
 

  

Abstract—For an undirected connected graph 𝑮(𝑽, 𝑬) , if 

there exists a unique mapping 𝒇: 𝑽(𝑮) ∪ 𝑬(𝑮) → {𝟏, 𝟐, ⋯ , |𝑽| +
|𝑬|}, such that for any edge 𝒖𝒗 ∈ 𝑬(𝑮) and 𝒅(𝒖) = 𝒅(𝒗) , it 

holds that 𝑺(𝒖) = 𝑺(𝒗), where 𝑺(𝒖) = 𝒇(𝒖) + ∑ 𝒇(𝒖𝒛)𝒖𝒛∈𝑬(𝑮) , 

and 𝒅(𝒖) represents the degree of vertex 𝒖, then 𝒇 is termed as 

an Adjacent Vertex Reducible Total Labeling (AVRTL) of G. 

Building upon existing research on total labeling algorithms, a 

heuristic search algorithm is devised by combining principles 

from genetic algorithm and particle swarm optimization. By 

studying the labeling patterns within finite-point graphs and 

extending them to describe the labeling patterns of 

infinite-point analogous graphs, it is discovered that some 

composite graphs of AVRTL are derived from several special 

subgraphs that are also AVRTL through a graph operation.  

Several theorems summarizing the labeling characteristics of 

these composite graphs are formulated and proven, along with 

defining the graph operation. Finally, a conjecture is proposed: 

if subgraphs 𝑮𝟏  and 𝑮𝟐  are AVRTL graphs, then their 

composite graph 𝑮𝟏 ↑𝒂𝒃 𝑮𝟐 is also an AVRTL graph, where ↑𝒂𝒃 

denotes the graph operation. 

 

Index Terms—Adjacent Vertex Reducible Total Labeling, 

AVRTL graph, heuristic search algorithm, joint-graph, graph 

operation 

 

I. INTRODUCTION 

RAPH theory, as a significant branch of mathematics, 

owes its significant position in various fields such as 

computer science, social network analysis, transportation 

planning, communication network design[1], bioinformatics, 

logistics, and transportation planning to its concise 

representation and rich applications. The origin of graph 

theory can be traced back to the 18th century with Euler 

laying its foundation by solving the Seven Bridges of 

Königsberg problem. Since then, graph theory has gradually 

evolved into an independent and prolific research tool, 
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finding extensive applications in practical problems such as 

coding theory, X-ray crystallography, radar, astronomy, 

circuit design, secret sharing schemes, and cryptography. 

Graph labeling, as an important research focus in graph 

theory, saw the inception of the Graceful Tree Conjecture in 

Rosa's paper in 1967, proposing that all trees are graceful. In 

1970, Anton et al[2].introduced the concept of edge-magic and 

conjectured that every tree has an edge-magic total labeling. 

Further, in 1998, Enomoto et al. extended this by proposing 

that all tree graphs have super edge-magic total labeling 

advanced the proposition that all trees have super edge magic 

total labeling [3]. Subsequently, in 1999 [4], MacDougall et 

al. introduced the concepts of vertex-magic labeling and 

super vertex-magic labeling. In 2020, literature presented 

vertex magic total labeling and related patterns for general 

graphs. Other labeling schemes are referenced in [5-10], 

while summarizes the current status of labeling research. 

This paper addresses the point-edge partitioning strategy 

problem in logistics and supply chain management, social 

network analysis, energy network optimization, 

transportation planning, and power distribution networks. 

This algorithm synthesizes the principles of genetic 

algorithms and particle swarm optimization. By integrating 

principles from genetic algorithm and particle swarm 

optimization, a heuristic search algorithm is designed. 

Through analysis of experimental results, it is observed that 

some composite graphs of AVRTL are derived from several 

special subgraphs that are also AVRTL through a graph 

operation.  Several theorems summarizing the labeling 

characteristics of these composite graphs are formulated and 

proven, along with defining the graph operation. Finally, a 

conjecture is proposed: If subgraphs 𝐺1 and 𝐺2 are AVRTL 

graphs, then their composite graph 𝐺1 ↑𝑎𝑏 𝐺2  is also an 

AVRTL graph, where ↑𝑎𝑏 denotes the graph operation. 

 

II. PRELIMINARY KNOWLEDGE 

Definition 1: Let 𝐺(𝑉, 𝐸) be an undirected connected 

graph , if there exists a unique mapping 𝑓: 𝑉(𝐺) ∪ 𝐸(𝐺) →
{1,2, ⋯ , |𝑉| + |𝐸|}, such that 𝑢𝑣 ∈ 𝐸(𝐺) and 𝑑(𝑢) = 𝑑(𝑣), 

resulting in 𝑆(𝑢) = 𝑆(𝑣) , where 𝑆(𝑢) = ∑ 𝑓(𝑢𝑧)𝑢𝑧∈𝐸(𝐺) +

𝑓(𝑢) , 𝑑(𝑢)  represents the degree of vertex 𝑢 , then 𝑓  is 

designated as an AVRTL of 𝐺. 𝐺 is called an AVRTL graph 

if it satisfies this condition, otherwise it is termed an 

N-AVRTL graph. 

Definition 2: Let graph 𝐺1 ↑𝑎𝑏 𝐺2 be a composite graph, 

where 𝐺1 and 𝐺2 can be one of the following: a path graph 

(𝑃𝑛), a cycle graph (𝐶𝑛), a star graph (𝑆𝑛), a fan graph (𝐹𝑛), or 

a wheel graph (𝑊𝑛). Here, 𝑎 represents the central node for 

star, fan, and wheel graphs, a 1-degree node for the path 
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graph, and any node for the cycle graph. 𝑏 represents a 

non-central node for star and wheel graphs, a 2-degree node 

for the fan graph, and a 2-degree node for the path graph. 

Graph 𝐺1 ↑𝑎𝑏 𝐺2 is obtained by connecting node 𝑎 from 𝐺1 

to node 𝑏 from 𝐺2. 
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(1) 𝐺(6,11) 
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(2) 𝐺(7,15) 

Fig. 1. Example of AVRTL graph. 
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(1) 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚 
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(2) 𝐹𝑛 ↑𝑎𝑏 𝑊𝑚 

Fig. 2. Example of joint graph 𝐺1 ↑𝑎𝑏 𝐺2. 

 

III. AVRTL ALGORITHM 

A. Basic Principles of AVRTL Algorithm 

The concept of the AVRTL algorithm integrates genetic 

algorithm and particle swarm algorithm. Initially, an initial 

labeling matrix is obtained based on the adjacency matrix of 

graph G. A candidate solution population is initialized, and a 

heuristic search algorithm is employed for exploration. 

During the search process, if a matrix satisfying the 

convergence criteria is found, it is considered as the final 

matrix and outputted. If, after convergence, the solution for 

graph G still does not satisfy the convergence criteria 

function, it indicates that graph G is not an AVRTL graph, 

and the algorithm terminates. 

(1) Preprocessing function: The graph set is outputted to a 

file in the form of an initialized adjacency matrix. This 

function also calculates information such as the number of 

vertices and edges of graph G, the degree of each vertex, 

degree sequences, and sets of adjacent vertices with the same 

degree. 

(2) Optimal Solution Search Function: According to the 

principles of particle swarm algorithm, each candidate 

solution updates its velocity and position based on individual 

best positions and global best positions. Subsequently, 

combined with operations such as information update, 

selection, crossover, and mutation, the function searches for 

the optimal solution. 

(3) Convergence Judgment Function: Criterion1; 

Determine whether the adjacent vertex reducible total 

labeling constraint is satisfied during the search process. If a 

solution satisfying the constraint is found, it is stored in the 

matrix StorageMatrix. Criterion2: |𝑉| + |𝐸| − 1. 

(4) Output Function: If there are graph sets satisfying the 

constraints of the adjacent vertex reducible total labeling, the 

final results are outputted in the form of a labeling matrix. If, 

after convergence judgment, the solution for graph G still 

does not satisfy the convergence judgment function, then 

graph G is outputted as a non-AVRTL graph. 

B. Pseudocode of the AVRTL Algorithm 

Input The adjacency matrix of the graph 𝐺(𝑝, 𝑞) 

Output Matrix satisfying AVRTL graph or NAVRTL 

1 Read the adjacency matrix of the graph to get the initial 

convergence matrix AS0 

2 Calculate the number of points, the number of edges, 

the degree sequence DegreeList, the set of adjacent 

points with the same degree SameList and other 

information of the graph 𝐺. 

3 get G-AdjustMatrix, StorageMatrix ← AS0 

4 isContinue = true, isSuccess = false 

5 while (isContinue) 

6    Permutation (𝑝, 𝑞) 

7    G-AdjustMatrix.UXOSearch  # Optimal solution 

search initialization 

8    G-AdjustMatrix. particle    # Update the individual 

best position and fitness of each candidate solution 

9    G-AdjustMatrix. Individual  # Perform operations 
such as information update, crossover, mutation, etc. 

10 if(G-AdjustMatrix.ASjudgment)  # Convergence 

judgment 

11       StorageMatrix← G-AdjustMatrix 

12       isSuccess = true 

13       break 
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14 endif 

15 endwhile 

16 if(!G-AdjustMatrix.equalWith(AS0)&&isSuccess) 

17   Output G is not a AVRTL Graph 

18 endif 

19 else 

20 Output 𝐺 is a AVRTL Graph 

21 Output StorageMatrix 

22 endelse 

23 end 

C. Results of the Adjacent Vertex Reducible Total 

Labeling Algorithm 

Table 1 presents the number of AVRTL graphs among the 

total number of graphs with different numbers of edges 

ranging from 3 to 6 vertices. It can be observed from Table 1 

that all graphs with 3 to 6 vertices are AVRTL graphs. 

