
 

  
Abstract—In real multi-criteria decision-making (MCDM), 

single-valued neutrosophic set (SVNS) has become a research 
hotspot because it can better depict complicated 
decision-making information. Compared to the classical power 
operator, extended power average (EPA) operator can handle 
extreme values more flexibly in practice. Dombi operations with 
a parameter are more flexible in integrating multiple decision 
values. Motivated by these merits, the extended power weighted 
average operator based on Dombi operations is firstly defined 
and expanded to SVNS. First, the Dombi operational rules of 
single-valued neutrosophic numbers (SVNNs) are established, as 
well as the Hamming distance measure and Dice similarity 
measure for SVNNs. Second, single-valued neutrosophic Dombi 
extended power weighted averaging (SVNDEPWA) operator is 
built, and special cases are also discussed. Eventually, an 
MCDM model using the operator above is constructed. 
Meanwhile, a case and sensitive analysis, as well as antithesis 
are conducted to present the effectiveness and robustness of the 
new model. 
 

Index Terms—SVNS, EPA, Dombi, MCDM  
 

I. INTRODUCTION 
single-valued neutrosophic set (SVNS) [1], as 
prolongation of fuzzy set (FS) [2] and intuitionistic fuzzy 

set (IFS) [3], is more appropriate to describe the real cognitive 
information of indeterminate, incomplete and inconsistent. 
Currently, SVNS has been widely used to settle different 
multi-criteria decision-making (MCDM) matters [4-6], for 
instance, disease diagnosis, clustering, and investment 
strategy. 

In actual MCDM issue, aggregating operator (AO) is a 
powerful tool for fusing several input arguments given by 
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decision-makers (DMs) into a comprehensive value. Various 
operators depending on different operational rules are 
developed, including Einstein, Archimedean, Hamacher, 
Frank,  Schweizer-Skla, and Dombi operations [7-12]. Dombi 
operations initially put forwards by Dombi [13] is more 
flexible with a general parameter. Subsequently, Dombi 
operations are utilized to handle interval neutrosophic 
set(INS) [14], picture fuzzy set [15], bipolar FS [16], 
single-valued trapezoidal NS [17], bipolar complex FS [18]. 
Moreover, the power averaging (PA) operator firstly defined 
[19], can alleviate the impact of irrational input values. Power 
geometric operator (PGA) is proposed by Xu [20]. A 
generalized power average (GPA) operator is introduced by 
Zhou [21]. Nevertheless, extreme data may be useful in some 
actual cases. Therefore, Xiong [22] defined extended PA 
(EPA) operator to flexibly solve inappropriate data. 
Afterwards, Li [23] employed EPA operator to handle 
multi-criteria group decision-making (MCGDM) issue with 
Q-RDHF information. Ning manipulated EPA operator to 
solve sustainable suppliers selection problem with PDHF 
information [24]. Kou used EPA to settle linguistic 
pythagorean fuzzy issue [25]. 

Consider the superiorities of Dombi and PA, some 
achievements on the combination of them are studied. Dombi 
power operator is applied to INS [14], 2-tuple linguistic 
neutrosophic set [26], SVNS [27], spherical FS [28], and 
bipolar complex FS [29]. 

Up to now, there are few literatures relating to the 
application of EPA operator, and it cannot deal with SVNS, 
especially using Dombi operations. Thus, the core aim of this 
thesis is to explore EPA operator using Dombi to solve 
MCDM issue with single-valued neutrosophic information. 

Therefore, the thesis is structured as follows. In Section II, 
some relating preliminaries are presented. Section III 
describes the Dombi EPA operator for SVNS. In Section IV, 
a new MCDM algorithm model with single-valued 
neutrosophic information is constructed. Section V contains 
result analysis regarding an MCDM example. Eventually, 
Section VI outlines the conclusion. 

