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Abstract—This article explores a recently introduced graph
invariant called reciprocal status distance (RSD). For a con-
nected graph G, RSD is defined as the sum, weighted by
vertex status, of the reciprocal of distances between all pairs of
vertices {u, v} in G. Mathematically, RSD(G) is given by the
expression:RSD(G) =

∑
{u,v}⊆V (G)

σG(u)+σG(v)
dG(u,v)

.
Our primary objective is to explore the extremal properties

of reciprocal status distance. Initially, we identify, among
all nontrivial connected graphs of a specified order, those
graphs exhibiting the maximum and minimum reciprocal sta-
tus distances, respectively. Subsequently, we characterize the
nontrivial connected graph with a given order, size, and the
maximum reciprocal status distance, along with the unicyclic
graph and cactus displaying the maximum reciprocal status
distance, respectively. Finally, we established the lower and
upper bounds for the reciprocal status distance in terms of
various graph invariants, including the Wiener index, Harary
index, degree distance, the first status coindex distance sum,
first status connectivity and coindex, the first Zagreb index and
Zagreb coindex, reformulated Zagreb index and the forgotten
topological index.

Index Terms—Distance, status, reciprocal status-distance in-
dex, Wiener index, Harary index, first Zagreb Index, forgotten
topological index, the first reformulated Zagreb index, recipro-
cal degree distance, and status connectivity index.

I. INTRODUCTION

TOPOLOGICAL indices and molecular structures play a
crucial role in graph theory, acting as essential bridges

to various real-world applications. In mathematical chem-
istry, a subfield of theoretical and computational chemistry,
the focus shifts from quantum mechanics to employing
mathematical methodologies. Topological indices function as
numerical measures that encapsulate a wide range of physic-
ochemical characteristics of chemical compounds, providing
valuable insights into their molecular architectures.

These indices are indispensable for analyzing the proper-
ties of chemical compounds. They encompass factors such
as boiling point, melting point, temperature, pressure, heat of
evaporation, chemical reactivity, and biological activity. The
integration of graph theory with chemistry has a profound
impact across multiple disciplines. Notably, topological in-
dices are extensively utilized in computational chemistry and
the pharmaceutical industry, playing a crucial role in drug
development, toxicology, risk assessment, and drug design
[24]. A recent addition to the set of distance-based graph
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invariants is the Reciprocal Status-Distance (RSD) Index.
This innovative index has garnered significant attention from
researchers exploring the Quantitative Structure-Activity Re-
lationship (QSAR) and Quantitative Structure-Property Rela-
tionship (QSPR) aspects of chemical graphs. Its effectiveness
in characterizing the properties of paraffin hydrocarbons
has been demonstrated, surpassing traditional indices like
the degree distance index and reciprocal degree distance
index in correlating with specific hydrocarbon attributes [25].
Such groundbreaking discoveries have inspired the authors to
further intensify their research efforts.

Let G be a simple connected graph with vertex set V (G)
and edge set E(G). Here,n denotes the order of G (the
number of vertices), and m denotes the size of G (the number
of edges). The degree of a vertex v in G, denoted as dG(v),
represents the number of edges incident to v. The distance
between two vertices u and v in G denoted as dG(u, v), is the
length of the shortest path connecting them. The eccentricity
of a vertex v in G denoted as e(v), is the maximum distance
from v to any other vertex in the graph. The diameter of G
denoted as diam(G), is the maximum eccentricity among all
vertices in G, while the radius of G, denoted as rad(G), is
the minimum eccentricity. In cases where the context is clear,
diam(G) can be represented by D. The girth of a graph G,
denoted as g(G), is the length of the shortest cycle in G. If
G contains no cycles, its girth g(G) is considered infinite.
The status or vertex transmission of a vertex u in G, denoted
as σG(u), is defined as

σG(u) =
∑

v∈V (G)

dG(u, v)

If every vertex in the graph G has a constant vertex
transmission equal to k, then such a graph is referred to
as a k-transmission-regular (or simply transmission-regular)
graph [28]. For further graph-theoretic terminology, readers
are directed to the references provided in books [8], [22].

