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Abstract—The present paper deals with the problem of
nonparametric estimation for stochastic processes driven by
alpha-stable processes of the second kind. The consistency and
the asymptotic distribution of the nonparametric estimator are
discussed.
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I. INTRODUCTION

IN recent years, many results on the asymptotic theory of
statistical inference for Gaussian stochastic processes of

the second kind have been studied (see, e.g., Azmoodeh and
Morlanes [1]; Azmoodeh and Viitasaari [2]; Balde et al. [3];
El Onsy et al. [4]; El Onsy et al. [5]). Among others, some
significant works include the following. Alazemi et al. [6]
established the consistency and the asymptotic distributions
of least square-type estimators for Gaussian mean-reverting
Ornstein-Uhlenbeck processes of the second kind.

In the real word, many natural phenomena exhibit random
behavior with a non-Gaussian α-stable distribution. For ex-
ample, Mikosch et al. [7] demonstrated that when connection
rates are modest relative to heavy tailed connection length
distribution tails, α-stable Lévy motion is a sensible approx-
imation to cumulative broadband network traffic over a time
period. Nolan [8] found that monthly exchange rates between
the US Dollar and the Tanzanian Shilling from January 1975
to September 1997 follow an α-stable distribution. Xu et al.
[9] observed that asymmetric leptokurtic features presented
in the Shanghai Composite Index and Shenzhen Component
Index returns can be captured by an α-stable law. Hence, it
is more reasonable to replace the driving Gaussian process
by the α-stable Lévy process for such phenomena. Recently,
Yu et al. [10] studied the consistency and the asymptotic
distributions of the trajectory fitting estimators for Ornstein-
Uhlenbeck processes driven by α-stable Lévy processes of
the second kind.

It is easy to see that the above-mentioned literatures pri-
marily focus on examining scenarios where the drift function
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in stochastic differential equations (SDEs) is known. But
in reality, the drift function is seldom known. The drift
function can be estimated by using a nonparametric smooth-
ing approach. The method offers a versatile way to explore
the relationship between variables without specifying prior
models. The asymptotic theory of nonparametric estimation
of the trend for stochastic processes with Gaussian noises is
well developed. Kutoyants [11] investigated the consistency
and asymptotic normality of nonparametric estimators for
SDEs with small white noises. Mishra and Prakasa Rao
[12] discussed the mean square consistency and asymptotic
normality of the kernel type estimator for SDEs driven by
fractional Brownian motion. Prakasa Rao [13] dealt with the
problem of nonparametric estimation of trend coefficient in
models governed by a SDE driven by a mixed fractional
Brownian motion with small noise. Prakasa Rao [14] inves-
tigated the asymptotic behaviour of nonparametric estimator
for SDEs driven by sub-fractional Brownian motion.

However, there are few papers concerned with nonpara-
metric estimation of the trend for non-Gaussian SDEs (see,
e.g., Zhang et al. [15], [16]). Motivated by the aforemen-
tioned works, in this paper, we consider the following
stochastic process X = {Xt, 0 ≤ t ≤ T} driven by α-stable
processes of the second kind

dXt = At(X)dt+ εσt(X)dU
(1)
t , 0 ≤ t ≤ T, (1)

where X0 = x0, ε ∈ (0, 1), the function A(·) is an unknown
nonanticipative smooth measurable function, σ(·) is a known
bounded measurable function, U (1)

t :=
∫ t

0
e−sdZas with

as = 1
αe

αs, and {Zt, 0 ≤ t ≤ T} is a standard α-stable
process (1 < α < 2) defined on a probability space (Ω,F ,P)
equipped with a right continuous and increasing family of
σ-algebras (Ft, t ≥ 0). In this case, Z1 has an α-stable
distribution Sα(1, β, 0), where β ∈ [−1, 1] is the skewness
parameter of the distribution. Suppose {xt, 0 ≤ t ≤ T} is
the solution of the following differential equation

dxt
dt

= At(x), x0, 0 ≤ t ≤ T, (2)

where x0 is the initial value. We would like to estimate the
function At = At(x) based on the observation {Xt, 0 ≤
t ≤ T}. Following techniques in Kutoyants [11], we define
a kernel type estimator of the trend function At as

Ât =
1

ϕε

∫ T

0

G

(
τ − t
ϕε

)
dXτ ,

where G(·) is a bounded function of finite support, and the
normalizing function ϕε → 0 with εϕ−

α−1
α

ε → 0 as ε→ 0.
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This paper is organized as follows. In Section 2, some
preliminaries on α-stable distribution, stable stochastic inte-
grals and, related moment inequalities are given. In Section
3, the consistency and bound of the rate of convergence
of nonparametric estimator are discussed. In Section 4, the
asymptotic distribution of the estimator is obtained.