Fig 3 illustrates the number and proportion of AVRTL 

graphs among the total number of graphs with different 

numbers of edges ranging from 7 to 11 vertices. 

 Fig 4 provides examples of AVRTL labeling for some 

graphs. 

 
TABLE I 

STATISTICALS OF AVRTL FOR GRAPHS WITH 3 TO 6 VERTICES 

(𝑝, 𝑞) 

Total 

number 

of 

pictures/

piece 

AVRTL 

picture 

number/ 

piece 

(𝑝, 𝑞) 

Total 

number 

of 

pictures/ 

piece 

AVRTL 

picture 

number/ 

piece 

(3,2) 1 1 (5,10) 1 1 

(3,3) 1 1 (6,5) 5 5 

(4,3) 2 2 (6,6) 13 13 

(4,4) 2 2 (6,7) 19 19 

(4,5) 1 1 (6,8) 22 22 

(4,6) 1 1 (6,2) 20 20 

(5,4) 3 3 (6,9) 14 14 

(5,5) 5 5 (6,10) 9 9 

(5,6) 5 5 (6,11) 5 5 

(5,7) 4 4 (6,12) 2 2 

(5,8) 2 2 (6,13) 1 1 

(5,9) 1 1 (6,14) 1 1 

 

 
Fig. 3. Variation of  the percentage of AVRTL and N-AVRTL graphs among 

the total number of graphs with a finite number of vertices. 
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(1) 𝐺(20,39) 

1

23

4

5

6

7

89

10

11

12

13
14

15
16

17
18

20

21

22

19

23

24

25

26

27

28

29
30

31

32

33
34

35

36

37

38

39

40

41

42

43

44

45

46
47

48

49

50

51

52

53

54
55

56

57

58

 
(2) 𝐺(22,36) 

Fig. 4. Examples of AVRTL. 

 

IV. THEOREMS AND PROOFS 

For special subgraphs, paths, cycles, stars, fans, and 

wheels are all AVRTL graphs, and the conclusion is 

obviously true. 

Theorem 1: For a joint graph 𝑊𝑛 ↑𝑎𝑏 𝑆𝑚 , when 𝑛 ≥ 3, 

𝑚 > 2, and 𝑚 ≠ 𝑛 + 1, it is an AVRTL graph. 

Proof: Let the vertex set of the joint graph 𝑊𝑛 ↑𝑎𝑏 𝑆𝑚, be 

denoted as 𝑉(𝑊𝑛 ↑𝑎𝑏 𝑆𝑚) = {𝑣0, 𝑣1, ⋯ , 𝑣𝑛 , 𝑢0, 𝑢1, ⋯ , 𝑢𝑚} , 

and the edge set as 𝐸(𝑊𝑛 ↑𝑎𝑏 𝑆𝑚) = {𝑣0𝑣𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪
{𝑣𝑖𝑣𝑖+1|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑣𝑛𝑣1} ∪ {𝑢0𝑢𝑖|1 ≤ 𝑖 ≤ 𝑚}. 

When 𝑛 ≥ 3 , 𝑚 > 2 , and 𝑚 ≠ 𝑛 + 1 , the AVRTL of 

𝑊𝑛 ↑𝑎𝑏 𝑆𝑚 is: 

𝑓(𝑣𝑖) = 3𝑛 + 1 − 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑓(𝑣𝑖𝑣𝑖+1) = 𝑖, 1 ≤ 𝑖 < 𝑛

𝑓(𝑣𝑛𝑣1) = 𝑛

𝑓(𝑣0𝑣1) = 𝑛 + 1

𝑓(𝑣0𝑣𝑖) = 2𝑛 + 2 − 𝑖, 2 ≤ 𝑖 ≤ 𝑛

𝑓(𝑢0) = 3𝑛 + 1

𝑓(𝑢𝑖) = 3𝑛 + 2𝑚 + 2 − 𝑖, 1 ≤ 𝑖 ≤ 𝑚

𝑓(𝑢0𝑢𝑖) = 3𝑛 + 1 + 𝑖, 1 ≤ 𝑖 ≤ 𝑚

 

In this case, the vertex labeling set of 𝑊𝑛 ↑𝑎𝑏 𝑆𝑚 is: 

𝑓(𝑉) = {𝑓(𝑣𝑖)|0 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑢𝑗)|0 ≤ 𝑗 ≤ 𝑚}

= {2𝑛 + 1,2𝑛 + 2, ⋯ ,3𝑛 + 1}

∪ {3𝑛 + 𝑚 + 2,3𝑛 + 𝑚 + 3, ⋯ ,3𝑛 + 2𝑚 + 1}

 

The edge labeling set is: 

𝑓(𝐸) = {𝑓(𝑣𝑖𝑣𝑖+1)|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑓(𝑣0𝑣𝑖)|1 ≤ 𝑖 ≤ 𝑛}

∪ 𝑓(𝑣𝑛𝑣1) ∪ {𝑓(𝑢0𝑢𝑗)|1 ≤ 𝑗 ≤ 𝑚}

= {1,2, ⋯ ,2𝑛} ∪ {3𝑛 + 2,3𝑛 + 3, ⋯ ,3𝑛 + 𝑚 + 1}

 

According to the definition of AVRTL, 𝑓(𝑉) ∪ 𝑓(𝐸) →
[1,3𝑛 + 2𝑚 + 1] , and the joint graph 𝑊𝑛 ↑𝑎𝑏 𝑆𝑚  has a 
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1-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚 , 3-degree vertices 𝑣1, 𝑣2 

⋯ , 𝑣𝑛, 𝑛 + 1-degree vertices 𝑣0/𝑢1, and an 𝑚-degree vertex 

𝑢0. It is only necessary to ensure that the labeling of the 

adjacent 3-degree vertices of the joint graph 𝑊𝑛 ↑𝑎𝑏 𝑆𝑚 are 

equal. 

For the 3-degree vertices 𝑣1, 𝑣2, ⋯ , 𝑣𝑛 adjacent to the joint 

graph 𝑊𝑛 ↑𝑎𝑏 𝑆𝑚, the sum of the labeling of each vertex is: 

𝑆𝑢𝑚(𝑣𝑖|1 ≤ 𝑖 ≤ 𝑛)

= 𝑓(𝑣𝑖) + ∑ 𝑓(𝑣𝑒)|1 ≤ 𝑖 ≤ 𝑛

𝑣𝑒∈𝐸(𝑣𝑖)

= 𝑓(𝑣𝑖) + 𝑓(𝑣𝑖−1𝑣𝑖) + 𝑓(𝑣𝑖𝑣𝑖+1)𝑓(𝑣0𝑣𝑖)|2 ≤ 𝑖 ≤ 𝑛 − 1||

𝑓(𝑣1) + 𝑓(𝑣𝑛𝑣1) + 𝑓(𝑣1𝑣2) + 𝑓(𝑣0𝑣1)|𝑓(𝑣𝑛) + 𝑓(𝑣𝑛−1𝑣𝑛)

+𝑓(𝑣𝑛𝑣1) + 𝑓(𝑣0𝑣𝑛)

= 5𝑛 + 2

 

Thus, it is proven that when 𝑛 ≥ 3, 𝑚 > 2, and 𝑚 ≠ 𝑛 +
1, 𝑊𝑛 ↑𝑎𝑏 𝑆𝑚 is an AVRTL graph. 

The labeling results for some joint graphs 𝑊𝑛 ↑𝑎𝑏 𝑆𝑚 are 

shown in Fig 5. 
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Fig. 5. Labeling Results for 𝑊6 ↑𝑎𝑏 𝑆9 

 

Theorem 2: For a joint graph 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 , when 𝑛 ≥ 3, 

𝑚 > 3, and 𝑚 ≠ 4, it is an AVRTL graph. 

Proof: Let the vertex set of the joint graph 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚, be 

denoted as 𝑉(𝑃𝑛 ↑𝑎𝑏 𝑊𝑚) = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛 , 𝑢0, 𝑢1, ⋯ , 𝑢𝑚} , 

and the edge set as 𝐸(𝑃𝑛 ↑𝑎𝑏 𝑊𝑚) = {𝑣𝑖𝑣𝑖+1|1 ≤ 𝑖 ≤ 𝑛 −
1} ∪ {𝑢0𝑢𝑖|1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑢𝑖𝑢𝑖+1|1 ≤ 𝑖 ≤ 𝑚 − 1} ∪
{𝑢𝑚𝑢1}. 

