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Abstract—Tikhonov regularization technique is widely rec-
ognized as one of the most prevalent and well-established
approaches for solving linear discrete ill-posed problems. The
present study introduces two novel randomized iterative algo-
rithms for the computation of numerical solutions to large-scale
Tikhonov regularization problems. The first one applies the
randomized Kaczmarz algorithm to an augmented regularized
normal system of equations, the second one is an accelerated
version of the first one by means of greedy probability cri-
terion. In theory, we establish some convergence results for
these two algorithms. Numerical experiments demonstrate the
convergence properties and illustrate the performances of these
two algorithms.

Index Terms—Tikhonov regularization, ill-posed problems,
randomized Kaczmarz algorithm, greedy probability criterion,
augmented regularized system, convergence property.

I. INTRODUCTION

REGULARIZATION is the fundamental method for
solving highly ill-conditioned linear least-squares prob-

lems of the following form

min
x∈Rn
‖Ax− b‖2, (1)

where A ∈ Rm×n is severely ill-conditioned matrix, x ∈ Rn
is an unknown of dimension n, ‖ · ‖2 represents the Eu-
clidean norm of a vector or matrix. The vector b ∈ Rm is
often contaminated by Gaussian white noise. This type of
issue frequently emerges due to the discretization process
applied to linear ill-posed problems, which can be found
in many practical applications, such as statistical analysis
[1, 2], machine learning [3], image reconstruction [4–12]
and computerized tomograph [13–15]. To acquire a practical
and stable approximate solution for (1), one can solve the
Tikhonov regularization problem stated below

min
x∈Rn

{
‖Ax− b‖22 + α‖x‖22

}
. (2)

Here α > 0 is a regularization parameter, which is used to
balance the size of ‖Ax− b‖2 and ‖x‖2. The normal system
associated with (2) is given by

(ATA+ αIn)x = AT b, (3)

in which the matrix In is an n × n identity matrix. As the
coefficient matrix of the linear system mentioned above is
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nonsingular, it can be inferred that equation (3) possesses a
unique solution

xα = (ATA+ αIn)−1AT b.

In general, finding an appropriate parameter α for a specific
problem (3) is very challenging. At present, there are mainly
two different kinds of methods for calculating α, which
depend on an estimation of the size of the noise in b, e.g.,
discrepancy principle [7], and on the right-hand side b, e.g.,
L-curve criterion [16] and generalized cross validation [17].
This is not the focus of this paper, and we are interested
in solving (2) by some randomized Kaczmarz-like iterative
algorithms, such as VRK and VRGS algorithms [18]. For
some prior research on the calculation of an approximate
solution to equation (2), please refer to [19–22] and the
references therein.

The Tikhonov regularization problem (2) is mathematical-
ly equivalent to solve the following augmented regularized
linear system

Ãx̃ = b̃, (4)

in which

Ã =

( √
αIm A
AT −

√
αIn

)
, x̃ =

(
u
x

)
and b̃ =

(
b
0

)
.

For this problem, Ivanov and Zhdanov [23] applied the
Kaczmarz algorithm [24] to (4), and developed a more
compact and cost-effective iteration through leveraging the
special structure of the coefficient matrix Ã. The Kaczmarz
algorithm produces the subsequent iteration x̃k+1 from x̃0 ∈
Rm+n by utilizing

x̃k+1 = x̃k +
b̃(ik) − Ã(ik)x̃k

‖Ã(ik)‖22
(Ã(ik))T ,

where Ã(ik) is the ikth row of the matrix Ã, b̃(ik) is the
ikth entry of the vector b̃, the superscript T denotes the
transpose of a vector or a matrix and the target row is num-
bered as ik = 1, 2, · · · ,m + n, 1, 2, · · · . In their numerical
experiments, Ivanov and Zhdanov utilized the randomized
Kaczmarz (RK) method [25], where the row ik adheres
to a probability distribution that is directly proportional to
‖A(ik)‖22, in view of this, we will refer to this algorithm
as RKT (T stands for Tikhonov) below. The fact that Ã is
nonsingular ensures that the Kaczmarz algorithm can find the
unique solution of the linear system (4), see also [24].