II. PRELIMINARIES

Throughout the paper, we shall use the notation “→p” to
denote“convergence in probability” and the notation “ d=” to
denote equality in distribution. We shall use φ+ and φ− to
denote the positive and negative part of φ, respectively. We
denote Lαa.s. the family of all real-valued (Ft)-predictable
processes φ on Ω × [0,∞) such that for every T > 0,∫ T

0
|φ(t, ω)|αdt <∞ a.s. Then by Theorem 4.1 of Rosinski

and Woyczynski [17] and Theorem 3.1 of Kallenberg [18], a
predictable process φ is integrable with respect to a strictly
α-stable Lévy process Z, that is,

∫ T
0
φ(t)dZt exists for every

T > 0 if and only if φ ∈ Lαa.s.. Denote (DT ,BT ) as
the measurable space of right continuous with left limits
on [0, T ] functions {xt, 0 ≤ t ≤ T} with the σ-algebra
BT = σ{xt, 0 ≤ t ≤ T}. Let Θk(L) denote the class of all
functions {gt, 0 ≤ t ≤ T} which are k-times differentiable
with respect to t satisfying the Hölder condition of the order
γ ∈ (0, 1]

|g(k)
t − g(k)

s | ≤ L|t− s|γ , t, s ∈ [0, T ], (3)

for some constants L > 0. Here g
(k)
t denotes the k-th

derivative of g(·) at t for k ≥ 0. If k = 0, we interpret
g(0) as g.

Definition 2.1: A scalar random variable η is stable if
there exist four real parameters, i.e., a stability parameter
α ∈ [0, 2], a scaling parameter σ > 0, a symmetry parameter
β ∈ [−1, 1] and a location parameter µ ∈ (−∞,∞), such
that its characteristic function φη(u) has the following form:
(i) α 6= 1:

φη(u) = exp
{
−σα|u|α

(
1− iβsgn(u) tan

απ

2

)
+ iµu

}
;

(ii) α = 1:

φη(u) = exp

{
−σ|u|

(
1 + iβ

2

π
sgn(u) log |u|

)
+ iµu

}
.

We denote η ∼ Sα(σ, β, µ). When µ = 0, we say η is
strictly α-stable. If in addition β = 0, we call η symmetric
α-stable. Note that η is strictly 1-stable (α = 1) if and only
if β = 0 (symmetric case). We refer to Janicki and Weron
[19], Samorodnitsky and Taqqu [20], and Sato [21] for more
details on α-stable distributions.

Definition 2.2: An Ft-adapted stochastic process {Zt}t≥0

is called a standard α-stable Lévy motion if
(i) Z0 = 0, a.s.;
(ii) Zt − Zs ∼ Sα((t− s) 1

α , β, 0), t > s ≥ 0;
(iii) For any finite time points 0 ≤ s0 < s1 < · · · < sm <
∞, the random variables Zs0 , Zs1 − Zs0 , . . . , Zsm − Zsm−1

are independent.
The following lemma appeared in Kutoyants [11] is useful.
Lemma 2.1: (Kutoyants [11], Lemma 1.11) Let c0, c1, c2

be nonnegative constants, u(t), v(t) be a nonnegative bound-
ed function 0 ≤ t ≤ T and

u(t) ≤ c0 + c1

∫ t

0

v(s)u(s)ds

+ c2

∫ t

0

v(s)

[∫ s

0

u(r)dK(r)

]
ds,

where K(s) is a nondecreasing right-continuous function,
0 ≤ K(t) ≤ K0, then

u(t) ≤ c0 exp

{
(c1 + c2K0)

∫ t

0

v(s)ds

}
.

An important lemma is the inner clock property for α-
stable stochastic integrals, which comes from Long [22].