Case 1: When 𝑛 ≥ 3, 𝑚 > 3, 𝑚 ≠ 4, and 𝑛 ≡ 0(𝑚𝑜𝑑2), 

the AVRTL of 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 is: 

𝑓(𝑣𝑖) = 2𝑛 − 𝑖, 2 ≤ 𝑖 ≤ 𝑛

𝑓(𝑣𝑖𝑣𝑖+1) = {

𝑛

2
+

𝑖

2
, 𝑖 ≡ 0(𝑚𝑜𝑑2) 𝑎𝑛𝑑 2 ≤ 𝑖 < 𝑛

𝑖 − ⌊
𝑖

2
⌋ , 𝑖 ≡ 1(𝑚𝑜𝑑2) 𝑎𝑛𝑑 1 ≤ 𝑖 < 𝑛

𝑓(𝑢0) = 2𝑛 + 3𝑚 − 1

𝑓(𝑢𝑖) = 2𝑛 + 3𝑚 − 1 − 𝑖, 1 ≤ 𝑖 ≤ 𝑚

𝑓(𝑢𝑖𝑢𝑖+1) = 2𝑛 − 2 + 𝑖, 1 ≤ 𝑖 < 𝑚

𝑓(𝑢𝑚𝑢1) = 2𝑛 + 𝑚 − 2

𝑓(𝑢0𝑢1) = 2𝑛 + 𝑚 − 1

𝑓(𝑢0𝑢𝑖) = 2(𝑛 + 𝑚) − 𝑖, 2 ≤ 𝑖 ≤ 𝑚

 

In this case, the vertex labeling set of 𝑃𝑛 ↑𝑎𝑏 𝑊𝑛 is: 

𝑓(𝑉) = {𝑓(𝑣𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑢𝑗)|0 ≤ 𝑗 ≤ 𝑚}

= {𝑛, 𝑛 + 1, ⋯ ,2𝑛 − 2}

∪ {2𝑛 + 2𝑚 − 1,2𝑛 + 2𝑚, ⋯ ,2𝑛 + 3𝑚 − 1}

 

The edge labeling set is: 

𝑓(𝐸) = {𝑓(𝑣𝑖𝑣𝑖+1)|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑓(𝑢0𝑢𝑗)|1 ≤ 𝑗 ≤ 𝑚}

∪ {𝑓(𝑢𝑗𝑢𝑗+1)|1 ≤ 𝑗 ≤ 𝑚 − 1} ∪ 𝑓(𝑢𝑚𝑢1)

= {1,2, ⋯ , 𝑛 − 1} ∪ {2𝑛 − 1,2𝑛, ⋯ ,2𝑛 + 2𝑚 − 2}

 

According to the definition of AVRTL, 𝑓(𝑉) ∪ 𝑓(𝐸) →
[1,2𝑛 + 3𝑚 − 1] , and the joint graph 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚  has a 

1-degree vertex 𝑣𝑛 , 2-degree vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛−1 , 

3-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚 , 4-degree vertices 𝑣1/𝑢1 , 

and an 𝑚-degree vertex 𝑢0. It is only necessary to ensure that 

the labeling of the adjacent 2-degree vertices and 3-degree 

vertices of the joint graph 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 are equal. 

For the 2-degree vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛−1 adjacent to the 

joint graph 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 , the sum of their vertex labels is: 

𝑆𝑢𝑚(𝑣𝑖|2 ≤ 𝑖 ≤ 𝑛 − 1)

= 𝑓(𝑣𝑖) + ∑ 𝑓(𝑣𝑒)|2 ≤ 𝑖 ≤ 𝑛 − 1

𝑣𝑒∈𝐸(𝑣𝑖)

= 𝑓(𝑣𝑖) + 𝑓(𝑣𝑖−1𝑣𝑖) + 𝑓(𝑣𝑖𝑣𝑖+1)|2 ≤ 𝑖 ≤ 𝑛 − 1

= 3𝑛 − ⌊
𝑛 − 1

2
⌋ − 1

 

For the 3-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚  adjacent to the 

joint graph 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 , the sum of their vertex labels is: 

𝑆𝑢𝑚(𝑢𝑗|2 ≤ 𝑗 ≤ 𝑚)

= 𝑓(𝑢𝑗) + ∑ 𝑓(𝑢𝑒)|2 ≤ 𝑗 ≤ 𝑚

𝑣𝑒∈𝐸(𝑢𝑗)

= 𝑓(𝑢𝑗) + 𝑓(𝑢𝑗−1𝑢𝑗) + 𝑓(𝑢𝑗𝑢𝑗+1) + 𝑓(𝑢0𝑢𝑗)|2 ≤ 𝑗 ≤ 𝑚

||𝑓(𝑢𝑚) + 𝑓(𝑢𝑚−1𝑢𝑚) + 𝑓(𝑢𝑚𝑢1) + 𝑓(𝑢0𝑢𝑚)
= 8𝑛 + 5𝑚 − 6

 

Thus, it is proven that when 𝑛 ≥ 3, 𝑚 > 3, 𝑚 ≠ 4, and 

𝑛 ≡ 0(𝑚𝑜𝑑2), 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 is an AVRTL graph. 

Case 2: When 𝑛 ≥ 3, 𝑚 > 3, 𝑚 ≠ 4, and 𝑛 ≡ 1(𝑚𝑜𝑑2), 

the AVRTL of 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 is: 

𝑓(𝑣𝑖) = 2𝑛 − 𝑖, 2 ≤ 𝑖 ≤ 𝑛

𝑓(𝑣𝑖𝑣𝑖+1) = {
⌊
𝑛

2
⌋ +

𝑖

2
, 𝑖 ≡ 0(𝑚𝑜𝑑2) 𝑎𝑛𝑑 2 ≤ 𝑖 < 𝑛

𝑖 − ⌊
𝑖

2
⌋ , 𝑖 ≡ 1(𝑚𝑜𝑑2) 𝑎𝑛𝑑 1 ≤ 𝑖 < 𝑛

𝑓(𝑢0) = 2𝑛 + 3𝑚 − 1

𝑓(𝑢𝑖) = 2𝑛 + 3𝑚 − 1 − 𝑖, 1 ≤ 𝑖 ≤ 𝑚

𝑓(𝑢𝑖𝑢𝑖+1) = 2𝑛 − 2 + 𝑖, 1 ≤ 𝑖 < 𝑚

𝑓(𝑢𝑚𝑢1) = 2𝑛 + 𝑚 − 2

𝑓(𝑢0𝑢1) = 2𝑛 + 𝑚 − 1

𝑓(𝑢0𝑢𝑖) = 2(𝑛 + 𝑚) − 𝑖, 2 ≤ 𝑖 ≤ 𝑚

 

In this case, the vertex labeling set of 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 is: 

𝑓(𝑉) = {𝑓(𝑣𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑢𝑗)|0 ≤ 𝑗 ≤ 𝑚}

= {𝑛, 𝑛 + 1, ⋯ ,2𝑛 − 2}

∪ {2𝑛 + 2𝑚 − 1,2𝑛 + 2𝑚, ⋯ ,2𝑛 + 3𝑚 − 1}

 

The edge labeling set is: 

𝑓(𝐸) = {𝑓(𝑣𝑖𝑣𝑖+1)|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑓(𝑢0𝑢𝑗)|1 ≤ 𝑗 ≤ 𝑚}

∪ {𝑓(𝑢𝑗𝑢𝑗+1)|1 ≤ 𝑗 ≤ 𝑚 − 1} ∪ 𝑓(𝑢𝑚𝑢1)

= {1,2, ⋯ , 𝑛 − 1} ∪ {2𝑛 − 1,2𝑛, ⋯ ,2𝑛 + 2𝑚 − 2}

 

According to the AVRTL definition, 𝑓(𝑉) ∪ 𝑓(𝐸) →
[1,2𝑛 + 3𝑚 − 1] , and the joint graph 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚  has a 

1-degree vertex 𝑣𝑛 , 2-degree vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛−1 , 

3-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚 , 4-degree vertices 𝑣1/𝑢1 , 

and an 𝑚-degree vertex 𝑢0. It is only necessary to ensure that 

the labeling of the adjacent 2-degree and 3-degree vertices of 

the joint graph 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 are equal. 

For the 2-degree vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛−1 adjacent to the 
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joint graph 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 , the sum of their vertex labels is: 

𝑆𝑢𝑚(𝑣𝑖|2 ≤ 𝑖 ≤ 𝑛 − 1)

= 𝑓(𝑣𝑖) + ∑ 𝑓(𝑣𝑒)|2 ≤ 𝑖 ≤ 𝑛 − 1

𝑣𝑒∈𝐸(𝑣𝑖)

= 𝑓(𝑣𝑖) + 𝑓(𝑣𝑖−1𝑣𝑖) + 𝑓(𝑣𝑖𝑣𝑖+1)|2 ≤ 𝑖 ≤ 𝑛 − 1

= 2𝑛 +
𝑛 − 1

2

 

For the 3-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚  adjacent to the 

joint graph 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 , the sum of their vertex labels is: 

𝑆𝑢𝑚(𝑢𝑗|2 ≤ 𝑗 ≤ 𝑚)

= 𝑓(𝑢𝑗) + ∑ 𝑓(𝑢𝑒)|2 ≤ 𝑗 ≤ 𝑚

𝑣𝑒∈𝐸(𝑢𝑗)

= 𝑓(𝑢𝑗) + 𝑓(𝑢𝑗−1𝑢𝑗) + 𝑓(𝑢𝑗𝑢𝑗+1) + 𝑓(𝑢0𝑢𝑗)|2 ≤ 𝑗 ≤ 𝑚

||𝑓(𝑢𝑚) + 𝑓(𝑢𝑚−1𝑢𝑚) + 𝑓(𝑢𝑚𝑢1) + 𝑓(𝑢0𝑢𝑚)
= 8𝑛 + 5𝑚 − 6

 

Thus, it is proven that when 𝑛 ≥ 3, 𝑚 > 3, 𝑚 ≠ 4, and 

𝑛 ≡ 1(𝑚𝑜𝑑2), 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 is an AVRTL graph. 

In summary, for the joint graph  𝑃𝑛 ↑𝑎𝑏 𝑊𝑚, when 𝑛 ≥ 3, 

𝑚 > 3, and 𝑚 ≠ 4, it is an AVRTL graph.  

Partial graph labeling results for 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 are shown in 

Fig 6. 
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Fig. 6. Labeling Results for 𝑃13 ↑𝑎𝑏 𝑊6. 

 

Theorem 3: For a joint graph 𝐹𝑛 ↑𝑎𝑏 𝑆𝑚 , when 𝑛 > 3, 

𝑚 > 2, and 𝑚 ≠ 𝑛 + 1, it is an AVRTL graph. 