It is worth mentioning that the randomized extended
Kaczmarz (REK) algorithm [26], proposed by Zouzias and
Freris, deserves special mention as an exceptionally effective
iterative approach for solving inconsistent linear least-square
problems such as (1). Zouzias and Freris initially employed
the RK algorithm to solve the linear system AT z = 0,
yielding a vector zk that converges towards bR(A)⊥ , which

IAENG International Journal of Applied Mathematics

Volume 54, Issue 7, July 2024, Pages 1383-1389

 
______________________________________________________________________________________ 



represents the projection of b onto the space that is or-
thogonal to R(A), where R(A) denotes the range space
of coefficient matrix A. Subsequently, they applied the RK
algorithm once again to solve the linear system Ax = b−zk.
The advantage of the REK algorithm lies in its ability to
reduce the impact of the noise on the sequence {xk}∞k=1,
thereby ensuring that b− zk belongs to R(A). Recently, Bai
and Wu utilized the greedy randomized Kaczmarz algorithm
[27, 28] to solve an augmented system derived from the REK
procedure, denoted as(

I A
AT 0

)(
z
x

)
=

(
b
0

)
,

and constructed a more stable and faster randomized iterative
algorithm (GRAK) [29] than REK algorithm for inconsistent
linear systems Ax = b.

In this paper, we are going to derive another more stable
and efficient implementation for RKT and its accelerated
version for the linear system (4) by using the greedy proba-
bility criterion introduced in [27] and establish the associated
properties of convergence. Extensive numerical results are
provided to validate the theoretical findings and demonstrate
the performance of our algorithms.

This paper is structured as follows: Section II introduces
the novel algorithms and provides their theoretical analysis.
Section III presents the numerical findings acquired. Lastly,
Section IV encapsulates the paper with succinct conclusions
and remarks.

II. KACZMARZ-LIKE ALGORITHMS FOR TIKHONOV
REGULARIZATION PROBLEM

Throughout this paper, we use σmax(A) and σmin(A) to
respectively represent the maximum and minimum values
of the non-zero eigenvalues of matrix A. For A ∈ Rm×n,
we use ‖A‖F , A†, AT , A(i), A(j) and R(A) to represent
its Frobenius norm, Moore-Penrose pseudoinverse, transpose,
ith row, jth column and range space, respectively. Similarly,
we represent the Euclidean norm of any vector u ∈ Rn as
‖u‖2 and its ith entry as b(i). The identity matrix is denoted
by I , with the dimension indicated by a subscript when
necessary. Additionally, we use ej to refer to the column
vector representing the jth coordinate basis. Furthermore,
we define Ek as the expected value given the first k it-
erations, denoted as Ek[·] = E[·| j0, j1, · · · , jk−1], where
jt(t = 0, 1, · · · , k − 1) represents the tth column selected
during the tth iteration. Consequently, by applying the law
of iterated expectations, E[·] can be expressed as E[Ek[·]].

In the RKT algorithm, it can be readily confirmed that
when setting the initial vector x̃0 = (uT0 , x

T
0 )T satisfying

ATu0 =
√
αx0, there holds that ATuk =

√
αxk at each

iteration step k. Thus, iterating the RKT is equivalent to
using the RK algorithm with x0 = 1√

α
ATu0 and u0 ∈ Rm

to solve
Āx̃ = b

with

Ā =
( √

αIm A
)

and x̃ = (uT , xT )T . (5)

We abbreviate this algorithm as RKT−r algorithm, which
can be found in Algorithm 1. The theorem presented below

Algorithm 1 The RKT−r Algorithm

Require: α, A, `, b, u0 and x0 = 1√
α
ATu0.

Ensure: x`.
1: for k = 0, 1, 2, · · · , `− 1 do
2: Select ik ∈ {1, 2, · · · ,m} by

P (ik) =
‖A(ik)‖22 + α

‖A‖2F +mα

3: Set

uk+1 = uk +
b(ik) −

√
αu

(ik)
k −A(ik)xk

‖A(ik)‖22 + α

√
αeik

and

xk+1 = xk +
b(ik) −

√
αu

(ik)
k −A(ik)xk

‖A(ik)‖22 + α
(A(ik))T

4: end for

serves as evidence for the convergence property of the
RKT−r algorithm.