The Wiener number W (G), often referred to as the Wiener
index in the fields of chemical and mathematical chemistry,
is one of the earliest and most extensively studied distance-
based graph invariants associated with a connected graph G.
The Wiener number W (G) is defined as the sum of distances
between all possible pairs of vertices in a connected graph
G [14], [34]. Formally, this can be expressed as:

W (G) =
∑

{u,v}⊆V (G)

dG(u, v).

Similarly the Harary index of G is defined [31] as,

H(G) =
∑

{u,v}⊆V (G)

1

dG(u, v)
.
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One of the most significant graph indices is the first Zagreb
index, introduced by I. Gutman and Trinajstic. It is defined
as [15]:

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)].

The Zagreb indices have been employed in the structure-
property modeling of chemicals [16], [36]. Recent advance-
ments and findings related to the Zagreb indices can be found
in references [6], [17], [18], [29]. Doslic introduced the first
Zagreb coindex, defined as [35]:

M1(G) =
∑

uv/∈E(G)

[dG(u) + dG(v)].

Milicevic et al. [4] in 2004 reformulated the Zagreb indices
in terms of edge-degrees instead of vertex-degrees:

EM1(G) =
∑

e∈E(G)

degG(e)
2.

The forgotten topological index is defined as: [7]

F = F (G) =
∑

v∈V (G)

degG(v)
3

=
∑

uv∈E(G)

[degG(u)
2 + degG(v)

2].

Independently, Dobrynin and Kochetova [1] and Gutman
[21] introduced a variant of the Wiener index known as
the degree distance or Schultz molecular topological index.
The degree distance for a connected graph G is defined as
follows:

DD(G) =
∑

{u,v}⊆V (G)

(dG(u) + dG(v))dG(u, v).

Hongbo Hua and Shenggui Zhang [11] introduced a novel
graph invariant called the reciprocal degree distance. This
can be viewed as a degree-weighted version of the Harary
index and is defined as:

HA(G) = RDD(G) =
∑

{u,v}⊆V (G)

dG(u) + dG(v)

dG(u, v)
.

First status connectivity and coindex S1(G) [10] and
S1(G) [13] of a connected graph are defined as:

S1(G) =
∑

uv∈E(G)

[σG(u) + σG(v)],

and
S1(G) =

∑
uv/∈E(G)

[σG(u) + σG(v)].

The first status coindex distance sum of the graph was
introduced by Afework T. K. et al. [3] and is defined as:

Sd
1 (G) =

∑
uv/∈E(G)

[σG(u) + σG(v)]dG(u, v).

The present author introduced the reciprocal status-
distance index (RSD) [32], defined as:

RSD(G) =
∑

{u,v}⊆V (G)

σG(u) + σG(v)

dG(u, v)
, (1)

Let

σG(u) =
∑

{u,v}⊆V (G),u̸=v

1

dG(u, v)
.

Then equation (1) can be restated as,

RSD(G) =
∑

u∈V (G)

σG(u)σG(u). (2)

For any vertex u ∈ V (G), d(G, u, k) it signifies the vertex
count of G, say v, where dG(u, v) = k. consider that
d(G, u, k) = 0, when k > diam(G). furthermore, it apparent
that, d(G, u, 1) = degG(u). Evidently

∑
k≥1 d(G, u, k) =

|V (G) − 1|. The equation (2), (RSD(G)) can be rewritten
as,

RSD(G) =
∑

u∈V (G)

σG(u)
∑
k≥1

1

k
d(G, u, k). (3)

To learn more about status-based indices, readers can
refer to [3], [26]. Additionally, for distance-based indices,
one can explore references [2], [12], [19], [20], [23], [40]
for the Wiener index and references [27], [30], [33], [39]
for the degree distance.