Lemma 2.2: Let Z be a strictly α-stable process and φ ∈
Lαa.s.. Then,
(i) There exist some independent processes Z ′, Z ′′ d= Z, such
that∫ t

0

φ(s)dZs = Z ′ ◦
∫ t

0

φα+(s)ds− Z ′′ ◦
∫ t

0

φα−(s)ds, a.s.

(ii) If Z is symmetric, that is, β = 0, then, there exists some
α-stable Lévy process Z ′ d= Z, such that∫ t

0

φ(s)dZs = Z ′ ◦
∫ t

0

|φ(s)|αds, a.s.

The following lemma is a direct consequence of Lemma
2.4 and Remark 2.5 in Long [22], which will be a very
powerful tool for proofs of our main results.

Lemma 2.3: Let φ(t) be a predictable process satisfy-
ing

∫ T
0
|φ(t)|αdt < ∞ almost surely for T < ∞, and

F : [0,∞) → [0,∞) be a continuous function. We assume
that (i) either φ is nonnegative or Z is a strictly α-stable
Lévy motion, and (ii) there exist positive constants λ0, C
and α0 < α such that F (λν) ≤ Cλα0F (ν) for all ν > 0
and all λ ≥ λ0. Then there exist positive constants C1 and
C2 depending only on α, α0, β, C, and λ0 such that for each
T > 0

C1E

F
(∫ T

0

|φ(t)|αdt

) 1
α


≤ E

[
F

(
sup
t≤T

∣∣∣∣∫ t

0

φ(s)dZs

∣∣∣∣)]

≤ 2C2E

F
(∫ T

0

|φ(t)|αdt

) 1
α

 .
We will make use of the following assumptions:

(H1) There exist positive constants L1 and L2 such that

|At(x)−At(y)|+ |σt(x)− σt(y)|

≤ L1

∫ t

0

|xs − ys|dK(s) + L2|xt − yt|,

|At(x)|+ |σt(x)|

≤ L1

∫ t

0

(1 + |xs|)dK(s) + L2(1 + |xt|),

where K(·) is given in Lemma 2.1, xt, yt ∈ DT , t ∈ [0, T ].
(H2) The dispersion function σ(·) satisfies the following
bounded condition: there exists a positive constant σ1 > 0
such that 0 < |σt(x)| ≤ σ1 for each xt ∈ DT , t ∈ [0, T ].
(H3) Let G(u), u ∈ R be a bounded function of finite
support (there exist two constants B1 < 0 and B2 > 0 such
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that G(u) = 0 for u /∈ [B1, B2]) and
∫ B2

B1
G(u)du = 1. In

addition,∫ ∞
−∞
|G(u)|du <∞,

∫ ∞
−∞
|G(u)|αdu <∞,∫ ∞

−∞
|G(u)uγ |du <∞.

(H4) The kernel function G(·) satisfies the following con-
dition ∫ ∞

−∞
|G(u)uk+γ |du <∞,∫ ∞

−∞
ujG(u)du = 0, j = 1, 2, . . . , k.

Similar to the discussion of Theorem 4.6 in Liptser and
Shiryayev [23], it is not difficult to show that SDE (1)
admits a unique non-explosive càdlàg adapted solution under
condition (H1).

III. CONSISTENCY OF THE KERNEL ESTIMATOR Ât

In the section, the consistency of the kernel estimator Ât
is discussed. We first present a key lemma.

Lemma 3.1: Under assumptions (H1)-(H2), we have

|Xt − xt| ≤ εe(L1K0+L2)t sup
0≤s≤t

∣∣∣∣∫ s

0

σu(X)dU (1)
u

∣∣∣∣ , (4)

sup
0≤t≤T

|Xt − xt| →p 0 as ε→ 0, (5)

and

sup
0≤t≤T

E[|Xt − xt|] ≤ 2εe(L1K0+L2)TC2σ1T
1
α . (6)

Proof: (i) Denote u(t) = |Xt−xt|, then by Assumption
(H1), we obtain

u(t) ≤
∫ t

0

|As(X)−As(x)|ds+ ε

∣∣∣∣∫ t

0

σs(X)dZs

∣∣∣∣
≤ L1

∫ t

0

[∫ s

0

u(r)dr

]
ds+ L2

∫ t

0

u(s)ds

+ ε sup
0≤s≤t

∣∣∣∣∫ s

0

σu(X)dU (1)
u

∣∣∣∣ .
Therefore, equation (4) follows from Lemma 2.1 with c0 =
e(L1K0+L2)t sup

0≤s≤t

∣∣∫ s
0
σu(X)dZu

∣∣, c1 = L2, and c2 = L1.