Theorem 1. For a given positive regularization parameter α,
initiated from any vector x̃0 = (uT0 , x

T
0 )T with u0 ∈ Rm and

x0 = 1√
α
ATu0, the approximate sequence {x̃k}∞k=1 with x̃k

being defined as x̃k = (uTk , x
T
k )T , generated by the RKT−r

algorithm, converges towards the solution x̃∗ = (uT∗ , x
T
∗ )T of

the augmented regularized linear system (4) in expectation.
In addition, the expected error of the solution associated to
iterations {xk}∞k=0 and {uk}∞k=0 follows

E
(
‖xk − x∗‖22 + ‖uk − u∗‖22

)
≤{

υk1
(
‖x0 − x∗‖22 + ‖u0 − u∗‖22

)
, if m > n,

υk2
(
‖x0 − x∗‖22 + ‖u0 − u∗‖22

)
, if m < n,

(6)

where

υ1 = 1− α

‖A‖2F +mα
, υ2 = 1− σ2

min(A) + α

‖A‖2F +mα
,

x∗ =
√
α(AAT + αIm)−1b, u∗ = AT (AAT + αIm)−1b.

Proof: For any u0 ∈ Rm, it exists a vector v0 = 1√
α
u0 ∈

Rm such that

x̃0 =

(
u0
x0

)
=

(
u0

1√
α
ATu0

)
= ĀT v0,

i.e., x̃0 ∈ R(ĀT ), with Ā being defined in (5). Therefore,
based on Theorem 2 in [25], using the notations x̃∗ =
(uT∗ , x

T
∗ )T and x̃k = (uTk , x

T
k )T , we can conclude

E‖x̃k − x̃∗‖22 ≤
(

1− σ2
min(Ā)

‖A‖2F +mα

)
‖x̃0 − x̃∗‖22. (7)
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For the quantity σ2
min(Ā), we have

σ2
min(Ā) = σmin(ĀT Ā)

= σmin(AAT + αIm)

=
√
λmin ((AAT + αIm)(AAT + αIm)T )

=
√
λ2min(AAT + αIm)

= λmin(AAT + αIm)

= λmin(AAT ) + α

=

{
α, if m > n;
σ2
min(A) + α, if m < n, (8)

where λmin(M) represents the smallest eigenvalue of gen-
eral real square matrices M . Substituting (8) into (7), we
straightforwardly obtain the estimate (6). This completes the
proof.

The authors Bai and Wu [27] proposed a more efficient
probabilistic criterion in 2018 for solving linear systems of
equations. Their strategy involves prioritizing the selection
of more substantial components within the residual vector
during each iteration of the RK algorithm, leading to the
creation of a greedy randomized Kaczmarz (GRK) algorithm.
Numerical experiments conducted in [27] demonstrated that
the GRK algorithm superior to the RK algorithm in terms
of both iteration counts and computing time. Therefore, we
intend to introduce the innovative criterion directly into the
RKT−r algorithm to construct its accelerated version, i.e.,
greedy RKT−r (GRKT−r for short) algorithm as follows.

The following theorem establishes the convergence prop-
erty of the GRKT−r algorithm.

Theorem 2. For given regularization parameter α > 0,
starting from any initial guess x̃0 = (uT0 , x

T
0 )T with u0 ∈

Rm and x0 = 1√
α
ATu0, the approximations {x̃k}∞k=1 with

x̃k being defined as x̃k = (uTk , x
T
k )T , obtained through

the GRKT−r algorithm, converges to the unique solution
x̃∗ = (uT∗ , x

T
∗ )T of the augmented regularized linear system

(4) in expectation. Moreover, the solution error associated to
sequences {xk}∞k=0 and {uk}∞k=0 follows

E
(
‖x1 − x∗‖22 + ‖u1 − u∗‖22

)
≤

(1− %)
(
‖x0 − x∗‖22 + ‖u0 − u∗‖22

)
and

E
(
‖xk − x∗‖22 + ‖uk − u∗‖22

)
≤

(
1− %(‖A‖2F +mα+ γ)

2γ)k−1
· (1− %)

(
‖x0 − x∗‖22 + ‖u0 − u∗‖22

)
,

where

γ = max
1≤i≤m

m∑
j=1,j 6=i

(‖A(j)‖22 + α), % =
σmin(AAT + αIm)

‖A‖2F +mα

with

σmin(AAT + αIm) =

{
α, if m > n;
σ2
min(A) + α, if m < n.