Proof: Let the vertex set of the joint graph 𝐹𝑛 ↑𝑎𝑏 𝑆𝑚, be 

denoted as 𝑉(𝐹𝑛 ↑𝑎𝑏 𝑆𝑚) = {𝑣0, 𝑣1, ⋯ , 𝑣𝑛 , 𝑢0, 𝑢1, ⋯ , 𝑢𝑚} , 

and the edge set as 𝐸(𝐹𝑛 ↑𝑎𝑏 𝑆𝑚) = {𝑣0𝑣𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪
{𝑣𝑖𝑣𝑖+1|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑢0𝑢𝑖|1 ≤ 𝑖 ≤ 𝑚}. 

When 𝑛 > 3 , 𝑚 > 2 , and 𝑚 ≠ 𝑛 + 1 , the ARVRL of 

𝐹𝑛 ↑𝑎𝑏 𝑆𝑚 is: 

𝑓(𝑣𝑖) = 3𝑛 − 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑓(𝑣𝑖𝑣𝑖+1) = 𝑖, 1 ≤ 𝑖 < 𝑛

𝑓(𝑣0𝑣𝑖) = 2𝑛 − 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑓(𝑢0) = 3𝑛

𝑓(𝑢𝑖) = 3𝑛 + 2𝑚 + 1 − 𝑖, 1 ≤ 𝑖 ≤ 𝑚

𝑓(𝑢0𝑢𝑖) = 3𝑛 + 𝑖, 1 ≤ 𝑖 ≤ 𝑚

 

In this case, the vertex labeling set of 𝐹𝑛 ↑𝑎𝑏 𝑆𝑚 is: 

𝑓(𝑉) = {𝑓(𝑣𝑖)|0 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑢𝑗)|0 ≤ 𝑗 ≤ 𝑚}

= {2𝑛, 2𝑛 + 1, ⋯ ,3𝑛}

∪ {3𝑛 + 𝑚 + 1,3𝑛 + 𝑚 + 2, ⋯ ,3𝑛 + 2𝑚}

 

The edge labeling set is: 

𝑓(𝐸) = {𝑓(𝑣𝑖𝑣𝑖+1)|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑓(𝑣0𝑣𝑖)|1 ≤ 𝑖 ≤ 𝑛}

∪ {𝑓(𝑢0𝑢𝑗)|1 ≤ 𝑗 ≤ 𝑚}

= {1,2, ⋯ ,2𝑛 − 1} ∪ {3𝑛 + 1,3𝑛 + 2, ⋯ ,3𝑛 + 𝑚}

 

According to the definition of AVRTL , 𝑓(𝑉) ∪ 𝑓(𝐸) →
[1,3𝑛 + 2𝑚], and the joint graph 𝑊𝑛 ↑𝑎𝑏 𝑆𝑚 has a 1-degree 

vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚 , 2-degree vertices 𝑣1/𝑣𝑛 , 3-degree 

vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛−1, 𝑛 + 1-degree vertices 𝑣0/𝑢1, and an 

𝑚-degree vertex 𝑢0. It is only necessary to ensure that the 

labeling of the adjacent 3-degree vertices of the joint graph 

𝐹𝑛 ↑𝑎𝑏 𝑆𝑚 are equal. 

For the 3-degree vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛−1 adjacent to the 

joint graph 𝐹𝑛 ↑𝑎𝑏 𝑆𝑚, the sum of the labeling of each vertex 

is: 

𝑆𝑢𝑚(𝑣𝑖|2 ≤ 𝑖 ≤ 𝑛 − 1)

= 𝑓(𝑣𝑖) + ∑ 𝑓(𝑣𝑒)|2 ≤ 𝑖 ≤ 𝑛 − 1

𝑣𝑒∈𝐸(𝑣𝑖)

= 𝑓(𝑣𝑖) + 𝑓(𝑣𝑖−1𝑣𝑖) + 𝑓(𝑣𝑖𝑣𝑖+1)𝑓(𝑣0𝑣𝑖)|2 ≤ 𝑖 ≤ 𝑛 − 1
= 5𝑛 − 1

 

Thus, it is proven that when 𝑛 > 3, 𝑚 > 2, and 𝑚 ≠ 𝑛 +
1, 𝐹𝑛 ↑𝑎𝑏 𝑆𝑚 is an AVRTL graph. 

The labeling results for some joint graphs 𝐹𝑛 ↑𝑎𝑏 𝑆𝑚 are 

shown in Fig 7. 
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Fig. 7. Labeling Results for 𝐹6 ↑𝑎𝑏 𝑆9 

 

Theorem 4: For a joint graph 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚 , when 𝑛 > 3, 

𝑚 > 3, and 𝑚 ≠ 5, it is an AVRTL graph. 

Proof: Let the vertex set of the joint graph 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚 be 

denoted as 𝑉(𝐶𝑛 ↑𝑎𝑏 𝑊𝑚) = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛 , 𝑢0, 𝑢1, ⋯ , 𝑢𝑚} , 

and the edge set as 𝐸(𝐶𝑛 ↑𝑎𝑏 𝑊𝑚) = {𝑣𝑛𝑣1} ∪ {𝑢𝑚𝑢1} ∪
{𝑣𝑖𝑣𝑖+1|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑢0𝑢𝑖|1 ≤ 𝑖 ≤ 𝑚} ∪
{𝑢𝑖𝑢𝑖+1|1 ≤ 𝑖 ≤ 𝑚 − 1}. 

Case 1: When 𝑛 > 3, 𝑚 > 3, 𝑚 ≠ 5 and 𝑛 ≡ 0(𝑚𝑜𝑑2), 

the AVRTL of 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚 is: 

𝑓(𝑣𝑖) = 2𝑛 + 1 − 𝑖, 2 ≤ 𝑖 ≤ 𝑛

𝑓(𝑣𝑛𝑣1) = 𝑛

𝑓(𝑣𝑖𝑣𝑖+1) = {

𝑛

2
+

𝑖

2
, 𝑖 ≡ 0(𝑚𝑜𝑑2) 𝑎𝑛𝑑 2 ≤ 𝑖 < 𝑛

𝑖 − ⌊
𝑖

2
⌋ , 𝑖 ≡ 1(𝑚𝑜𝑑2) 𝑎𝑛𝑑 1 ≤ 𝑖 < 𝑛

𝑓(𝑢0) = 2𝑛 + 3𝑚

𝑓(𝑢𝑖) = 2𝑛 + 3𝑚 − 𝑖, 1 ≤ 𝑖 ≤ 𝑚

𝑓(𝑢𝑖𝑢𝑖+1) = 2𝑛 − 1 + 𝑖, 1 ≤ 𝑖 < 𝑚

𝑓(𝑢𝑚𝑢1) = 2𝑛 + 𝑚 − 1
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𝑓(𝑢0𝑢1) = 2𝑛 + 𝑚

𝑓(𝑢0𝑢𝑖) = 2(𝑛 + 𝑚) + 1 − 𝑖, 2 ≤ 𝑖 ≤ 𝑚
 

In this case, the vertex labeling set of 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚 is: 

𝑓(𝑉) = {𝑓(𝑣𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑢𝑗)|0 ≤ 𝑗 ≤ 𝑚}

= {𝑛 + 1, 𝑛 + 2, ⋯ ,2𝑛 − 1}

∪ {2𝑛 + 2𝑚, 2𝑛 + 2𝑚 + 1, ⋯ ,2𝑛 + 3𝑚}

 

The edge labeling set is: 

𝑓(𝐸) = {𝑓(𝑣𝑖𝑣𝑖+1)|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ 𝑓(𝑣𝑛𝑣1) ∪ 𝑓(𝑢𝑚𝑢1)

∪ {𝑓(𝑢𝑗𝑢𝑗+1)|1 ≤ 𝑗 ≤ 𝑚 − 1} ∪ {𝑓(𝑢0𝑢𝑗)|1 ≤ 𝑗 ≤ 𝑚}

= {1,2, ⋯ , 𝑛} ∪ {2𝑛, 2𝑛 + 1, ⋯ ,2𝑛 + 2𝑚 − 1}

 

According to the AVRTL definition, 𝑓(𝑉) ∪ 𝑓(𝐸) →
[1,2𝑛 + 3𝑚], and the joint graph 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚  has 2-degree 

vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛 , 3-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚 , 

5-degree vertices 𝑣1/𝑢1, and an 𝑚-degree vertex 𝑢0 . It is 

only necessary to ensure that the labeling of the adjacent 

2-degree and 3-degree vertices of the joint graph 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚 

are equal. 

For the 2-degree vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛 adjacent to the joint 

graph 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚, the sum of the labeling of each vertex is: 

𝑆𝑢𝑚(𝑣𝑖|2 ≤ 𝑖 ≤ 𝑛)

= 𝑓(𝑣𝑖) + ∑ 𝑓(𝑣𝑒)|2 ≤ 𝑖 ≤ 𝑛

𝑣𝑒∈𝐸(𝑣𝑖)

= 𝑓(𝑣𝑖) + 𝑓(𝑣𝑖−1𝑣𝑖) + 𝑓(𝑣𝑖𝑣𝑖+1)|2 ≤ 𝑖 ≤ 𝑛 − 1

||𝑓(𝑣𝑛) + 𝑓(𝑣𝑛−1𝑣𝑛) + 𝑓(𝑣𝑛𝑣1)

= 3𝑛 − ⌊
𝑛 − 1

2
⌋

 

For the 3-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚  adjacent to the 

joint graph 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚, the sum of the labeling of each vertex 

is: 

𝑆𝑢𝑚(𝑢𝑗|2 ≤ 𝑗 ≤ 𝑚)

= 𝑓(𝑢𝑗) + ∑ 𝑓(𝑢𝑒)|2 ≤ 𝑗 ≤ 𝑚

𝑢𝑒∈𝐸(𝑢𝑗)

= 𝑓(𝑢𝑗) + 𝑓(𝑢𝑗−1𝑢𝑗) + 𝑓(𝑢𝑗𝑢𝑗+1) + 𝑓(𝑢0𝑢𝑗)|2 ≤ 𝑗 ≤ 𝑚

||𝑓(𝑢𝑚) + 𝑓(𝑢𝑚−1𝑢𝑚) + 𝑓(𝑢𝑚𝑢1) + 𝑓(𝑢0𝑢𝑚)
= 8𝑛 + 5𝑚 − 2

 

Thus, it is proven that when 𝑛 > 3, 𝑚 > 3, 𝑚 ≠ 5, and 

𝑛 ≡ 0(𝑚𝑜𝑑2), 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚 is an AVRTL graph. 