(ii) It follows from (4) that

sup
0≤t≤T

|Xt − xt| ≤ εe(L1K0+L2)T sup
0≤t≤T

∣∣∣∣∫ t

0

σs(X)dU (1)
s

∣∣∣∣ .
By Assumption (H2), Markov inequality, and Lemma 2.3,
we have, for any given δ > 0,

P
(
εe(L1K0+L2)T

∣∣∣∣∫ t

0

σs(X)dU (1)
s

∣∣∣∣ > δ

)
≤ δ−1e(L1K0+L2)T εE

[
sup

0≤t≤T

∣∣∣∣∫ t

0

σs(X)dU (1)
s

∣∣∣∣]
= δ−1e(L1K0+L2)T εE

[
sup

0≤t≤T

∣∣∣∣∫ at

a0

σ lnαs
α

(X)(αs)
−1
α dZs

∣∣∣∣]
≤ 2C2δ

−1e(L1K0+L2)T εE

[(∫ aT

a0

|σ lnαs
α

(X)|α 1

αs
ds

) 1
α

]

≤ 2C2δ
−1e(L1K0+L2)T εσ1T

1
α ,

which tends to zero as ε→ 0. This implies that (5) holds.
(iii) By (4), Assumption (H2), and Lemma 2.3, we obtain

sup
0≤t≤T

E[|Xt − xt|]

≤ εe(L1K0+L2)TE
[

sup
0≤t≤T

∣∣∣∣∫ t

0

σs(X)dU (1)
s

∣∣∣∣]
= εe(L1K0+L2)TE

[
sup

0≤t≤T

∣∣∣∣∫ at

a0

σ lnαs
α

(X)(αs)−
1
α dZs

∣∣∣∣]
≤ 2εe(L1K0+L2)TC2

(∫ aT

a0

|σ lnαs
α

(X)|α(αs)−1ds

) 1
α

≤ 2εe(L1K0+L2)TC2σ1T
1
α .

This completes the proof.
Next, we state some results about the consistency of the

estimator Ât.
Theorem 3.1: Suppose that the trend function At ∈

Θ0(L) and Assumptions (H1)-(H3) hold. Then, for any
0 < c ≤ d < T , the estimator Ât is uniformly consistent,
that is,

lim
ε→0

sup
c≤t≤d

E[|Ât −At(x)|] = 0. (7)

Proof: Note that

E[|Ât −At(x)|]

= E

[∣∣∣∣∣ 1

ϕε

∫ T

0

G

(
τ − t
ϕε

)
(Aτ (X)−Aτ (x))dτ

+
1

ϕε

∫ T

0

G

(
τ − t
ϕε

)
Aτ (x)dτ −At(x)

+
ε

ϕε

∫ T

0

G

(
τ − t
ϕε

)
στ (X)dU (1)

τ

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣ 1

ϕε

∫ T

0

G

(
τ − t
ϕε

)
(Aτ (X)−Aτ (x))dτ

∣∣∣∣∣
]

+ E

[∣∣∣∣∣ 1

ϕε

∫ T

0

G

(
τ − t
ϕε

)
Aτ (x)dτ −At(x)

∣∣∣∣∣
]

+ E

[∣∣∣∣∣ εϕε
∫ T

0

G

(
τ − t
ϕε

)
στ (X)dU (1)

τ

∣∣∣∣∣
]

:= Q1(ε) +Q2(ε) +Q3(ε). (8)

Utilizing the change of variables u = (τ − t)ϕ−1
ε and

denoting

ε1 = ε′ ∧ ε′′, (9)

where

ε′ = sup

{
ε :
−t
ϕε
≤ B1

}
, ε′′ = sup

{
ε :

T − t
ϕε

≥ B2

}
.