Proof: Using the notations given in Theorem 1 and follow-
ing the lines of the proof of Theorem 3.2 shown in [27], we
can easily prove Theorem 2.

Algorithm 2 The GRKT−r Algorithm

Require: α, A, `, b, u0 and x0 = 1√
α
ATu0.

Ensure: x`.
1: for k = 0, 1, 2, · · · , `− 1 do
2: Compute

rk = b−Axk −
√
αuk

and

εk =
1

2

( 1

‖rk‖22
max

1≤ik≤m

∣∣r(ik)k

∣∣2
‖A(ik)‖22 + α

+
1

‖A‖2F +mα

)
3: Compute the positive integers index set

Uk =

{
ik|

∣∣r(ik)k

∣∣2 ≥ εk‖rk‖22(‖A(ik)‖22 + α)

}

4: Set

r
(i)
k =

{
b(i) −A(i)xk −

√
αu

(i)
k , if i ∈ Uk,

0, otherwise

5: Select ik ∈ Uk by P (ik) =
|r(ik)k |2

‖rk‖22
6: Set

uk+1 = uk +
b(ik) −

√
αu

(ik)
k −A(ik)xk

‖A(ik)‖22 + α

√
αeik

and

xk+1 = xk +
b(ik) −

√
αu

(ik)
k −A(ik)xk

‖A(ik)‖22 + α
(A(ik))T

7: end for

III. NUMERICAL EXPERIMENTS

In this section, we apply the VRK, VRGS, REK, GRAK,
RKT−r and GRKT−r algorithms to address a linear discrete
ill-posed problem (1). The matrix A ∈ Rm×n is created
by utilizing MATLAB function randn(m,n) with varying
values of m and n and taken from some practical application-
s, such as one space-dimension image restoration problem
from the Regularization Tools MATLAB package [6] and
2D diffusion problem from the Iterative Regularization Tools
MATLAB package [30]. All experiments are conducted on
a personal computer running MATLAB (R2016b) with an
Intel(R) Core(TM) i5 CPU operating at 2.67 GHz, equipped
with 4.00 GB of memory and the Windows 11 operating
system.

The numerical behaviors of these algorithms are assessed
based on the quantity of iterations performed (referred to as
‘IT’) and the duration of computation measured in seconds
(referred to as ‘CPU’). In this context, CPU and IT represent
the average values obtained from 20 repeated runs of the
aforementioned algorithms. The initial guess x0 in all the
above algorithms is set to be 0. All experiments terminated
as soon as

RSE =
‖xk − x?‖2
‖x?‖2

≤ ε,

where ε is a user-supplied constant much less than 1 and x?
is the desired solution (explained in each of the following
specific examples). Due to the presence of noise in the right-
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hand side b, the algorithms presented in this paper will appear
semi-convergence phenomenon [8], setting a very small ε,
e.g., 10−6, may cause these algorithms to iterate all the time,
and a larger ε may cause each algorithm to be unable to
show its own advantages, so we set different ε according to
the different scale of the problems. We should point out that
for the VRK algorithm, the iterative solution xk = AT ηk
will be calculated at each iteration step k in order to verify
whether the RSE satisfies the termination condition, not just
at the maximum iterative step `. In addition, the noise e in
the right-hand side b is Gaussian white noise and satisfies
‖e‖2 = ε‖b̄‖2, where ε is the pre-assigned noise level. The
regularization parameter α in each example is determined by
the discrepancy principle, which can be implemented by the
function discrep in the Regularization Tools MATLAB
package [6].

Example 1. We use the MATLAB function randn(m,n)
to produce some matrices A with varying values for m
and n for (1). We randomly generate a solution vector
x∗=randn(n,1), the noise-free data vector in b is taken
to be b̄ = Ax∗ and b = b̄+ e with noise level ε = 0.01. The
unique solution of (1) is set to be x? = A†b̄. In addition, we
set the stopping tolerance ε = 10−2, or IT exceeds 100,000
when m > n, and exceeds 10,000 when m < n.