 

II. PRELIMINARIES 
Some notions are introduced. 

A. SVNS 
Definition1. [1] AssumingY is a collection with an element 

in Y  represented by y . An SVNS B  in Y  is defined as 
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follows: 
{ }, ( ), ( ), ( )B B BB y T y I y F y y Y= ∈         (1) 

Where ( )BT y , ( )BI y , and ( )BF y  represent the three 
memberships of the truth, the indeterminacy, and the falsity, 
separately. For each element y  in Y , an SVNS B  satisfies 
the following conditions: 

[ ]( ), ( ), ( ) 0,1B B BT y I y F y ∈ , 0 ( ) ( ) ( ) 3B B BT y I y F y≤ + + ≤ . 
For simplification, a basic element in SVNS B  is 

expressed as , ,b b bb T I F= , which is called a single-valued 
neutrosophic number (SVNN). 

 

B. Distance Measure 
Definition2. Let 1 1 1 1, ,b T I F=  and 2 2 2 2, ,b T I F=  be 

SVNNs, the Hamming measure for 1b  and 2b  is delimited. 

( )1 2 1 2 1 2 1 2
1( , )
3

d b b T T I I F F= − + − + −         （2） 

 

C. Dombi Operations 
Definition3. Assuming 1 1 1 1, ,b T I F=  and 

2 2 2 2, ,b T I F=  are SVNNs, 1x ≥  and 0λ > , then Dombi 
operations of SVNNs are defined. 
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−
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D. EPA Operator 
Definition4. [22] Assuming ( )1,2, ,ia i n=   is a set of 

real numbers, an EPA operator is defined as follows: 

( ) ( ) ( ) ( )( )
( )( )

1 2
1 1

1

, , ,
n n

i
n i i in

i i
j

j

T a
EPA a a a w a a

T a

ρ ρ ρ

ρ= =

=

+
= =

+
∑ ∑

∑
  (3) 

Where ( ] [ ),1 0,nρ ∈ −∞ + +∞ , ( ) 1,
( , )n

i i jj j i
T a Sup a a

= ≠
= ∑ ,  

( , ) 1 ( , )i j i jSup a a d a a= − . Here, ( , )i jd a a  is the distance 
measure for ia  and ja , and ( , )i jSup a a  denotes the support 
of ia  and ja , satisfying three conditions: 

( )
( ) ( )
( ) ( ) ( ) ( )

(1) 0 , 1

(2) , ,

(3) , , ,  , ,

i j

i j j i

i j p q i j p q

Sup a a

Sup a a Sup a a

Sup a a Sup a a if d a a d a a

≤ ≤

=

≥ ≤

 

 

E. Dice Similarity  
Dice similarity is initially delimited by Dice [30]. Ye 

defined the Dice similarity [31] and the generalized Dice 
similarity [32] for simplified neutrosophic set. Here, the Dice 
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similarity for SVNNs is established depending on the above 
definitions. 

Definition5. Assuming 1 1 1 1, ,b T I F=  and 

2 2 2 2, ,b T I F=  are SVNNs, the Dice similarity measure for 

1b  and 2b  is defined below. 

1 2 1 2 1 2 1 2
1 2 2 2 2 2 2 2 2 2

1 1 1 2 2 21 2

2( ) 2( )( , )
( ) ( )D

b b T T I I F FS b b
T I F T I Fb b

⋅ + +
= =

+ + + + ++
(4) 

Dice similarity for SVNNs 1b  and 2b  obeys to the 
conditions: 

1 2

1 2 2 1

1 2 1 2

(1) 0 ( , ) 1;
(2) ( , ) ( , );
(3) ( , ) 1,  .

D

D D

D

S b b
S b b S b b
S b b if b b

≤ ≤
=
= =

 

 

III.  NEW OPERATOR 
In this section, we will expand EPA operator using Dombi 

to handle SVNS. A single-valued neutrosophic Dombi 
extended power weighted averaging (SVNDEPWA) operator 
is put forward, and its special cases are also discussed. 

A. SVNDEPWA Operator 
Definition6. Let ( ), , 1, 2, ,i i i ib T I F i n= =   be a set of 

SVNNs, ( ,1 ] [0, )nρ ∈ −∞ − +∞  and 1x ≥ be two parameters. 