This paper explores the correlation between the Reciprocal
Status-Distance (RSD) Index and several well-established
topological indices. The structure of the paper is outlined
as follows: Section II provides an analysis of the RSD index
within a graph, investigating both lower and upper bounds in
relation to various graph invariants. Section III introduces a
specific variant of the Cactus graph, denoted as Gk

n . Within
this section, a lemma is presented that provides an upper
bound for its RSD.Section IV presents the Kp

n graph. This
section elucidates a graph constructed by attaching p pendant
edges to a vertex of Kn−p and further discusses its structure
and properties.

II. ASSOCIATION WITH OTHER GRAPH PARAMETERS

In this section, we compute the RSD index of the graph
along with other relevant graph parameters. Direct insights
derived from the definition of the RSD index are presented.
Furthermore, the section investigates both lower and upper
bounds of the Reciprocal Status-Distance index in relation to
various graph invariants. These include the reciprocal degree
distance, Harary index, first Zagreb index, first status distance
sum, coindex, first status connectivity index, and coindex.

Proposition II.1. Let G be a nontrivial connected graph.
Then

RSD(G) ≤ DD(G) + Sd
1 (G)

equality holds if and only if G ∼= Kn.

Proof: For any two vertices u, v ∈ V (G), by defini-
tion 1

dG(u,v) ≤ dG(u, v) equality satisfies if and only if
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dG(u, v) = 1

RSD(G) =
∑

{u,v}⊆V (G)

σG(u) + σG(v)

dG(u, v)

≤
∑

uv∈E(G)

[σG(u) + σG(v)]

+
∑

uv/∈E(G)

[σG(u) + σG(v)]dG(u, v)

≤
∑

uv∈E(G)

[σG(u) + σG(v)] + Sd
1 (G)

=
∑

u∈V (G)

dG(u)σG(u) + Sd
1 (G)

= DD(G) + Sd
1 (G).

Hence, RSD(G) ≤ DD(G) + Sd
1 (G) with equality if and

only if, for any two vertices u and v in G, dG(u, v) = 1,
implying that G is isomorphic to Kn.

Proposition II.2. Let G be a nontrivial connected graph.
Then

RSD(G) ≤ S1(G) + S1(G)

equality holds if and only if G ∼= Kn.

Proof: For each pair of vertices u, v ∈ V (G), by
definition 1

dG(u,v) ≤ 1, the equality between the two vertices
u and v is satisfied if and only if dG(u, v) = 1. so,

RSD(G) ≤
∑

{u,v}⊆V (G)

[σG(u) + σG(v)]

=
∑

uv∈E(G)

[σG(u) + σG(v)]

+
∑

uv/∈E(G)

[σG(u) + σG(v)]

≤S1(G) + S1(G).

Equality is obtained for any two vertices u and v if and only
if dG(u, v) = 1, that is, G ∼= Kn.

Let ∆(G) and δ(G) be the maximum and minimum
degree in a graph G, respectively.

Theorem II.3. Let G be a connected graph with n vertices
and m edges. Let diam(G)=D. Then,
RSD(G) ≥ (3n− 2)m− 2m∆+ 1

D

[
4(n− 1)m̄−M1(G)

]
.

Inequality holds good if and only if D ≤ 2.
Proof: For a graph G

RSD(G) =
∑

{u,v}⊆V (G)

σG(u) + σG(v)

dG(u, v)

=
∑

uv∈E(G)

σG(u) + σG(v)

dG(u, v)

+
∑

uv/∈E(G)

σG(u) + σG(v)

dG(u, v)
(4)

If uv ∈ E(G), then for every y ∈ V (G)

d(v, y)− 1 ≤ d(u, y) ≤ d(v, y) + 1. (5)
So that,

σG(u) + σG(v) ≥ 2σG(u)− n+ 2 (6)

For any vertex u of G, there are degG(u) vertices which are
at a distance one from u, and the remaining (n−1−degG(u))
vertices are at a distance at least 2. Thus,

σG(u) ≥ degG(u) + 2(n− 1− degG(u))

= 2(n− 1)− degG(u). (7)

Using 6 and 7 in 4, we obtain

RSD(G) ≥
∑

uv∈E(G)

2σG(u)− n+ 2

+
∑

uv/∈E(G)

4(n− 1)− (degG(u) + degG(v))

D

≥
∑

uv∈E(G)

[
2(2n− 2− degG(u)− n+ 2)

]
+

1

D

[
4(n− 1)m̄−M1(G)

]
≥ (3n− 2)m− 2m∆+

1

D

[
4(n− 1)m̄−M1(G)

]
.