TABLE I: Numerical results for 5000-by-n random
matrix different n.

n

Algorithm Index 300 500 700 900

RKT−r
IT 3450.0 6991.0 8427.0 15997.0
CPU 0.0468 0.1989 0.3873 0.9763

VRK IT 3584.0 6447.0 9841.5 16367.5
CPU 8.0878 21.0757 47.8659 128.6405

VRGS IT 2495.5 4774.0 7526.0 10211.0
CPU 4.1953 13.2624 26.9406 49.1330

REK IT 3601.0 6622.0 10237.0 14484.0
CPU 2.1674 4.4303 7.3553 11.0297

GRAK IT 1335.0 2663.5 4300.5 6432.0
CPU 4.5028 12.8754 29.6369 61.6561

GRKT−r
IT 453.0 783.0 1265.5 1924.5
CPU 1.0934 2.3456 5.1162 10.7797

TABLE II: Numerical results for m-by-1000 random
matrix with different m.

m

Algorithm Index 100 200 300 400

RKT−r
IT 166.5 416.5 771.5 1536.5
CPU 0.0041 0.0117 0.0282 0.0644

VRK IT 434.5 1012.5 1792.0 3086.0
CPU 0.1002 0.3201 0.7806 1.6397

VRGS IT 10000.0 10000.0 10000.0 10000.0
CPU 2.8608 3.6582 4.2591 5.2086

REK IT 690.5 1682.0 3169.0 5726.5
CPU 0.2369 0.5260 1.0844 1.8480

GRAK IT 259.5 662.5 1390.5 2489.0
CPU 0.1482 0.4000 1.1256 2.5139

GRKT−r
IT 94.0 228.0 431.0 680.5
CPU 0.0269 0.0843 0.1948 0.4017

In Tables I-II, we report IT and CPU for all algorithms.
As the results in Tables I-II show, we see that for all tested
matrices A, RKT−r and VRK have almost the same iteration
steps. However, RKT−r outperforms VRK significantly in
terms of CPU. Hence, compared with VRK, RKT−r is the
winner regarding IT and CPU. In addition, when m > n,
GRKT−r outperforms RKT−r, REK and GRAK in terms
of IT, but, like GRAK, it is not competitive with RKT−r
and REK regarding CPU, especially for n = 900, the CPU
time of GRKT−r and GRAK is at least ten and sixty times
that of RKT−r, respectively. Generally speaking, RKT−r
exhibits superior CPU performance compared to the REK
and GRAK, and GRKT−r algorithm performs best in terms
of iteration steps when m > n. When m < n, both RKT−r
and GRKT−r algorithms significantly outperform REK and
GRAK algorithms regarding IT and CPU.

Example 2. This test problem is taken from a one space-
dimension image deblurring test problem. It is generated
by the function blur(n) within the MATLAB package
Regularization Tools [6]. This specific function produces a
sparse matrix A ∈ Rn2×n2

, a solution x? ∈ Rn2

(which
is depicted as visual representations in Figure 1 (top left))
and the vector b̄ = Ax?. The vector b = b̄ + e with noise
level ε = 0.01. We set n = 64 and the stopping tolerance
ε = 10−1, or IT exceeds 100,000.

We list the CPU, IT and RSE for these algorithms in
Table III. Additionally, the corresponding restorations are
displayed in Figure 1. From this table we see that RKT−r
and GRKT−r are seen to require the minimum number of
IT and least amount CPU in achieving better relative errors,
with GRKT−r requiring much smaller IT and less CPU than,
but giving a same restoration of high quality as, RKT−r. On
the other hand, we also find from Table III and Figure 1
that VRK is still a competitive algorithm when compared
with those algorithms that do not converge within 100,000
steps in terms of the relative restoration error, even if it
requires more CPU times than the other algorithms. The
main reason for this prediction is that the RSE corresponding
to those algorithms that do not converge within 100,000
steps, are decrease more and more slowly as the iteration
step increases, which makes it difficult to reach the stopping
tolerance for these algorithms, as demonstrated in Figure 2
where we present the log10(RSE) curves with respect to both
IT and CPU.

TABLE III: Numerical results for blur im-
age deblurring problem.