Case 2: When 𝑛 > 3, 𝑚 > 3, 𝑚 ≠ 5, and 𝑛 ≡ 1(𝑚𝑜𝑑2), 

the AVRTL of 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚 is: 

𝑓(𝑣𝑖) = 2𝑛 + 1 − 𝑖, 2 ≤ 𝑖 ≤ 𝑛

𝑓(𝑣𝑛𝑣1) = 𝑛 − ⌊
𝑛

2
⌋

𝑓(𝑣𝑖𝑣𝑖+1) = {
⌈
𝑛

2
⌉ +

𝑖

2
, 𝑖 ≡ 0(𝑚𝑜𝑑2) 𝑎𝑛𝑑 2 ≤ 𝑖 < 𝑛

𝑖 − ⌊
𝑖

2
⌋ , 𝑖 ≡ 1(𝑚𝑜𝑑2) 𝑎𝑛𝑑 1 ≤ 𝑖 < 𝑛

𝑓(𝑢0) = 2𝑛 + 3𝑚

𝑓(𝑢𝑖) = 2𝑛 + 3𝑚 − 𝑖, 1 ≤ 𝑖 ≤ 𝑚

𝑓(𝑢𝑖𝑢𝑖+1) = 2𝑛 − 1 + 𝑖, 1 ≤ 𝑖 < 𝑚

𝑓(𝑢𝑚𝑢1) = 2𝑛 + 𝑚 − 1

𝑓(𝑢0𝑢1) = 2𝑛 + 𝑚

𝑓(𝑢0𝑢𝑖) = 2(𝑛 + 𝑚) + 1 − 𝑖, 2 ≤ 𝑖 ≤ 𝑚

 

In this case, the vertex labeling set of 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚 is: 

𝑓(𝑉) = {𝑓(𝑣𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑢𝑗)|0 ≤ 𝑗 ≤ 𝑚}

= {𝑛 + 1, 𝑛 + 2, ⋯ ,2𝑛 − 1}

∪ {2𝑛 + 2𝑚, 2𝑛 + 2𝑚 + 1, ⋯ ,2𝑛 + 3𝑚}

 

The edge labeling set is: 

𝑓(𝐸) = {𝑓(𝑣𝑖𝑣𝑖+1)|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ 𝑓(𝑣𝑛𝑣1) ∪ 𝑓(𝑢𝑚𝑢1)

∪ {𝑓(𝑢𝑗𝑢𝑗+1)|1 ≤ 𝑗 ≤ 𝑚 − 1} ∪ {𝑓(𝑢0𝑢𝑗)|1 ≤ 𝑗 ≤ 𝑚}

= {1,2, ⋯ , 𝑛} ∪ {2𝑛, 2𝑛 + 1, ⋯ ,2𝑛 + 2𝑚 − 1}

 

According to the AVRTL definition, 𝑓(𝑉) ∪ 𝑓(𝐸) →
[1,2𝑛 + 3𝑚], and the joint graph 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚  has 2-degree 

vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛 , 3-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚 , 

5-degree vertices 𝑣1/𝑢1, and an 𝑚-degree vertex 𝑢0 . It is 

only necessary to ensure that the labeling of the adjacent 

2-degree and 3-degree vertices of the joint graph 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚 

are equal. 

For the 2-degree vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛 adjacent to the joint 

graph 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚, the sum of the labeling of each vertex is: 
𝑆𝑢𝑚(𝑣𝑖|2 ≤ 𝑖 ≤ 𝑛)

= 𝑓(𝑣𝑖) + ∑ 𝑓(𝑣𝑒)|2 ≤ 𝑖 ≤ 𝑛

𝑣𝑒∈𝐸(𝑣𝑖)

= 𝑓(𝑣𝑖) + 𝑓(𝑣𝑖−1𝑣𝑖) + 𝑓(𝑣𝑖𝑣𝑖+1)|2 ≤ 𝑖 ≤ 𝑛 − 1

||𝑓(𝑣𝑛) + 𝑓(𝑣𝑛−1𝑣𝑛) + 𝑓(𝑣𝑛𝑣1)

= 2𝑛 + 1 + ⌈
𝑛

2
⌉

 

For the 3-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚  adjacent to the 

joint graph 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚, the sum of the labeling of each vertex 

is: 

𝑆𝑢𝑚(𝑢𝑗|2 ≤ 𝑗 ≤ 𝑚)

= 𝑓(𝑢𝑗) + ∑ 𝑓(𝑢𝑒)|2 ≤ 𝑗 ≤ 𝑚

𝑢𝑒∈𝐸(𝑢𝑗)

= 𝑓(𝑢𝑗) + 𝑓(𝑢𝑗−1𝑢𝑗) + 𝑓(𝑢𝑗𝑢𝑗+1) + 𝑓(𝑢0𝑢𝑗)|2 ≤ 𝑗 ≤ 𝑚

||𝑓(𝑢𝑚) + 𝑓(𝑢𝑚−1𝑢𝑚) + 𝑓(𝑢𝑚𝑢1) + 𝑓(𝑢0𝑢𝑚)
= 8𝑛 + 5𝑚 − 2

 

Thus, it is proven that when 𝑛 > 3, 𝑚 > 3, 𝑚 ≠ 5, and 

𝑛 ≡ 1(𝑚𝑜𝑑2), 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚 is an AVRTL graph. 

In summary, for the joint graph 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚, when 𝑛 > 3, 

𝑚 > 3, and 𝑚 ≠ 5, it is an AVRTL graph. 

Partial graph labeling results for 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚 are shown in 

Fig 8. 

 

11

12

13

14
15

16

17

18

19
40

41

42

43

44
45

46

47

48

49

9

4

8

5

10 1

6

2

7

3

2920

21

22

23

24 25

26

27

28
30

31

32

33

34
35

36

37

38

39
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Theorem 5: For a joint graph 𝑆𝑛 ↑𝑎𝑏 𝑆𝑚 , when 𝑛 > 3, 

𝑚 > 3, and 𝑚 ≠ 𝑛 + 1, it is an AVRTL graph. 

According to the definition of the total label reducible from 

adjacent vertices, Theorem 5 is evidently valid. 

Theorem 6: For a joint graph 𝐹𝑛 ↑𝑎𝑏 𝑊𝑚 , when 𝑛 > 3, 

𝑚 > 3, and 𝑚 ≠ 𝑛 + 3, it is an AVRTL graph. 

Proof: Let the vertex set of the joint graph 𝐹𝑛 ↑𝑎𝑏 𝑊𝑚 be 

denoted as 𝑉(𝐹𝑛 ↑𝑎𝑏 𝑊𝑚) = {𝑣0, 𝑣1, ⋯ , 𝑣𝑛 , 𝑢0, 𝑢1, ⋯ , 𝑢𝑚} , 

and the edge set as 𝐸(𝐹𝑛 ↑𝑎𝑏 𝑊𝑚) = {𝑣0𝑣𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪
{𝑣𝑖𝑣𝑖+1|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑢0𝑢𝑖|1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑢𝑚𝑢1} ∪
{𝑢𝑖𝑢𝑖+1|1 ≤ 𝑖 ≤ 𝑚 − 1}. 

When 𝑛 > 3 , 𝑚 > 3 , and 𝑚 ≠ 𝑛 + 3 , the AVRTL of 

𝐹𝑛 ↑𝑎𝑏 𝑊𝑚 is: 

𝑓(𝑣𝑖) = 3𝑛 − 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑓(𝑣𝑖𝑣𝑖+1) = 𝑖, 1 ≤ 𝑖 < 𝑛

𝑓(𝑣0𝑣𝑖) = 2𝑛 − 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑓(𝑢0) = 3𝑛 + 3𝑚

𝑓(𝑢𝑖) = 3𝑛 + 3𝑚 − 𝑖, 1 ≤ 𝑖 ≤ 𝑚

𝑓(𝑢𝑖𝑢𝑖+1) = 3𝑛 − 1 + 𝑖, 1 ≤ 𝑖 < 𝑚

𝑓(𝑢𝑚𝑢1) = 3𝑛 + 𝑚 − 1

𝑓(𝑢0𝑢1) = 3𝑛 + 𝑚

𝑓(𝑢0𝑢𝑖) = 3𝑛 + 2𝑚 + 1 − 𝑖, 2 ≤ 𝑖 ≤ 𝑚

 

In this case, the vertex labeling set of 𝐹𝑛 ↑𝑎𝑏 𝑊𝑚 is: 

𝑓(𝑉) = {𝑓(𝑣𝑖)|0 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑢𝑗)|0 ≤ 𝑗 ≤ 𝑚}