For Q1(ε), by Assumptions (H1) and (H3), and (6) in
Lemma 3.1, it follows that for ε < ε1

Q1(ε)

= E

[∣∣∣∣∣
∫ T−t

ϕε

−t
ϕε

G(u)(At+ϕεu(X)−At+ϕεu(x))du

∣∣∣∣∣
]
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≤ E

[∫ B2

B1

|G(u)(At+ϕεu(X)−At+ϕεu(x))| du

]

≤ E
∫ B2

B1

|G(u)|
(
L1

∫ t+ϕεu

0

|Xs − xs|dK(s)

+L2|Xt+ϕεu − xt+ϕεu|) du

≤
∫ B2

B1

|G(u)|du

(
L1

∫ T

0

1dK(s) + L2

)
· sup

0≤t+ϕεu≤T
E[|Xt+ϕεu − xt+ϕεu|]

≤ 2ε(L1K0 + L2)C2σ1T
1
α e(L1K0+L2)T

·
∫ B2

B1

|G(u)|du, (10)

which tends to zero as ε → 0. For Q2(ε), using At(x) ∈
Θ0(L), and Assumption (H3), one can obtain that for ε < ε1

Q2(ε) = E

∣∣∣∣∣
∫ T−t

ϕε

−t
ϕε

G(u)Aϕεu+t(x)dτ −At(x)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ B2

B1

G(u)(At+ϕεu(x)−At(x))du

∣∣∣∣∣
≤
∫ B2

B1

|G(u)(At+ϕεu(x)−At(x))| du

≤ Lϕγε
∫ ∞
−∞
|G(u)uγ |du, (11)

which tends to zero as ε→ 0. For Q3(ε), applying Lemma
2.3, Assumptions (H2) and (H3), one sees that

Q3(ε)

=
ε

ϕε
E

∣∣∣∣∣
∫ T

0

G

(
τ − t
ϕε

)
στ (X)dU (1)

τ

∣∣∣∣∣
=

ε

ϕε
E

∣∣∣∣∣
∫ aT

a0

G

(
lnαs
α − t
ϕε

)
σ lnαs

α
(X)(αs)−

1
α dZs

∣∣∣∣∣
≤ ε2C2

ϕε
E

[∫ aT

a0

∣∣∣∣∣G
(

lnαs
α − t
ϕε

)
σ lnαs

α
(X)(αs)

−1
α

∣∣∣∣∣
α

ds

] 1
α

≤ 2C2σ1

(
εϕ
−α−1

α
ε

)(∫ ∞
−∞
|G(u)|αdu

) 1
α

, (12)

which tends to zero as εϕ−
α−1
α

ε → 0. Therefore, by combin-
ing (8)-(12), we can conclude that (7) holds. This completes
the proof.

Finally, we give a bound on the rate of convergence of the
estimator Ŝt(x).

Theorem 3.2: Let the trend function At(x) ∈ Θk(L), and
ϕε = ε

α
α(k+γ+1)−1 . Then, under Assumptions (H1)-(H4),

we have

lim sup
ε→0

sup
At∈Θk(L)

sup
c≤t≤d

ε−
α(k+γ)

α(k+γ+1)−1E[|Ât −At(x)|] <∞.

(13)

Proof: Applying the Taylor’s formula, we get for any
x ∈ R,

A(y) = A(x) +
k∑
j=1

A(j)(x)
(y − x)j

j!

+ [A(k)(x+ θ(y − x))−A(k)(x)]
(y − x)k

k!
, (14)

where θ ∈ (0, 1). Combining (11) with (14) gives that for
ε < ε1

Q2(ε) ≤

∣∣∣∣∣
∫ B2

B1

G(u)(At+ϕεu(x)−At(x))du

∣∣∣∣∣
=

∣∣∣∣∣∣
k∑
j=1

A(j)(xt)

(∫ B2

B1

G(u)ujdu

)
ϕjε(j!)

−1

+
ϕkε
k!

∫ B2

B1

G(u)uk
(
A

(k)
t+θϕεu

(x)−A(k)
t (x)

)
du

∣∣∣∣∣ .
Combining At ∈ Θk+1(L) with condition (H4), one has

Q2(ε)

≤ ϕkε
k!

∣∣∣∣∣
∫ B2

B1

G(u)uk
(
A(k)(xt+θϕεu)−A(k)(xt)

)
du

∣∣∣∣∣
≤ ϕkε

(k!)