Index
Algorithm IT CPU(×103) RSE

RKT−r 33315.5 0.0108 0.1000

VRK 47009.0 4.6363 0.1000

VRGS 100000.0 3.1404 0.1694

REK 100000.0 0.1049 0.3666

GRAK 100000.0 0.1147 0.1137

GRKT−r 4342.0 0.0033 0.1000

Example 3. We turn to the following 2D diffusion problem
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Fig. 1. Exact image and restorations corresponding to RKT−r, VRK, VRGS, REK, GRAK and GRKT−r algorithms for
blur image deblurring problem.
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Fig. 2. log10(RSE) versus IT and CPU for RKT−r, VRK, VRGS, REK, GRAK and GRKT−r algorithms for blur image
deblurring problem.

defined in the domain [0, T ]× [0, 1]× [0, 1]

∂u

∂t
= ∇2u.

The forward problem involves mapping the initial condition
u0 at time t = 0 to the solution uT at time t = T ,
while the inverse problem entails reconstructing the initial
condition u0 from uT . For such inverse problem, we can
use MATLAB function PRdiffusion(n) from the Iterative
Regularization Tools MATLAB package [30] to generate the
forward computation matrix A ∈ Rn2×n2

, the noise-free data
vector b̄ ∈ Rn2

and the true solution x? ∈ Rn2

. In this
example, we set a smaller n = 32 and convert A from a
function handle into a sparse matrix of size 1024 × 1024.
We add Gaussian white noise e with noise level % = 0.01
to b̄ and set the stopping tolerance ε = 0.1, or IT exceeds
300,000.

We list IT, CPU, and RSE at 300,000th iteration for
RKT−r, VRK, VRGS, REK, GRAK and GRKT−r in Ta-
ble IV and plot the log10(RSE) curves with respect to IT

and CPU in Figure 3. From Table IV we see that the
RKT−r, VRK, VRGS and GRKT−r perform better than
both REK and GRAK in terms of the RSE, and this can
be seen intuitively from Figure 4, in which we display the
restorations for the above six algorithms. However, the CPU
times spend by these four algorithms varies greatly, roughly
speaking, the CPU time of VRK, VRGS and GRKT−r is
one hundred and seventy, forty-seven and six times that of
RKT−r, respectively. In addition, we can see from the right
of Figure 3 that RKT−r converges fastest among the above
six algorithms, followed by GRKT−r. Hence, RKT−r and
GRKT−r are the winners among all algorithms regarding
restoration and CPU.

IV. CONCLUSION

In this work, we have proposed a more compact and
economical version of the RKT algorithm, called the RKT−r
algorithm, for solving Tikhonov regularization problems us-
ing the special structures of the coefficient matrix Ã. In
addition, we have constructed an accelerated form named
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Fig. 3. log10(RSE) versus IT and CPU for RKT−r, VRK, VRGS, REK, GRAK and GRKT−r algorithms for 2D diffusion
problem.

Fig. 4. Exact image and restorations corresponding to
RKT−r, VRK, VRGS, REK, GRAK and GRKT−r algo-
rithms for 2D diffusion problem.

TABLE IV: Numerical results for 2D dif-
fusion problem.

Index
Algorithm IT CPU(×103) RSE

RKT−r 300000.0 0.0860 0.3195

VRK 300000.0 14.6305 0.3051

VRGS 300000.0 4.0520 0.3102

REK 300000.0 0.1942 0.5080

GRAK 300000.0 0.8407 0.4324

GRKT−r 300000.0 0.5568 0.3012

GRKT−r for the RKT−r algorithm by making use of the
greedy probability criterion proposed by Bai and Wu [27].
We have formulated the convergence theory for both RKT−r
and GRKT−r with utmost precision and elegance, and
performed a series of numerical experiments to show their
numerical advantages over VRK, VRGS, REK, and GRAK
algorithms. Generally speaking, RKT−r performs best of all
these algorithms, because it costs the least CPU time when
reaching the same stopping tolerance, especially for Example
2, there is a dramatic difference in CPU time between the oth-
er five algorithms and RKT−r algorithm. From the numerical
experiments, it can be seen that all randomized iterative
algorithms discussed in this paper cannot achieve satisfactory
results because of the presence of noise in the original
problem. Therefore, for Tikhonov regularization problems, it
is a future topic to construct a randomized iterative algorithm
similar to the REK algorithm to gradually reduce the impact
of the noise during the iterative process, so as to achieve a
good approximation to some actual application problems.
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