= {2𝑛, 2𝑛 + 1, ⋯ ,3𝑛 − 1}

∪ {3𝑛 + 2𝑚, 3𝑛 + 2𝑚 + 1, ⋯ ,3𝑛 + 3𝑚}

 

The edge labeling set is: 

𝑓(𝐸) = {𝑓(𝑣0𝑣𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑣𝑖𝑣𝑖+1)|1 ≤ 𝑖 ≤ 𝑛 − 1}

∪ {𝑓(𝑢𝑗𝑢𝑗+1)|1 ≤ 𝑗 ≤ 𝑚 − 1} ∪ {𝑓(𝑢0𝑢𝑗)|1 ≤ 𝑗 ≤ 𝑚}

∪ 𝑓(𝑢𝑚𝑢1)

= {1,2, ⋯ ,2𝑛 − 1} ∪ {3𝑛, 3𝑛 + 1, ⋯ ,3𝑛 + 2𝑚 − 1}

 

According to the AVRTL definition, 𝑓(𝑉) ∪ 𝑓(𝐸) →
[1,3𝑛 + 3𝑚], and the joint graph 𝐹𝑛 ↑𝑎𝑏 𝑊𝑚  has 2-degree 

vertices 𝑣1, 𝑣𝑛 , 3-degree vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛−1, 𝑢2, 𝑢3, ⋯ 

𝑢𝑚, 𝑛 + 3-degree vertices 𝑣0/𝑢1, and an m -degree vertex 

𝑢0. It is only necessary to ensure that the labeling of the 

adjacent 3-degree vertices of the joint graph 𝐹𝑛 ↑𝑎𝑏 𝑊𝑚 are 

equal. 

For the 3-degree vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛−1 adjacent to the 

joint graph 𝐹𝑛 ↑𝑎𝑏 𝑊𝑚, the sum of the labeling of each vertex 

is: 
𝑆𝑢𝑚(𝑣𝑖|2 ≤ 𝑖 ≤ 𝑛 − 1)

= 𝑓(𝑣𝑖) + ∑ 𝑓(𝑣𝑒)|2 ≤ 𝑖 ≤ 𝑛

𝑣𝑒∈𝐸(𝑣𝑖)

− 1

= 𝑓(𝑣𝑖) + 𝑓(𝑣𝑖−1𝑣𝑖) + 𝑓(𝑣𝑖𝑣𝑖+1)|2 ≤ 𝑖 ≤ 𝑛 − 1
= 5𝑛 − 1

 

For the 3-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚  adjacent to the 

joint graph 𝐹𝑛 ↑𝑎𝑏 𝑊𝑚, the sum of the labeling of each vertex 

is: 

𝑆𝑢𝑚(𝑢𝑗|2 ≤ 𝑗 ≤ 𝑚)

= 𝑓(𝑢𝑗) + ∑ 𝑓(𝑢𝑒)|2 ≤ 𝑗 ≤ 𝑚

𝑢𝑒∈𝐸(𝑢𝑗)

= 𝑓(𝑢𝑗) + 𝑓(𝑢𝑗−1𝑢𝑗) + 𝑓(𝑢𝑗𝑢𝑗+1) + 𝑓(𝑢0𝑢𝑗)|2 ≤ 𝑗 ≤ 𝑚 − 1

||𝑓(𝑢𝑚) + 𝑓(𝑢𝑚−1𝑢𝑚) + 𝑓(𝑢𝑚𝑢1) + 𝑓(𝑢0𝑢𝑚)
= 12𝑛 + 5𝑚 − 2

 

Thus, it is proven that when 𝑛 > 3, 𝑚 > 3, and 𝑚 ≠ 𝑛 +
3, 𝐹𝑛 ↑𝑎𝑏 𝑊𝑚 is an AVRTL graph. 

Partial graph labeling results for 𝐹𝑛 ↑𝑎𝑏 𝑊𝑚 are shown in 

Fig 9. 
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Fig. 9. Labeling Results for 𝐹9 ↑𝑎𝑏 𝑊10. 

 

Theorem 7: For a joint graph 𝑃𝑛 ↑𝑎𝑏 𝑊𝑚 , when 𝑛 ≥ 3, 

𝑚 > 3, and 𝑚 ≠ 4, it is an AVRTL graph. 

According to the definition of the total label reducible from 

adjacent vertices, Theorem 7 is evidently valid. 

Theorem 8: For a joint graph 𝑆𝑛 ↑𝑎𝑏 𝑊𝑚 , when 𝑛 > 2, 

𝑚 > 3, and 𝑚 ≠ 𝑛 + 3, it is an AVRTL graph. 

Proof: Let the vertex set of the joint graph 𝐹𝑛 ↑𝑎𝑏 𝑆𝑚, be 

denoted as 𝑉(𝑆𝑛 ↑𝑎𝑏 𝑊𝑚) = {𝑣0, 𝑣1, ⋯ , 𝑣𝑛 , 𝑢0, 𝑢1, ⋯ , 𝑢𝑚} , 

and the edge set as 𝐸(𝑆𝑛 ↑𝑎𝑏 𝑊𝑚) = {𝑣0𝑣𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪
{𝑢0𝑢𝑖|1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑢𝑖𝑢𝑖+1|1 ≤ 𝑖 ≤ 𝑚 − 1}{𝑢𝑚𝑢1}. 

When 𝑛 > 2 , 𝑚 > 3 , and 𝑚 ≠ 𝑛 + 3 , the AVRTL of 

𝑆𝑛 ↑𝑎𝑏 𝑊𝑚 is: 

𝑓(𝑣𝑖) = 2𝑛 + 1 − 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑓(𝑣0𝑣𝑖) = 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑓(𝑢0) = 2𝑛 + 3𝑚 + 1

𝑓(𝑢𝑖) = 2𝑛 + 3𝑚 + 1 − 𝑖, 1 ≤ 𝑖 ≤ 𝑚

𝑓(𝑢𝑖𝑢𝑖+1) = 2𝑛 + 𝑖, 1 ≤ 𝑖 < 𝑚

𝑓(𝑢𝑚𝑢1) = 2𝑛 + 𝑚

𝑓(𝑢0𝑢1) = 2𝑛 + 𝑚 + 1

𝑓(𝑢0𝑢𝑖) = 2(𝑛 + 𝑚 + 1) − 𝑖, 2 ≤ 𝑖 ≤ 𝑚

 

In this case, the vertex labeling set of 𝑆𝑛 ↑𝑎𝑏 𝑊𝑚 is: 

𝑓(𝑉) = {𝑓(𝑣𝑖)|0 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑢𝑗)|0 ≤ 𝑗 ≤ 𝑚}

= {𝑛 + 1, 𝑛 + 2, ⋯ ,2𝑛}

∪ {2𝑛 + 2𝑚 + 1,2𝑛 + 2𝑚 + 2, ⋯ ,2𝑛 + 3𝑚 + 1}

 

The edge labeling set is: 

𝑓(𝐸) = {𝑓(𝑣0𝑣𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑢0𝑢𝑗)|1 ≤ 𝑗 ≤ 𝑚}

∪ {𝑓(𝑢𝑗𝑢𝑗+1)|1 ≤ 𝑗 ≤ 𝑚 − 1} ∪ 𝑓(𝑢𝑚𝑢1)

= {1,2, ⋯ , 𝑛} ∪ {2𝑛 + 1,2𝑛 + 2, ⋯ ,2𝑛 + 2𝑚}

 

According to the AVRTL definition, 𝑓(𝑉) ∪ 𝑓(𝐸) →
[1,2𝑛 + 3𝑚 + 1] , and the joint graph 𝑆𝑛 ↑𝑎𝑏 𝑊𝑚  has a 

1-degree vertices 𝑣1, 𝑣2, ⋯ , 𝑣𝑛 , 3-degree vertices𝑢2, 𝑢3, ⋯, 
𝑢𝑚, 𝑛 + 3-degree vertices 𝑣0/𝑢1, and an 𝑚-degree vertex 𝑢0. 

It is only necessary to ensure that the labeling of the adjacent 
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3-degree vertices of the joint graph 𝑆𝑛 ↑𝑎𝑏 𝑊𝑚  are equal. 

For the 3-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚  adjacent to the 

joint graph 𝑆𝑛 ↑𝑎𝑏 𝑊𝑚 , the sum of the labeling of each vertex 

is: 

𝑆𝑢𝑚(𝑢𝑗|2 ≤ 𝑗 ≤ 𝑚)

= 𝑓(𝑢𝑗) + ∑ 𝑓(𝑢𝑒)|2 ≤ 𝑗 ≤ 𝑚

𝑢𝑒∈𝐸(𝑢𝑗)

= 𝑓(𝑢𝑗) + 𝑓(𝑢𝑗−1𝑢𝑗) + 𝑓(𝑢𝑗𝑢𝑗+1) + 𝑓(𝑢0𝑢𝑗)|2 ≤ 𝑗 ≤ 𝑚

||𝑓(𝑢𝑚) + 𝑓(𝑢𝑚−1𝑢𝑚) + 𝑓(𝑢𝑚𝑢𝑚+1) + 𝑓(𝑢0𝑢𝑚)

= 8𝑛 + 5𝑚 + 2

 

Thus, it is proven that when 𝑛 > 2, 𝑚 > 3, and 𝑚 ≠ 𝑛 +
3, 𝑆𝑛 ↑𝑎𝑏 𝑊𝑚  is an AVRTL graph. 

Theorem 9: For a joint graph 𝑊𝑛 ↑𝑎𝑏 𝑊𝑚, when 𝑛 > 3, 

and 𝑚 > 3, it is an AVRTL graph. 