The weighting vector is ( )1 2, , , T
nw w w w=  ,  

1 1n
i iw=∑ = , [ ]0,1iw ∈ . Then SVNDEPWA operator is 

defined as below, and the aggregating result is still a SVNN. 
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∑
∑

     (5) 

Where ( ) 1,
( , )n

i j i jj j i
T b w Sup b b

= ≠
= ∑  is weighted support 

between ib  and jb , ( , ) 1 ( , )i j i jSup b b d b b= − , ( , )i jSup b b  is 
support of ib  and jb ,  ( , )i jd b b  is Hamming measure 
presented in Eq. (2). 

For convenience, let 
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, then Eq. (5) 

can be recorded as: 
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          (6) 

Proof: It is proved using mathematical induction. 
Depending on Dombi operations for SVNNs in Definition 

3, the result is presented below. 
(1) When 2n = , 
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∑

∑

∑
1

1
1

1

1 1
1 1

1 1

11 ,

1
1

1 1      ,
1 11 1

x

xxk
i

i
i i

x xx xk k
i i

i i
i ii i

T
T

I F
I F

ϖ

ϖ ϖ

+

=

+ +

= =

  
 
  

= −
     +    −    

         − −      + +                     

∑

∑ ∑

 

Thus, Eq. (6) is right for all i , namely, Eq. (5) is right for 
all i . 

 

B. Special Cases 
When ρ  is assigned to different value, some special cases 

are presented as below. 
(1) If 1ρ = ,  then SVNDEPWA operator is simplified to 

single-valued neutrosophic Dombi power weighted 
averaging (SVNDPWA) operator, that is, 

( )
( )( )

( )( )
1 2 1

1

1
, , ,

1

n i i
n ini

j j
j

w T b
SVNDPWA b b b b

w T b
=

=

+
= ⊕

+∑
  

(2) If ρ → +∞ , or ( ) [ ],  m 0, 1iT b m n= ∈ − , then 
SVNDEPWA operator is reduced to single-valued 
neutrosophic Dombi weighted average (SVNDWA) 
operator, that is,  

( )1 2 1
, , ,

n

n i ii
SVNDWA b b b w b

=
= ⊕  

 

IV.  MCDM MODEL 
The MCDM model with SVN information employing the 

above-depicted novel aggregating operator is shown in this 
part. 

Assume 1 2{ , , , }pE E E E=   is a limited alternative set and 

1 2{ , , , }qA A A A=   is the evaluating criteria. Let  

1 2{ , , , }qw w w w=   be a completely known weight set 

regarding on criteria, where 1 1n
i iw=∑ =  , [ ]0,1iw ∈ .  

The initial decision matrix is depicted as [ ]ij p qD V ×= =  

, ,ij ij ij p qT I F ×< >  ( )1,2, , ; 1, 2, ,i p j q= =  , where ijV  is 
SVNN representing the evaluation of each alternative iE  
under criterion jA . The detailed algorithm procedure of 
MCDM model under SVNS environment manipulating 
SVNDEPWA is presented below. 

Algorithm: The MCDM model with SVN information 
Input: Limited alternatives, criteria, and weights 
Output: Ordering alternatives 
Step1. Obtain the SVN decision matrix [ ]ij p qD V ×= =  

, ,ij ij ij p qT I F ×< >  given by decision maker. 
Step2. Construct the transformation matrix ' [ ]ij p qD U ×=  if 

necessary. If jA  is a cost criterion, then , ,ij ij ij ijU F I T=< > , 
otherwise, , ,ij ij ij ij ijU V T I F= =< > . 

Step3. Obtain Hamming measure of imU  and 
( )1,2, , ; , 1, 2, , ;inU i p m n q m n= = ≠  . 

( )1( , )
3im in im in im in im ind U U T T I I F F= − + − + −     (7) 

Step4. Calculate the support for imU  from 

( )1,2, , ; , 1, 2, , ;inU i p m n q m n= = ≠  . 

 ( ) ( ), 1 ,im in im inSup U U d U U= −             (8) 
Step5. Calculate the weighted support of 

imU ( )1,2, , ; 1, 2, ,i p m q= =  . 

( ) ( )
1,

,
q

im n im in
n n m

T U w Sup U U
= ≠

= ∑                            (9) 

Step6. Obtain the extended power weighting (EPW) 
imϖ  ( )1,2, , ; 1, 2, ,i p m q= =  . 

