during the train operation, Fig. 4(d)
compares the effects of traction/braking change during the
train operation, and Figs. 4(e) and (f) show the speed
error and displacement error for different algorithms. The

comparative results of the algorithm effects are summarized
in Table II.

TABLE II: Performance comparison among different algo-
rithms without slope resistance.

Algorithm Eu (109kN) Ev (m/s) Es (m)
MPC 9.9033 0.1079 12.2317
PID 9.8681 0.4584 13.6817

SMC 9.4185 0.4151 42.8156

As shown in Fig. 4(a), at 55 seconds, the PID algorithm is
too close to the speed limit curve, posing a safety hazard with
the potential for triggering emergency braking. The SMC
algorithm exhibits poorer control performance for tracking
the desired speed profile during the train operation. From
Fig. 4(b), it is evident that the proposed algorithm closely
approximates the desired displacement profile with smaller
displacement errors.

Figures 4(c) and 4(d) indicate that, concerning the release
of the traction/braking control performance and the balance
of riding comfort, this algorithm performs better compared to
the other algorithms. As indicated in Table II, the input cost
of this algorithm is only increased by 0.35% compared to the
PID algorithm and 5.14% compared to the SMC algorithm.

Figures 4(e) and 4(f) show that the speed error and
displacement error of the proposed algorithm are smaller on
average compared to other algorithms. Combining the results
in Table II, the average speed error of the proposed algorithm
is approximately 0.25 times that of the PID algorithm and
SMC algorithm. The average displacement error can be
reduced by 10.6% compared to the PID algorithm and 71.4%
compared to the SMC algorithm. In summary, under the con-
straints of traction/braking force and traction/braking change,
the proposed algorithm demonstrates a closer tracking of the
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Fig. 5: Comparison of performance in different algorithms with slope resistance.
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desired profile and superior control performance compared
to the PID and SMC algorithms.

C. Experiment Verification with Slope Resistance

Furthermore, the experiment evaluates the control effec-
tiveness in the presence of slope resistance. The change of
slope is shown in Fig. 6. Similar to subsection V-B, the
comparison of the effects of the proposed algorithm with PID
and SMC algorithms is shown in Fig. 5. The comparative
results of the algorithm effects are summarized in Table III.

As shown in Fig. 5, when the desired speed profile does
not take into account the instantaneous output of the traction
motor during the acceleration phase, the PID algorithm and
SMC algorithm will have many problems in speed and
displacement control. For example, before 35 seconds in Fig.
5(a), although both PID and SMC algorithms can approach
the desired profile, such control outputs have exceeded the

constraints of traction/braking input. This means that both
algorithms do not take riding comfort into account. In
contrast, the proposed algorithm can realize the speed and
displacement control of the train under multiple constraints,
ensuring accurate tracking of the speed and displacement
profile.

In Fig. 5(b), compared with the precise tracking of the
displacement profile by the MPC algorithm, the other two
algorithms exceed the constraint of the speed during the
acceleration phase, resulting in huge errors in displacement
tracking. In addition, in Figs. 5(c) and (d), corresponding to
the control effect in Fig. 5(a), both PID and SMC algorithms
exceed the constraint of control input and riding comfort
before 35 seconds, while the MPC algorithm achieves precise
control within constraints.

Finally, according to Figs. 5(e) and (f), combined with
Table III, it can be concluded that the MPC algorithm has a
larger average speed error and smaller average displacement
error than PID and SMC algorithms. The reason for this
is that the other two algorithms do not consider the riding
comfort, and they exceed the constraint of the control input
increment. In fact, they cannot meet the characteristics of
train traction motors.

Overall, as shown in Fig. 5 and Table III, the proposed
algorithm can achieve train speed and displacement track-
ing control while considering slope resistance and multiple
constraints.

TABLE III: Performance comparison among different algo-
rithms with slope resistance.

Algorithm Eu (1010kN) Ev (m/s) Es (m)
MPC 1.0977 1.9911 0.0028
PID 6.2741 0.5432 565.1617

SMC 7.1596 0.4592 513.8754
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Fig. 7: Comparison of performance in different algorithms with nonlinear disturbance.
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D. Experiment Verification with Nonlinear Disturbance

In this section, the performance of the MPC algorithm with
nonlinear disturbance is verified, based on the train operation
data in the previous section. The comparison of different
algorithms with nonlinear disturbance is shown in Fig. 7. The
nonlinear disturbance is shown in Fig. 8. Natural wind is one
of the nonlinear disturbances during train operation. Due to
the randomness and uncertainty of natural wind, it may affect
the operation quality of trains and the stability of the train
traction/braking system. According to the natural wind model
[30], the following equation describes the characteristics of
the nonlinear disturbance.

w(t) = 0.07 ∗ sin ( 1

50
πt),

where w(t) represents the nonlinear disturbance.
As shown in Fig. 7 and Table IV, when the train encounters

nonlinear disturbance, the performance of the proposed MPC

TABLE IV: Performance comparison among different algo-
rithms with nonlinear disturbance.

Algorithm Eu (1010kN) Ev (m/s) Es (m)
MPC 1.0483 2.1016 20.8268
PID 3.4012 1.1370 534.8395

SMC 7.0675 0.4197 520.1334

algorithm is better than other algorithms. Note that, in Fig.
7(c), the traction/braking force outputs generated by all three
algorithms have corresponding fluctuations due to nonlinear
disturbance. However, as shown in the rest subfigures of Fig.
7, the proposed MPC algorithm can still achieve accurate
tracking of speed and displacement under constraints of
control input and control input increment, and maintain the
errors of speed and displacement in a small range. Combined
with Table IV, it can be obtained that the proposed MPC
algorithm still has excellent control performance of speed
and displacement tracking when encountering nonlinear dis-
turbance, which further verifies its benign anti-disturbance
performance of the MPC algorithm.

VI. CONCLUSIONS

This paper has proposed a predictive control algorithm
for the speed and displacement tracking of the URT. The
proposed algorithm has transformed the ATO control prob-
lem into a constrained optimization problem, achieving pre-
cise control in various operation scenarios. Experimental
results have demonstrated that the proposed algorithm can
effectively enhance the speed and displacement control per-
formance while improving energy efficiency, and ensuring
safety, stability, and riding comfort. Future research direc-
tions will focus on the observation and compensation of
unknown disturbances in the operation of the URT.
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