Proof: Let the vertex set of the joint graph 𝑊𝑛 ↑𝑎𝑏 𝑊𝑚 be 

denoted as 𝑉(𝑊𝑛 ↑𝑎𝑏 𝑊𝑚) = {𝑣0, 𝑣1, ⋯ , 𝑣𝑛 , 𝑢0, 𝑢1, ⋯ , 𝑢𝑚} , 

and the edge set as 𝐸(𝑊𝑛 ↑𝑎𝑏 𝑊𝑚) = {𝑣0𝑣𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪
{𝑣𝑛𝑣1} ∪ {𝑣𝑖𝑣𝑖+1|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑢0𝑢𝑖|1 ≤ 𝑖 ≤ 𝑚} ∪
{𝑢𝑚𝑢1} ∪ {𝑢𝑖𝑢𝑖+1|1 ≤ 𝑖 ≤ 𝑚 − 1}. 

When 𝑛 > 3, and 𝑚 > 3, the AVRTL of 𝑊𝑛 ↑𝑎𝑏 𝑊𝑚 is: 

𝑓(𝑣𝑖) = 3𝑛 + 1 − 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑓(𝑣𝑖𝑣𝑖+1) = 𝑖, 1 ≤ 𝑖 < 𝑛

𝑓(𝑣𝑛𝑣1) = 𝑛

𝑓(𝑣0𝑣1) = 𝑛 + 1

𝑓(𝑣0𝑣𝑖) = 2𝑛 + 2 − 𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑓(𝑢0) = 3𝑛 + 3𝑚 + 1

𝑓(𝑢𝑖) = 3𝑛 + 3𝑚 + 1 − 𝑖, 1 ≤ 𝑖 ≤ 𝑚

𝑓(𝑢𝑖𝑢𝑖+1) = 3𝑛 + 𝑖, 1 ≤ 𝑖 < 𝑚

𝑓(𝑢𝑚𝑢1) = 3𝑛 + 𝑚

𝑓(𝑢0𝑢1) = 3𝑛 + 𝑚 + 1

𝑓(𝑢0𝑢𝑖) = 3𝑛 + 2𝑚 + 2 − 𝑖, 2 ≤ 𝑖 ≤ 𝑚

 

In this case, the vertex labeling set of 𝑊𝑛 ↑𝑎𝑏 𝑊𝑚 is: 

𝑓(𝑉) = {𝑓(𝑣𝑖)|0 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑢𝑗)|0 ≤ 𝑗 ≤ 𝑚}

= {2𝑛 + 1,2𝑛 + 2, ⋯ ,3𝑛}

∪ {3𝑛 + 2𝑚 + 1,3𝑛 + 2𝑚 + 2, ⋯ ,3𝑛 + 3𝑚 + 1}

 

The edge labeling set is: 

𝑓(𝐸) = {𝑓(𝑣0𝑣𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑣𝑖𝑣𝑖+1)|1 ≤ 𝑖 ≤ 𝑛 − 1}

∪ 𝑓(𝑣𝑛𝑣1) ∪ {𝑓(𝑢0𝑢𝑗)|1 ≤ 𝑗 ≤ 𝑚}

∪ {𝑓(𝑢𝑗𝑢𝑗+1)|1 ≤ 𝑗 ≤ 𝑚 − 1} ∪ 𝑓(𝑢𝑚𝑢1)

= {1,2, ⋯ ,2𝑛} ∪ {3𝑛 + 1,3𝑛 + 2, ⋯ ,3𝑛 + 2𝑚}

 

According to the AVRTL definition, (𝑉) ∪ 𝑓(𝐸) →
[1,3𝑛 + 3𝑚 + 1] , and the joint graph 𝑊𝑛 ↑𝑎𝑏 𝑊𝑚  has 

3-degree vertices 𝑣1, 𝑣2, ⋯ , 𝑣𝑛 , 𝑢2, 𝑢3, ⋯ , 𝑢𝑚 , 𝑛 + 3-degree 

vertices  𝑣0/𝑢1, and an m -degree vertex  𝑢0 . It is only 

necessary to ensure that the labeling of the adjacent 3-degree 

vertices of the joint graph 𝑊𝑛 ↑𝑎𝑏 𝑊𝑚 are equal. 

For the 3-degree vertices 𝑣1, 𝑣2, ⋯ , 𝑣𝑛 adjacent to the joint 

graph 𝑊𝑛 ↑𝑎𝑏 𝑊𝑚, the sum of the labeling of each vertex is: 
𝑆𝑢𝑚(𝑣𝑖|1 ≤ 𝑖 ≤ 𝑛)
= (𝑣𝑖|1 ≤ 𝑖 ≤ 𝑛)

= 𝑓(𝑣𝑖) + 𝑓(𝑣𝑖−1𝑣𝑖) + 𝑓(𝑣𝑖𝑣𝑖+1) + 𝑓(𝑣0𝑣𝑖)|2 ≤ 𝑖 ≤ 𝑛 − 1

||𝑓(𝑣1) + 𝑓(𝑣𝑛𝑣1) + 𝑓(𝑣1𝑣2) + 𝑓(𝑣0𝑣1)

||𝑓(𝑣𝑛) + 𝑓(𝑣𝑛−1𝑣𝑛) + 𝑓(𝑣𝑛𝑣1) + 𝑓(𝑣0𝑣𝑛)

= 5𝑛 + 2

 

For the 3-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚  adjacent to the 

joint graph𝑊𝑛 ↑𝑎𝑏 𝑊𝑚, the sum of the labeling of each vertex 

is: 

𝑆𝑢𝑚(𝑢𝑗|2 ≤ 𝑗 ≤ 𝑚)

= 𝑓(𝑢𝑗) + ∑ 𝑓(𝑢𝑒)|2 ≤ 𝑗 ≤ 𝑚

𝑢𝑒∈𝐸(𝑢𝑗)

= 𝑓(𝑢𝑗) + 𝑓(𝑢𝑗−1𝑢𝑗) + 𝑓(𝑢𝑗𝑢𝑗+1) + 𝑓(𝑢0𝑢𝑗)|2 ≤ 𝑗 ≤ 𝑚 − 1

||𝑓(𝑢𝑚) + 𝑓(𝑢𝑚−1𝑢𝑚) + 𝑓(𝑢𝑚𝑢1) + 𝑓(𝑢0𝑢𝑚)
= 12𝑛 + 5𝑚 + 2

 

Thus, it is proven that when 𝑛 > 3 , and 𝑚 > 3 , 

𝑊𝑛 ↑𝑎𝑏 𝑊𝑚 is an AVRTL graph. 

Partial graph labeling results for 𝑊𝑛 ↑𝑎𝑏 𝑊𝑚 are shown in 

Fig 10. 
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Fig. 10. Labeling Results for 𝑊7 ↑𝑎𝑏 𝑊16. 

 

Theorem 10: For a joint graph 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚, when 𝑛 ≥ 3, 

𝑚 > 4, it is an AVRTL graph. 

Proof: Let the vertex set of the joint graph 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚, be 

denoted as 𝑉(𝐶𝑛 ↑𝑎𝑏 𝐹𝑚) = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛 , 𝑢0, 𝑢1, ⋯ , 𝑢𝑚} , 

and the edge set as 𝐸(𝐶𝑛 ↑𝑎𝑏 𝐹𝑚 , ) = {𝑢0𝑢𝑖|1 ≤ 𝑖 ≤ 𝑚} ∪
{𝑣𝑖𝑣𝑖+1|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑢𝑖𝑢𝑖+1|1 ≤ 𝑖 ≤ 𝑚 − 1} ∪
{𝑣𝑛𝑣1}. 

Case 1: When 𝑛 ≥ 3 , 𝑚 > 4  and 𝑛 ≡ 0(𝑚𝑜𝑑2) , the 

AVRTL of 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚 is: 

𝑓(𝑣𝑖) = 2𝑛 + 1 − 𝑖, 2 ≤ 𝑖 ≤ 𝑛

𝑓(𝑣𝑛𝑣1) = 𝑛

𝑓(𝑣𝑖𝑣𝑖+1) = {

𝑛

2
+

𝑖

2
, 𝑖 ≡ 0(𝑚𝑜𝑑2) 𝑎𝑛𝑑 2 ≤ 𝑖 < 𝑛

𝑖 − ⌊
𝑖

2
⌋ , 𝑖 ≡ 1(𝑚𝑜𝑑2) 𝑎𝑛𝑑 1 ≤ 𝑖 < 𝑛

𝑓(𝑢0) = 2𝑛 + 3𝑚 − 1

𝑓(𝑢𝑖) = 2𝑛 + 3𝑚 − 1 − 𝑖, 1 ≤ 𝑖 ≤ 𝑚

𝑓(𝑢𝑖𝑢𝑖+1) = 2𝑛 − 1 + 𝑖, 1 ≤ 𝑖 < 𝑚

𝑓(𝑢0𝑢𝑖) = 2𝑛 + 2𝑚 − 1 − 𝑖

 

In this case, the vertex labeling set of 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚 is: 

𝑓(𝑉) = {𝑓(𝑣𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑢𝑗)|0 ≤ 𝑗 ≤ 𝑚}

= {𝑛 + 2, 𝑛 + 3, ⋯ ,2𝑛 − 1}

∪ {2𝑛 + 2𝑚 − 1,2𝑛 + 2𝑚, ⋯ ,2𝑛 + 3𝑚 − 1}

 

The edge labeling set is: 
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𝑓(𝐸) = {𝑓(𝑣𝑖𝑣𝑖+1)|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑓(𝑢0𝑢𝑗)|1 ≤ 𝑗 ≤ 𝑚}

∪ {𝑓(𝑢𝑗𝑢𝑗+1)|1 ≤ 𝑗 ≤ 𝑚 − 1} ∪ {𝑣𝑛𝑣1}

= {1,2, ⋯ , 𝑛} ∪ {2𝑛, 2𝑛 + 1, ⋯ ,2𝑛 + 2𝑚 − 2}

 

According to the AVRTL definition, 𝑓(𝑉) ∪ 𝑓(𝐸) →
[1,2𝑛 + 3𝑚 − 1] , and the joint graph 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚  has 

2-degree vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛 , 𝑢𝑚 , 3-degree vertices 𝑢2, 
𝑢3, ⋯ , 𝑢𝑚−1 , 5-degree vertices 𝑣1/𝑢1 , and an 𝑚 -degree 

vertex 𝑢0. It is only necessary to ensure that the labeling of 

the adjacent 2-degree and 3-degree vertices of the joint graph 

𝐶𝑛 ↑𝑎𝑏 𝐹𝑚 are equal. 