( )( )
( )( )

1

m im
im q

n in
n

w T U

w T U

ρ
ϖ

ρ
=

+
=

+∑
            (10) 

Step7. Calculate the comprehensive value ( 1,2,iU i =   
, )p . 

( )1 2

1

1

1

1 1

1 1

, , ,

11 ,

1
1

1 1     ,      
1 11 1

i i iq

q

im imm

xxq
im

im
m im

x xx xq q
im im

im im
m mim im

SVNDEPWA U U U

U

T
T

I F
I F

ϖ

ϖ

ϖ ϖ

=

=

= =

= ⊕

= −
     +    −    

         − −      + +                     

∑

∑ ∑



(11) 
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Step8. Calculate the Dice similarity measure of each 
alternative , ,i i i iU T I F= ( )1,2, ,i p=   and the optimal 

alternative * 1,0,0U = . 

*
2 2 2

2
( , )

1
i

D i
i i i

T
S U U

T I F
=

+ + +
          (12) 

Step9. Obtain the ranking of all alternatives. 
Step10. End. 
 

V.  EXAMPLE AND ANALYSIS 
An actual instance originated from Jana [27] is adopted 

herein to verify the practicality of the above-proposed 
MCDM model. Meanwhile, the sensitive analysis of different 
parameters ρ  and x  on alternatives selection is performed, 
and the comparison analysis is conducted as well. 

 

A. An Example 
To promote economic and social development, the Indian 

government wants to select an optimal one from five 
enterprises { }1 2 3 4 5, , , ,E E E E E E=  to repair the roads. There 

are four criteria { }1 2 3 4, , ,A A A A A= to assess the five 
enterprises, and the corresponding weighting of each attribute 
is { }0.2,0.1,0.3,0.4w = .The initial SVN decision matrix 
provided by expert is illustrated as below. 

0.6 0.2 0.2 0.7 0.5 0.1 0.6 0.7 0.2 0.5 0.6 0.4
0.8 0.2 0.2 0.6 0.3 0.1 0.5 0.7 0.2 0.4 0.5 0.1
0.7 0.3 0.4 0.7 0.5 0.2 0.6 0.7 0.1 0.8 0.3 0.2
0.6 0.7 0.2 0.8 0.4 0.2 0.7 0.6 0.2 0.6 0.3 0.3
0.5 0.5 0.2 0.7 0.4 0.1

D =

， ， ， ， ， ， ， ，

， ， ， ， ， ， ， ，

， ， ， ， ， ， ， ，

， ， ， ， ， ， ， ，

， ， ， ， 0.5 0.7 0.2 0.8 0.5 0.1

 
 
 
 
 
 
 
 ， ， ， ，

 
For convenience, we assume 3ρ =  and 1x = . 
The procedure of algorithm is developed below. 
Step1. The Hamming distance ( , )im ind U U  ( 1, 2,3, 4,5;i =  
, 1, 2,3, 4; )m n m n= ≠  is calculated employing Eq. (7).  

11 12 12 11

11 13 13 11

11 14 14 11

12 13 13 12

12 14 14 12

13 14 14 13

( , ) ( , ) 0.1667;
( , ) ( , ) 0.1667;
( , ) ( , ) 0.2333;
( , ) ( , ) 0.1333;
( , ) ( , ) 0.2000;
( , ) ( , ) 0.1333;

d U U d U U
d U U d U U
d U U d U U
d U U d U U
d U U d U U
d U U d U U

= =
= =
= =
= =
= =
= =

 

21 22 22 21

21 23 23 21

21 24 24 21

22 23 23 22

22 24 24 22

23 24 24 23

( , ) ( , ) 0.1333;
( , ) ( , ) 0.2667;
( , ) ( , ) 0.2667;
( , ) ( , ) 0.2000;
( , ) ( , ) 0.1333;
( , ) ( , ) 0.1333;

d U U d U U
d U U d U U
d U U d U U
d U U d U U
d U U d U U
d U U d U U

= =
= =
= =
= =
= =
= =

 