∫ B2

B1

∣∣∣G(u)uk
(
A

(k)
t+θϕεu

(x)−A(k)
t (x)

)∣∣∣ du
≤ Lθγ ϕ

k+γ
ε

(k!)

∫ B2

B1

|G(u)uk+γ |du. (15)

By (8), (10), (12) and (15), we get

sup
c≤t≤d

E|Ât −At(x)| ≤ ϑ1ε+ ϑ2ϕ
(k+γ)
ε + ϑ3εϕ

1−α
α

ε

with some positive constants ϑ1, ϑ2, ϑ3 which do not depend
on function A(·). So letting ϕε = ε

α
α(k+γ+1)−1 , we can

conclude that (13) holds.
Remark 3.1: If ϕε = ε

α
α(γ+1)−1 , then under Assumptions

(H1)-(H4), we obtain

lim sup
ε→0

sup
c≤t≤d

E|Ât −At(x)|ε−
αγ

α(γ+1)−1 <∞.

IV. ASYMPTOTIC DISTRIBUTION OF THE ESTIMATOR Ât

In this section, the asymptotic distribution of the estimator
Ât is studied. Throughout, U1 and U2 are two independent
random variables with α-stable distribution Sα(1, β, 0).

Theorem 4.1: Suppose that the trend function At ∈
Θk+1(L), ϕε = ε

α
α(k+γ+1)−1 , and Assumptions (H1)-(H4)

hold.
(i) When γ ∈ (0, 1) and ε→ 0, we have

ε−
α(k+γ)

α(k+γ+1)−1 (Ât −At(x))

⇒

(∫ B2

B1

(G(u)σt(x))
α
+ du

) 1
α

U1

−

(∫ B2

B1

(G(u)σt(x)))
α
− du

) 1
α

U2. (16)

(ii) When γ = 1 and ε→ 0, we have

ε−
α(k+1)
α(k+2)−1 (Ât −At(x))− A

(k+1)
t (x)

(k + 1)!

∫ B2

B1

G(u)uk+1du

⇒

(∫ B2

B1

(G(u)σt(x))
α
+ du

) 1
α

U1
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−

(∫ B2

B1

(G(u)σt(x)))
α
− du

) 1
α

U2. (17)

Proof: From (1), we have

ε−
α(k+γ)

α(k+γ+1)−1 (Ât −At(x))

= ϕ−(k+γ)
ε

∫ T−t
ϕε

−t
ϕε

G(u)(At+ϕεu(X)−At+ϕεu(x))du

+ ϕ−(k+γ)
ε

(∫ T−t
ϕε

−t
ϕε

G(u)At+ϕεu(x)du−At(x)

)

+ ϕ
− 1
α

ε

∫ T

0

G

(
τ − t
ϕε

)
(στ (X)− στ (x))dU (1)

τ

+ ϕ
− 1
α

ε

∫ T

0

G

(
τ − t
ϕε

)
στ (x)dU (1)

τ

:= I1(ε) + I2(ε) + I3(ε) + I4(ε).

For I1(ε), by hypothesis (H1) and (4) in Lemma 3.1, we
get that for ε < ε1

|I1(ε)|

≤ ϕ−(k+γ)
ε

∣∣∣∣∣
∫ B2

B1

G(u)(At+ϕεu(X)−At+ϕεu(x))du

∣∣∣∣∣
≤ ϕ−(k+γ)

ε

∫ B2

B1

|G(u)|
(
L1

∫ t+ϕεu

0

|Xs − xs|dK(s)

+L2|Xt+ϕεu − xt+ϕεu|) du

≤ ε
α−1

α(k+γ+1)−1 e(L1K0+L2)T

∫ B2

B1

|G(u)|

≤ ε
α−1

α(k+γ+1)−1 (L2 + L1K0)e(L1K0+L2)T

·
∫ B2

B1

|G(u)|
(

sup
0≤t+ϕεu≤T

∫ t+ϕεu

0

|σs(X)|dU (1)
s

)
du,

where ε1 is given in (9). By Markov inequality, Lemma 2.3,
and hypothesis (H2), we have, for any given δ > 0,

P(|I1(ε)| > δ)