(8)

Where, m̄ =
(
n
2

)
−m

Theorem II.4. Let G be a connected graph with n vertices
and m edges. Let diam(G) = D. Then,
RSD(G) ≤ m

[
2D(n− 1)− n+ 2

]
− 2m(D − 1)δ

+Dm̄(n− 1)− 1
2 (D − 1)M1(G).

Inequality holds good if and only if D ≤ 2.
Proof: For a graph G

RSD(G) =
∑

uv∈E(G)

σG(u) + σG(v)

dG(u, v)

+
∑

uv/∈E(G)

σG(u) + σG(v)

dG(u, v)
. (9)

We have, σG(u) + σG(v) ≤ 2σG(u)− n+ 2 (10)

For any vertex u of G, there are degG(u) vertices which are
at a distance one from u, and the remaining (n−1−degG(u))
vertices are at a distance at most D. Thus,

σG(u) ≥ degG(u) +D(n− 1− degG(u))

= D(n− 1)− (D − 1)degG(u). (11)

Using 10 and 11 in 9, we obtain

RSD(G) ≤
∑

uv∈E(G)

2σG(u)− n+ 2

+
∑

uv/∈E(G)

2D(n− 1)− (D − 1)(degG(u) + degG(v))

2

≤
∑

uv∈E(G)

[
2(D(n− 1)− (D − 1)degG(u))− n+ 2)

]
+Dm̄(n− 1)− 1

2
(D − 1)M1(G)

≤ m
[
2D(n− 1)− n+ 2

]
− 2m(D − 1)δ

+Dm̄(n− 1)− 1

2
(D − 1)M1(G) (12)
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Where, m̄ =
(
n
2

)
−m

Let Ψ(G) and ψ(G) be the maximum and minimum status
in a graph G, respectively. Then the following Theorem (II.5)
is valid.

Theorem II.5. Let G be a nontrivial connected graph and
diam(G) ≤ 2. Then,

2ψ(G)H(G) ≤ RSD(G) ≤ 2Ψ(G)H(G)

If and only if the graph G is a status regular graph, the
equality Ψ(G) = ψ(G) is valid.

Proof: Clearly, we have ψ(G) ≤ σG(w) ≤ Ψ(G). So,

2ψ(G)
∑

{u,v}∈V (G)

1

dG(u, v)
≤ RSD(G)

≤ 2Ψ(G)
∑

{u,v}∈V (G)

1

dG(u, v)
.

Thus,

2ψ(G)H(G) ≤ RSD(G) ≤ 2Ψ(G)H(G).

Thus, the proof is concluded.

Theorem II.6. Let G be a nontrivial connected graph. Then,

RSD(G) ≤ (M1(G) +M1(G)).(S1(G) + S1(G))

RDD(G)
.

The equality holds only when G is isomorphic to the complete
graph Kn.

Proof: The following result is obtained by taking into
account the degree distance and reciprocal status distance:

RDD(G)·RSD(G)=

( ∑
{u,v}⊆V (G)

degG(u) + degG(v)

dG(u, v)

)
( ∑

{u,v}⊆V (G)

σG(u) + σG(v)

dG(u, v)

)

≤
( ∑

{u,v}⊆V (G)

(degG(u) + degG(v))

)
( ∑

{u,v}⊆V (G)

(σG(u) + σG(v)

)
≤ [M1(G) +M1(G)][S1(G) + S1(G)].

Therefore,

RSD(G) ≤ [M1(G) +M1(G)][(S1(G) + S1(G)]

RDD(G)
.

Equality holds if and only if dG(u, v) is a constant, G ∼=
Kn.

Next, we categorize connected graphs with n vertices and
m edges and extremal RSD.