31 32 32 31

31 33 33 31

31 34 34 31

32 33 33 32

32 34 34 32

33 34 34 33

( , ) ( , ) 0.1333;
( , ) ( , ) 0.2667;
( , ) ( , ) 0.1000;
( , ) ( , ) 0.1333;
( , ) ( , ) 0.1000;
( , ) ( , ) 0.2333;

d U U d U U
d U U d U U
d U U d U U
d U U d U U
d U U d U U
d U U d U U

= =
= =
= =
= =
= =
= =

 

41 42 42 41

41 43 43 41

41 44 44 41

42 43 43 42

42 44 44 42

43 44 44 43

( , ) ( , ) 0.1667;
( , ) ( , ) 0.0667;
( , ) ( , ) 0.1667;
( , ) ( , ) 0.1000;
( , ) ( , ) 0.1333;
( , ) ( , ) 0.1667;

d U U d U U
d U U d U U
d U U d U U
d U U d U U
d U U d U U
d U U d U U

= =
= =
= =
= =
= =
= =

 

51 52 52 51

51 53 53 51

51 54 54 51

52 53 53 52

52 54 54 52

53 54 54 53

( , ) ( , ) 0.1333;
( , ) ( , ) 0.0667;
( , ) ( , ) 0.1333;
( , ) ( , ) 0.2000;
( , ) ( , ) 0.0667;
( , ) ( , ) 0.2000;

d U U d U U
d U U d U U
d U U d U U
d U U d U U
d U U d U U
d U U d U U

= =
= =
= =
= =
= =
= =

 

Step2. The support ( , )im inSup U U ( 1, 2,3,4,5; ,i m n= =  
1, 2,3, 4; )m n≠  is calculated employing Eq. (8).  

11 12 12 11

11 13 13 11

11 14 14 11

12 13 13 12

12 14 14 12

13 14 14 13

( , ) ( , ) 0.8333;
( , ) ( , ) 0.8333;
( , ) ( , ) 0.7667;
( , ) ( , ) 0.8667;
( , ) ( , ) 0.8000;
( , ) ( , ) 0.8667;

Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U

= =
= =
= =
= =
= =
= =

 

21 22 22 21

21 23 23 21

21 24 24 21

22 23 23 22

22 24 24 22

23 24 24 23

( , ) ( , ) 0.8667;
( , ) ( , ) 0.7333;
( , ) ( , ) 0.7333;
( , ) ( , ) 0.8000;
( , ) ( , ) 0.8667;
( , ) ( , ) 0.8667;

Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U

= =
= =
= =
= =
= =
= =

 

31 32 32 31

31 33 33 31

31 34 34 31

32 33 33 32

32 34 34 32

33 34 34 33

( , ) ( , ) 0.8667;
( , ) ( , ) 0.7333;
( , ) ( , ) 0.9000;
( , ) ( , ) 0.8667;
( , ) ( , ) 0.9000;
( , ) ( , ) 0.7667;

Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U

= =
= =
= =
= =
= =
= =

 

41 42 42 41

41 43 43 41

41 44 44 41

42 43 43 42

42 44 44 42

43 44 44 43

( , ) ( , ) 0.8333;
( , ) ( , ) 0.9333;
( , ) ( , ) 0.8333;
( , ) ( , ) 0.9000;
( , ) ( , ) 0.8667;
( , ) ( , ) 0.8333;

Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U

= =
= =
= =
= =
= =
= =
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51 52 52 51

51 53 53 51

51 54 54 51

52 53 53 52

52 54 54 52

53 54 54 53

( , ) ( , ) 0.8667;
( , ) ( , ) 0.9333;
( , ) ( , ) 0.8667;
( , ) ( , ) 0.8000;
( , ) ( , ) 0.9333;
( , ) ( , ) 0.8000;

Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U
Sup U U Sup U U

= =
= =
= =
= =
= =
= =

 

Step3. The weighted support ( )ijT U  ( 1, 2,3, 4,5; 1,i j= =  
2,3, 4)  is calculated employing Eq. (9). Then, the matrix 

5 4[ ( )]ijT U ×  is gained below. 