For the 2-degree vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛 , 𝑢𝑚 adjacent to the 

joint graph 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚, the sum of the labeling of each vertex 

is: 
𝑆𝑢𝑚(𝑣𝑖|2 ≤ 𝑖 ≤ 𝑛)

= 𝑓(𝑣𝑖) + ∑ 𝑓(𝑣𝑒)|2 ≤ 𝑖 ≤ 𝑛

𝑣𝑒∈𝐸(𝑣𝑖)

= 𝑓(𝑣𝑖) + 𝑓(𝑣𝑖−1𝑣𝑖) + 𝑓(𝑣𝑖𝑣𝑖+1)|2 ≤ 𝑖 ≤ 𝑛 − 1

||𝑓(𝑣𝑛) + 𝑓(𝑣𝑛−1𝑣𝑛) + 𝑓(𝑣𝑛𝑣1)

= 3𝑛 − ⌊
𝑛 − 1

2
⌋

 

For the 3-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚−1 adjacent to the 

joint graph 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚, the sum of the labeling of each vertex 

is: 

𝑆𝑢𝑚(𝑢𝑗|2 ≤ 𝑗 ≤ 𝑚 − 1)

= 𝑓(𝑢𝑗) + ∑ 𝑓(𝑢𝑒)|2 ≤ 𝑗 ≤ 𝑚

𝑢𝑒∈𝐸(𝑢𝑗)

− 1

= 𝑓(𝑢𝑗) + 𝑓(𝑢𝑗−1𝑢𝑗) + 𝑓(𝑢𝑗𝑢𝑗+1) + 𝑓(𝑢0𝑢𝑗)

+𝑓(𝑢0𝑢𝑗)|2 ≤ 𝑗 ≤ 𝑚 − 1

= 8𝑛 + 5𝑚 − 5

 

Thus, it is proven that when 𝑛 ≥ 3 , 𝑚 > 4 , and 𝑛 ≡
0(𝑚𝑜𝑑2), 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚 is an AVRTL graph. 

Case 2: When 𝑛 ≥ 3 , 𝑚 > 4 , and 𝑛 ≡ 1(𝑚𝑜𝑑2) , the 

AVRTL of 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚 is: 

𝑓(𝑣𝑖) = 2𝑛 + 1 − 𝑖, 2 ≤ 𝑖 ≤ 𝑛

𝑓(𝑣𝑛𝑣1) = 𝑛

𝑓(𝑣𝑖𝑣𝑖+1) = {

𝑛

2
+

𝑖

2
, 𝑖 ≡ 0(𝑚𝑜𝑑2) 𝑎𝑛𝑑 2 ≤ 𝑖 < 𝑛

𝑖 − ⌊
𝑖

2
⌋ , 𝑖 ≡ 1(𝑚𝑜𝑑2) 𝑎𝑛𝑑 1 ≤ 𝑖 < 𝑛

𝑓(𝑢0) = 2𝑛 + 3𝑚 − 1

𝑓(𝑢𝑖) = 2𝑛 + 3𝑚 − 1 − 𝑖, 1 ≤ 𝑖 ≤ 𝑚

𝑓(𝑢𝑖𝑢𝑖+1) = 2𝑛 − 1 + 𝑖, 1 ≤ 𝑖 < 𝑚

𝑓(𝑢0𝑢𝑖) = 2𝑛 + 2𝑚 − 1 − 𝑖

 

In this case, the vertex labeling set of 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚 is: 

𝑓(𝑉) = {𝑓(𝑣𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑓(𝑢𝑗)|0 ≤ 𝑗 ≤ 𝑚}

= {𝑛 + 2, 𝑛 + 3, ⋯ ,2𝑛 − 1}

∪ {2𝑛 + 2𝑚 − 1,2𝑛 + 2𝑚, ⋯ ,2𝑛 + 3𝑚 − 1}

 

The edge labeling set is: 

𝑓(𝐸) = {𝑓(𝑣𝑖𝑣𝑖+1)|1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑓(𝑢0𝑢𝑗)|1 ≤ 𝑗 ≤ 𝑚}

∪ {𝑓(𝑢𝑗𝑢𝑗+1)|1 ≤ 𝑗 ≤ 𝑚 − 1} ∪ {𝑣𝑛𝑣1}

= {1,2, ⋯ , 𝑛} ∪ {2𝑛, 2𝑛 + 1, ⋯ ,2𝑛 + 2𝑚 − 2}

 

According to the AVRTL definition, 𝑓(𝑉) ∪ 𝑓(𝐸) →
[1,2𝑛 + 3𝑚 − 1] , and the joint graph 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚  has 

2-degree vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛 , 𝑢𝑚 , 3-degree vertices 𝑢2, 
𝑢3, ⋯ , 𝑢𝑚−1 , 5-degree vertices 𝑣1/𝑢1 , and an 𝑚 -degree 

vertex 𝑢0. It is only necessary to ensure that the labeling of 

the adjacent 2-degree and 3-degree vertices of the joint graph 

𝐶𝑛 ↑𝑎𝑏 𝐹𝑚 are equal. 

For the 2-degree vertices 𝑣2, 𝑣3, ⋯ , 𝑣𝑛 , 𝑢𝑚 adjacent to the 

joint graph 𝐶𝑛 ↑𝑎𝑏 𝑊𝑚, the sum of the labeling of each vertex 

is: 
𝑆𝑢𝑚(𝑣𝑖|2 ≤ 𝑖 ≤ 𝑛)

= 𝑓(𝑣𝑖) + ∑ 𝑓(𝑣𝑒)|2 ≤ 𝑖 ≤ 𝑛

𝑣𝑒∈𝐸(𝑣𝑖)

= 𝑓(𝑣𝑖) + 𝑓(𝑣𝑖−1𝑣𝑖) + 𝑓(𝑣𝑖𝑣𝑖+1)|2 ≤ 𝑖 ≤ 𝑛 − 1

||𝑓(𝑣𝑛) + 𝑓(𝑣𝑛−1𝑣𝑛) + 𝑓(𝑣𝑛𝑣1)

= 3𝑛 − ⌊
𝑛 − 2

2
⌋ + ⌈

𝑛

2
⌉ +

𝑛 − 1

2

 

For the 3-degree vertices 𝑢2, 𝑢3, ⋯ , 𝑢𝑚−1 adjacent to the 

joint graph 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚, the sum of the labeling of each vertex 

is: 

𝑆𝑢𝑚(𝑢𝑗|2 ≤ 𝑗 ≤ 𝑚 − 1)

= 𝑓(𝑢𝑗) + ∑ 𝑓(𝑢𝑒)|2 ≤ 𝑗 ≤ 𝑚

𝑢𝑒∈𝐸(𝑢𝑗)

− 1

= 𝑓(𝑢𝑗) + 𝑓(𝑢𝑗−1𝑢𝑗) + 𝑓(𝑢𝑗𝑢𝑗+1) + 𝑓(𝑢0𝑢𝑗)

+𝑓(𝑢0𝑢𝑗)|2 ≤ 𝑗 ≤ 𝑚 − 1

= 8𝑛 + 5𝑚 − 5

 

Thus, it is proven that when 𝑛 ≥ 3, 𝑚 > 4 , and 𝑛 ≡
1(𝑚𝑜𝑑2), 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚 is an AVRTL graph. 

In summary, for the joint graph 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚, when 𝑛 ≥ 3, 

and 𝑚 > 4, it is an AVRTL graph. 

Partial graph labeling results for 𝐶𝑛 ↑𝑎𝑏 𝐹𝑚 are shown in 

Fig 11. 
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Fig. 11. Labeling Results for 𝐶10 ↑𝑎𝑏 𝐹7 

 

Conjecture 1: If the subgraphs 𝐺1  and 𝐺2  are AVRTL 

graphs, then the joint graph 𝐺1 ↑𝑎𝑏 𝐺2  is also an AVRTL 

graph. 

 

V. CONCLUSION 

For point-edge partitioning strategy problems such as 

logistics and supply chain management, social network 

analysis, energy network optimization, traffic planning, and 

power distribution networks, a heuristic search algorithm was 

designed by combining the algorithmic ideas of genetic 

algorithms and particle swarm optimization algorithms. For 

point-edge partitioning strategy problems such as logistics 

and supply chain management, social network analysis, 

energy network optimization, traffic planning, and power 

distribution networks, a heuristic search algorithm was 

designed by combining the algorithmic ideas of genetic 
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algorithms and particle swarm optimization algorithms. 

Lastly, a conjecture is presented: If subgraphs 𝐺1 and 𝐺2 are 

AVRTL graphs, then the joint graph 𝐺1 ↑𝑎𝑏 𝐺2  is also an 

AVRTL graph, where ↑𝑎𝑏 is a graph operator. 
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