Theorem II.7. Let G be a connected graph of order n ≥ 2
and size m ≥ 1. Then

2(n− 1)

D
W (G) +

D − 1

D
DD(G) ≤ RSD(G)

≤ (n− 1)W (G)

+
DD(G)

2

with either equality if and only if D ≤ 2, where D is the
diameter of G.

Proof: To verify that the right-hand side inequality holds
for every vertex u in G. Thus,

σG(u) = degG(u) +
∑

u∈V (G)\{NG(w)}

1

degG(u, v)

≤ degG(u) +
1

2
[n− degG(u)− 1]

=
1

2
[n− 1 + degG(u)].

The equality holds if and only if diam(G) ≤ 2. The
aforementioned inequality from Equation (2) can be utilized
to draw an immediate conclusion.

RSD(G) =
∑

u∈V (G)

σG(u)σG(u)

≤
∑

u∈V (G)

σG(u)
[n− 1 + degG(u)]

2

= (n− 1)W (G) +
∑

u∈V (G)

σG(u)degG(u)

2
(13)

≤ (n− 1)W (G) +
DD(G)

2
(14)

with equality if and only if the diam(G) ≤ 2.
Let us now examine the inequality on the left. For each vertex
u in G

σG(u) = degG(u) +
∑

v∈V (G)/NG[u]

1

dG(u, v)

≥ degG(u) +
[n− degG(u)− 1]

D

≥ n+ (D − 1)degG(u)− 1

D
(15)

where the equality holds if and only if diam(G) ≤ 2.
Using (15) in eq(2) we get

RSD(G) ≥
∑

u∈V (G)

σG(u)

(
(n+ (D − 1)degG(u)− 1)

D

)

≥
∑

u∈V (G)

σG(u)

(
n− 1

D

)

+
∑

u∈V (G)

σG(u)degG(u)

(
D − 1

D

)
(16)

and equality holds if and only if daim(G) ≤ 2.

RSD(G) ≥ 2(n− 1)

D
W (G) +

D − 1

D
DD(G)

equality holds if and only if diam(G) ≤ 2. This concludes
the proof.

Theorem II.8. Let G be a graph with |v(G)| = n, |E(G)| =
m and g(G) > 4. Then,

RSD(G) ≤2

3
(n− 1)W (G) +

1

2
DD(G)

+
1

6

∑
u∈V (G)

σG(u)
∑

uv∈E(G)

degG(v)
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with equality if and only if diam(G) ≤ 3.

Proof: From the definition (I), we have

RSD(G)

=
∑

u∈V (G)

σG(u)
∑
k≥1

1

k
d(G, u, k)

=
∑

u∈V (G)

σG(u)

[
d(G, u, 1) +

1

2
d(G, u, 2)

+
∑
k≥3

1

k
d(G, u, k)

]
.

Alternatively, given this equality and notations,

RSD(G)

≤
∑

u∈V (G)

σG(u)

[
deg(u) +

1

2

∑
uv∈E(G)

(degG(v)− 1)

+
1

3

∑
k≥3

d(G, u, k)

]

=
∑

u∈V (G)

σG(u)

[
deqG(u) +

1

2

∑
uv∈E(G)

(degG(v)− 1)

+
1

3

(
n− 1− degG(u)−

∑
uv∈E(G)

(degG(v)− 1)

)]

=
∑

u∈V (G)

σG(u)

[
1

3
(n− 1) +

2

3
degG(u)

+
1

6

∑
uv∈E(G)

(degG(v)− 1)

]

=
∑

u∈V (G)

σG(u)

[
1

3
(n− 1) +

2

3
degG(u)−

1

6
degG(u)

+
1

6

∑
uv∈E(G)

degG(v)

]

=
∑

u∈V (G)

σG(u)

[
1

3
(n− 1) +

1

2
degG(u)

+
1

6

∑
uv∈E(G)

degG(v)

]

=
2

3
(n− 1)W (G) +

1

2
DD(G)

+
1

6

∑
u∈V (G)

σG(u)
∑

uv∈E(G)

degG(v).

Equality exists if and only if diam(G) ≤ 3.