( )
5 4

0.6400 0.7467 0.6000 0.4933
0.6000 0.7600 0.5733 0.4933
0.6667 0.7933 0.5400 0.5000
0.6967 0.7833 0.6100 0.5033
0.7133 0.7867 0.5867 0.5067

ijT U
×

 
 
 

   =   
 
  

 

Step4. The EPW ijϖ ( 1, 2,3, 4,5;i =  1, 2,3, 4)j =  is 
calculated employing Eq. (10). Then, the matrix 5 4[ ]ijϖ ×  is 
gained below. 

5 4

0.2034 0.1047 0.3017 0.3903
0.2019 0.1055 0.3007 0.3919
0.2051 0.1061 0.2971 0.3916
0.2053 0.1050 0.3007 0.3890
0.2063 0.1052 0.2989 0.3896

ijϖ
×

 
 
 
   =   
 
  

 

Step5. The comprehensive value iU ( )1,2,3,4,5i =  is got 
employing Eq. (11). 

1

2

3

4

5

0.5819,0.4334,0.2199 ;

0.6044,0.3884,0.1336 ;

0.7325,0.3808,0.1674 ;

0.6681,0.4249,0.2298 ;

0.6978,0.5314,0.1338 .

U

U

U

U

U

=

=

=

=

=

 

Step6. The Dice similarity measure *( , )D iS U U  

( )1,2,3, 4,5i =  is got employing Eq. (12). 
*

1( , ) 0.7391;DS U U =  
*

2( , ) 0.7880;DS U U =  
*

3( , ) 0.8569;DS U U =  
*

4( , ) 0.7955;DS U U =  
*

5( , ) 0.7809.DS U U =  
Step7. The final ranking outcome is 3 4 2 5 1E E E E E    , 

the optimal enterprise is 3E . 

 

B. Sensitive Analysis 
To demonstrate the influence of parameter, the detailed 

ranking results with parameters ρ  and x  are shown in Figs. 1 
and 6.  
 

 
Fig. 1. Dice similarity with 3ρ =  and 1x ≥ . 

 
In Fig. 1, parameter ρ  is assigned to a fixed positive value, 

and parameter x  is greater than or equal to 1. As we can see 
from Fig. 1, parameter ρ  is set to 3. It is clearly that the Dice 
value regarding alternative ( 1,2,3,4,5)pE p = becomes larger 
and larger as x grows. Meanwhile, when x  is different value, 
the alternative ranking is also slightly different. 
When [ ]1,1.16x ∈ , the ranking is 3 4 2 5 1E E E E E   

. 

When ( ]1.16,3.3x ∈ , the ranking is 3 2 4 5 1E E E E E    . 

When ( ]3.30,3.94x ∈ , the ranking is 2 3 4 5 1E E E E E    . 

When ( ]3.94,26.11x ∈ , the ranking is 2 3 4 1 5E E E E E   

. 
When 26.11x ≥ , the ranking is 2 3 1 4 5E E E E E   

. 
Generally, DMs can delimit parameter value using their 
preferences. Therefore, the variation of ranking outcome 
illustrates the adaptability of the proposed model with the 
general parameter x . 

 

 
Fig. 2. Dice similarity with 3ρ = −  and 1x ≥ . 

 
In Fig. 2, ρ  is assigned to a fixed negative value, and 

parameter x  is greater than or equal to 1. As we can see from 
Fig. 2, parameter ρ  is set to -3. It is evident that the ranking 
orders remain unchanged with the increasing of parameter x , 
and the ranking outcome is always 3 4 5 1 2E E E E E    . 
Therefore, the ranking indicates the robustness of the proposed 
model in this study. 

 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 7, July 2024, Pages 1400-1408

 
______________________________________________________________________________________ 



 

 
Fig. 3. Dice similarity with ( ], 3ρ ∈ −∞ −  and 1x = . 

 
   In Fig. 3, parameter x  is assigned to a fixed positive value,  

and parameter ρ  varies within a reasonable range. As we can 
see from Fig. 3, parameter ρ  is smaller than or equal to 1. It is 
evident that the ranking orders remain unchanged as ρ grows. 
The ranking is 3 4 2 5 1E E E E E     regardless of 
parameter ρ . Similarly, the ranking verifies the robustness of 
proposed model in this study. 
 