≤ δ−1ε
α−1

α(k+γ+1)−1 (L2 + L1K0)e(L1K0+L2)T

·
∫ B2

B1

|G(u)|E
[

sup
0≤t+ϕεu≤T

∫ t+ϕεu

0

|σs(X)|dU (1)
s

]
du

= δ−1ε
α−1

α(k+γ+1)−1 (L2 + L1K0)e(L1K0+L2)T

∫ B2

B1

|G(u)|

· E
[

sup
0≤t+ϕεu≤T

∫ at+ϕεu

a0

|σ lnαs
α

(X)|(αs)− 1
α dZs

]
du

≤ δ−1ε
α−1

α(k+γ+1)−1 (L2 + L1K0)e(L1K0+L2)T 2C2

·

[(∫ aT

a0

|σ lnαs
α

(X)|α(αs)−1ds

) 1
α

]∫ B2

B1

|G(u)|du

≤ δ−1ε
α−1

α(k+γ+1)−1 (L2 + L1K0)e(L1K0+L2)TT
1
α

· σ12C2

∫ B2

B1

|G(u)|du,

which tends to zero as ε→ 0. This implies that

I1(ε)→p 0, (18)

as ε→ 0. By the Taylor’s formula, we have, for any x ∈ R,

A(y) = A(x) +
k+1∑
j=1

A(j)(x)
(y − x)j

j!

+ [A(k+1)(x+ θ(y − x))−A(k+1)(x)]

· (y − x)k+1

(k + 1)!
,

where θ ∈ (0, 1). For I2(ε), by Assumptions (H4), we get
that for ε < ε1

I2(ε)

= ϕ−(k+γ)
ε

∫ B2

B1

G(u) (At+ϕεu(x)−At(x)) du

= ϕ−(k+γ)
ε

k+1∑
j=1

A(j)(xt)

(∫ B2

B1

G(u)ujdu

)
ϕjε(j!)

−1

+
ϕk+1
ε

(k + 1)!

∫ B2

B1

G(u)uk+1
(
A

(k+1)
t+θϕεu

(x)−A(k+1)
t (x)

)
du

]

=
ϕ1−γ
ε A

(k+1)
t

(k + 1)!

∫ B2

B1

G(u)uk+1du+
ϕ1−γ
ε

(k + 1)!

∫ B2

B1

G(u)uk+1

·
(
A

(k+1)
t+θϕεu

(x)−A(k+1)
t (x)

)
du. (19)

It follows from At ∈ Θk+1(L) that

ϕ1−γ
ε

(k + 1)!

∫ B2

B1

G(u)uk+1
(
A

(k+1)
t+θϕεu

(x)−A(k+1)
t (x)

)
du

≤ ϕ1−γ
ε

(k + 1)!

∫ B2

B1

∣∣G(u)uk+1

·
(
A

(k+1)
t+θϕεu

(x)−A(k+1)
t (x)

)∣∣∣ du
≤ Lϕεθ

γ

(k + 1)!

∫ B2

B1

∣∣G(u)uk+γ+1
∣∣ du, (20)

which tends to zero as ε→ 0. Equations (19) and (20) imply
that

I2(ε)→


0, if γ ∈ (0, 1),

A
(k+1)
t (x)

(k + 1)!

∫ B2

B1

G(u)uk+1du, if γ = 1,

(21)
as ε → 0. For I3(ε), by Markov inequality, Assumptions
(H1) and (H3), and (5) in Lemma 3.1, we find that, for
given δ > 0 and ε < ε1

P(|I3(ε)| > δ)

≤ δ−1ϕ
− 1
α

ε E

∣∣∣∣∣
∫ T

0

G

(
τ − t
ϕε

)
(στ (X)− στ (x))dU (1)

τ

∣∣∣
= δ−1ϕ

− 1
α

ε E

∣∣∣∣∣
∫ aT

a0

G

(
lnατ
α − t
ϕε

)
·(σ lnατ

α
(X)− σ lnατ

α
(x))(ατ)−

1
α dZτ

∣∣∣
≤ δ−12C2ϕ

− 1
α

ε E

(∫ aT

a0

∣∣∣∣∣G
(

lnατ
α − t
ϕε

)