Let us define β = max {σG(v), σG(w) | dG(v, w) = 3}.

Theorem II.9. Let G be a graph with |v(G)| = n, |E(G)| =
m and g(G) > 6. Then,

RSD(G) ≤1

2
(n− 1−m)W (G) +

3

4
DD(G)

+
1

6
β[M2(G)−M1(G) +m]

+
1

4

∑
u∈V (G)

σG(u)
∑

uv∈E(G)

degG(v).

The equality holds if and only if

diam(G) ≤ 4 and

{σG(v), σG(w) | dG(v, w) = 3} = {β}

Proof: From the definition (I) and by using the proper-
ties
of d(G, u, k) as defined:

RSD(G) =
∑

u∈V (G)

σG(u)
∑
k≥1

1

k
d(G, u, k)

=
∑

u∈V (G)

σG(u)

[
d(G, u, k) +

1

2
d(G, u, k)

+
1

3
d(G, u, 3) +

1

4

∑
k≥4

d(G, u, k)

]
.

Alternatively, given this equality and notations,

RSD(G)

=
∑

u∈V (G)

σG(u)

[
degG(u) +

1

2

∑
uv∈E(G)

(degG(v)− 1)

+
1

3
d(G, u, k) +

1

4

∑
k≥4

d(G, u, k)

]

≤
∑

u∈V (G)

σG(u)

[
degG(u) +

1

2

∑
uv∈E(G)

(degG(v)− 1)

+
1

3
d(G, u, 3) +

1

4
(n− 1− degG(u)

−
∑

uv∈E(G)

(degG(u)− 1)− d(G, u, 3))

]

=
∑

u∈V (G)

σG(u)

[
degG(u)−

1

4
degG(u) +

1

4
(n− 1)

− 1

2
m+

1

4
m+

1

3
d(G, u, 3)− 1

4
d(G, u, 3)

+
1

2

∑
uv∈E(G)

degG(v)−
1

4

∑
uv∈E(G)

degG(v)

]

=
∑

u∈V (G)

σG(u)

[
3

4
degG(u) +

1

4
(n− 1)− 1

4
m

+
1

12
d(G, u, 3) +

1

4

∑
uv∈E(G)

degG(v)

]
=

1

2
(n− 1−m)W (G) +

3

4
DD(G)

+
1

4

∑
u∈V (G)

σG(u)
∑

uv∈E(G)

degG(v)

+
1

12

∑
u∈V (G)

σG(u)d(G, u, 3)
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Now, substitute the property of the β as defined :

=
1

2
(n− 1−m)W (G) +

3

4
DD(G)

+
1

4

∑
u∈V (G)

σG(u)
∑

uv∈E(G)

degG(v)

+
1

12
β

∑
u∈V (G)

d(G, u, 3)

RSD(G) =
1

2
(n− 1−m)W (G) +

3

4
DD(G)

+
1

4

∑
u∈V (G)

σG(u)
∑

uv∈E(G)

degG(v)

+
1

6
β

∑
vw∈E(G)

(degG(v)− 1)(degG(w)− 1)

(17)

where ∑
vw∈E(G)

(degG(v)− 1)(degG(w)− 1)

=M2(G)−M1(G) +m (18)

Now substitute equation 10 in equation 9. Then,

=
1

2
(n− 1−m)W (G) +

3

4
DD(G)

+
1

6
β[M2(G)−M1(G) +m]

+
1

4

∑
u∈V (G)

σG(u)
∑

uv∈E(G)

degG(v)

It is obvious that equality exists if and only if
{σG(v), σG(w) | dG(v, w) = 3} = {β} and diam(G) ≤ 4.

Theorem II.10. Let G be a graph with |V (G)| = n,
|E(G)| = m and g(G) > 4. Then,

RSD(G) ≤M1(G) + 2(n− 1)m̄+
1

2
EM1(G)

− (F (G)− 3M1(G) + 4m)

equality holds if and only if diam(G) ≤ 2 and
{degG(v) | uvw is a path of length two in G}.