 
Fig. 4. Dice similarity with [ )0,ρ ∈ +∞   and 1x = . 
 

    In Fig. 4, parameter x  is assigned to a fixed positive value, 
and parameter ρ  varies within a reasonable range. As we can 
see from Fig. 4, parameter 0ρ ≥ . When [ ]0.0.2ρ ∈ , the 
ranking is 3 2 4 5 1E E E E E    , and when 0.2ρ > , the 
ranking outcome is 3 4 2 5 1E E E E E    . The best choice 
is always 3E , whereas the worst choice is always 1E . From Fig. 
4, the stability of ranking outcome illustrates the reliability of 
the model with parameter ρ . 

In Figs. 5 and 6, parameters ρ  and x vary within a 
reasonable range. As we can see from Figs. 5 and 6, it is 
obvious that the changes of parameter ρ  in EPA operator and 
parameter x  in Dombi operations may affect the ranking 
orders of five alternatives. The main reason is that parameters 
ρ  and x can be assigned to different values according to 
DMs’ preferences, so diverse Dice similarity measures are 
gained. The detailed results are demonstrated in Figs. 5 and 6. 

 

 
Fig.5. Dice similarity with ( ], 3ρ ∈ −∞ −  and 1x ≥ . 

 
Fig.6. Dice similarity with [ )0 +ρ ∈ ∞，  and 1x ≥ . 

 

C. Comparative Analysis 
 To reveal more advantages of the model, the contrast is 

performed in this subsection. The comparison of outcomes of 
the new model with the other models are illustrated in TABLE 
I. 

 
TABLE I 

THE COMPARISON OF THREE METHODS 
 Models Handle flexibly 

irrational data 
Parameter 
numbers  

Decision 
matrix 

Xiong [22] yes ρ  numerical 
value 

Jana [27] 
 

no x  SVN 

Proposed model yes ρ , x  SVN 

 
Some conclusions are obtained:  
(1) The proposed model in this paper can solve not only 

single-valued information but also numerical values of unit 
interval [22] in MCDM problem.  

(2) The proposed model in this study can handle flexibly 
irrational data by assigning different weights rather than only 
reduce the impact of extreme value [27].  

(3) The new model integrates both the merits of EPA and 
Dombi. The SVNDPWA and SVNDWA operators are 
special instance of the developed operator. 

 Hence, the proposed model can be regarded as an 
extension of those introduced by Xiong [22] and Jana [27], it 
can handle not only MCDM issue with SVN information but 
also flexibly irrational values in complex environment. The 
comparative analysis confirms the developed model provided 
is more flexible comparing with the existing models. 

VI. CONCLUSION 
SVNS providing more information, as a generalization of 

IFS, is important since it can better express incomplete and 
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indeterminate cognitive information, thus, a MCDM 
algorithm model managing SVNS is established in this paper. 
The developed model for SVNS is considered as a further 
extension of the model for IFS. The existing model for IFS is 
special instance of  the proposed model in this study. The new 
single-valued neutrosophic algorithm not only solve MCDM 
problem with SVNS information but also the MCDM issue 
under IFS environment. An example of the presented model 
verifies its superiority and flexibility when facing extreme 
input values in SVN.  

The central contributions are presented: (1) The proposed 
MCDM model under SVNS environment is more suitable for 
tackling sophisticated inconsistent decision information. (2) 
The EPA operator is initially expanded to accommodate SVN 
environment, which can dynamically assign weights to input 
values and cope with irrational data. (3) The SVNDEPWA 
aggregating operator is firstly proposed, which can provide 
more flexible and general parameter given by DMs according 
to realistic environment. (4) Dice similarity of SVNNs is 
delimited, and special instance for SVNDEPWA operator is 
studied. (5) To verify the powerfulness of the new model, an 
MCDM case is conducted, the sensitivity and contrast are 
performed as well. The analyses manifest the adaptability and 
robustness for the proposed model. 

In future, the applications of the proposed SVNDEPWA 
operator and the above-mentioned MCDM model need to be 
explored to diverse fields with uncertain information, for 
instance, clustering, garbage treatment, supply demand 
matching. 
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