· (σ lnατ
α

(X)− σ lnατ
α

(x))
∣∣∣α (ατ)−1dτ

) 1
α

≤ δ−12C2ϕ
− 1
α

ε

(∫ aT

a0

∣∣∣∣∣G
(

lnατ
α − t
ϕε

)∣∣∣∣∣
α

·

(
L1

∫ lnατ
α

0

|Xs − xs|dK(s)
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+L2|X lnατ
α
− x lnατ

α
|
)α

(ατ)−1dτ
) 1
α

≤ δ−12C2

(∫ T−t
ϕε

−t
ϕε

|G(u)|α(
2Lα1

(∫ t+ϕεu

0

|Xs − xs|dK(s)

)α
+2Lα2 |Xt+ϕεu − xt+ϕεu|α) du)

1
α

≤ δ−12
1
α+1C2(L1K0 + L2)

(∫ B2

B1

|G(u)|αdu

) 1
α

· sup
0≤t+ϕεu≤T

|Xt+ϕεu − xt+ϕεu|,

which converges to zero as ε → 0. Applying Lemma 2.2,
one can obtain that there exist two independent processes
Z ′, Z ′′

d
= Z, such that∫ T

0

G

(
τ − t
ϕε

)
στ (x)dU (1)

τ

=

∫ aT

a0

G

(
lnατ
α − t
ϕε

)
σ lnατ

α
(x)(ατ)−

1
α dZτ

= Z ′ ◦
∫ aT

a0

(
G

(
lnατ
α − t
ϕε

)
σ lnατ

α
(x)(ατ)−

1
α

)α
+

dτ

− Z ′′ ◦
∫ aT

a0

(
G

(
lnατ
α − t
ϕε

)
σ lnατ

α
(x)(ατ)−

1
α

)α
−

dτ

d
=

(∫ aT

a0

(
G

(
lnατ
α − t
ϕε

)
σ lnατ

α
(x)(ατ)−

1
α

)α
+

dτ

) 1
α

U1

−

(∫ T

0

(
G

(
lnατ
α − t
ϕε

)
σ lnατ

α
(x)(ατ)−

1
α

)α
−

dτ

) 1
α

U2,

where U1 and U2 are two independent random variables with
α-stable distribution Sα(1, β, 0). For I4(ε), applying the fact
that ϕε → 0 as ε→ 0 and condition (H3), one sees that

I4(ε)
d
=

(∫ T−t
ϕε

−t
ϕε

(G(u)σt+ϕεu(x))
α
+ du

) 1
α

U1

−

(∫ T−t
ϕε

−t
ϕε

(G(u)σt+ϕεu(x))
α
− du

) 1
α

U2,

⇒

(∫ B2

B1

(G(u)σt(x))
α
+ du

) 1
α

U1

−

(∫ B2

B1

(G(u)σt(x))
α
− du

) 1
α

U2,

as ε→ 0. Thus, by Slutsky’s theorem, we can conclude that
(16) and (17) hold as ε→ 0 in terms of the range of γ, i.e.
γ ∈ (0, 1) and γ = 1, respectively. This completes the proof.

Remark 4.1: If Z is symmetric (that is β = 0), then, under
the conditions of Theorem 4.1, by basic property of α-stable
random variables (see Janicki and Weron [19]), we can obtain
that (i) when γ ∈ (0, 1) and ε→ 0,

ε−
α(k+γ)

α(k+γ+1)−1 (Ât −At(x))

⇒ |σt(x)|

(∫ B2

B1

|G(u)|αdu

) 1
α

Sα(1, 0, 0);

(ii) When γ = 1 and ε→ 0,

ε−
α(k+1)
α(k+2)−1 (Ât −At(x))− A

(k+1)
t (x)

(K + 1)!

∫ B2

B1

G(u)uk+1du

⇒ |σt(x)|

(∫ B2

B1

|G(u)|αdu

) 1
α

Sα(1, 0, 0).

V. CONCLUSION

This paper has presented new results on nonparametric
estimation for stochastic processes driven by a non-Gaussian
α-stable Lévy process of the second kind. The main results
are obtained with the assistance of the moment inequalities
for stable stochastic integrals, Lemma 2.1, and the inner
clock property for the α-stable stochastic integral. The re-
search results of this article enrich the asymptotic theory of
statistical inference for non Gaussian stochastic processes.
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