Proof: By definition,

RSD(G) =
∑

{u,v}⊆V (G)

σG(u) + σG(v)

dG(u, v)

=
∑

uv∈E(G)

σG(u) + σG(v)

+
1

2

∑
uv/∈E(G)

σG(u) + σG(w)

+
∑

{u,v}⊆V (G),dG(u,v)≥3

σG(u) + σG(v)

dG(u, v)

where, σG(u) + σG(w) = 4(n− 1)− (degG(u) + degG(w))
using this in above equation and obtained as follows,

RSD(G) ≤M1(G) + 2(n− 1)m̄

− 1

2

∑
e∼f,e=uv,f=vw

degG(u) + degG(w),

where for e = uv,

degG(e) = degG(u) + degG(v)− 2

≤M1(G) + 2(n− 1)m

+
1

2

[ ∑
e∼f,e=uv,f=vw

(degG(e)− (degG(v)− 2))

+ (degG(f)− (degG(v)− 2))

]
≤M1(G) + 2(n− 1)m

+
1

2

∑
e∼f,e=uv,f=vw

(degG(e) + degG(f))

−
∑

e∼f,e=uv,f=vw

(degG(v)− 2)

≤M1(G) + 2(n− 1)m+
1

2
EM1(G)

− 2
∑

v∈V (G)

(
degG(v)

2

)
(degG(v)− 2)

≤M1(G) + 2(n− 1)m+
1

2
EM1(G)

− 2
∑

v∈V (G)

(
deg3G(v)− 3deg2G(v) + 2degG(v)

2
)

≤M1(G) + 2(n− 1)m+
1

2
EM1(G)

− (F (G)− 3M1(G) + 4m).

Equality holds good if and only if diam(G) ≤ 2
{degG(v) | uvw is a path of length two in G}. Where m =(
n
2

)
−m.

Theorem II.11. Let G be a connected graph of order n of
diam(G) ≤ 2. Then,

RSD(G) ≤ n(n− 1)2 − 1

2
n(n− 1)(D − 1)(1 +

1

D
(n− 1))

+
(D − 1)2

4D
n(n− 1)2

with equality if and only if n is odd and G is a n−1
2 -regular

graph.

Proof: By definition,

RSD(G) =
∑

u∈V (G)

σG(u)σG(u) (19)

Since diam(G) ≤ 2, for each u ∈ V (G),

σG(u) = D(n− 1)− (D − 1)degG(u)

and

σG(u) = degG(u) +
1

D
(n− 1− degG(u))

=
1

D
(n− 1) + (1− 1

D
)degG(u).
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Therefore, (19) becomes,

RSD(G) =
∑

v∈V (G)

((n− 1)2

− (D − 1)(1 +
1

D
(n− 1))degG(u))

+
(D − 1)2

D
deg2G(u)

after simplifying,

≤ n(n− 1)2 − (D − 1)(1 +
1

D
(n− 1))

∑
u∈V (G)

degG(u)

+
(D − 1)2

D

∑
u∈V (G)

deg2G(u)

≤ n(n− 1)2 − 1

2
n(n− 1)(D − 1)(1 +

1

D
(n− 1))

+
(D − 1)2

4D
n(n− 1)2.

III. CHARACTERISTICS AND BOUNDS OF k-CYCLE
CACTUS GRAPHS

In this section, we delve into the study of cactus graphs. A
cactus is defined as a connected graph where any two simple
cycles share at most one vertex. Put simply, a cactus graph
can be constructed by connecting simple cycles at a finite
number of vertices without introducing any new cycles. If a
cactus graph has no cycles, it is essentially a tree; whereas if
it possesses exactly one cycle, it is termed a unicyclic graph.

For 0 ≤ k ≤ n−1
2 , let Gk

n be an n-vertex k-cycle cactus
derived from the n-vertex star by adding k independent edges
among n − 1 pendent vertices [11]. The subsequent lemma
offers a precise upper bound for the RSD of the k− cycle
cactus.

Lemma III.1. [38] Let G be an n-vertex k-cycle cactus with
0 ≤ k ≤ n−1

2 . Then, M1(G) ≤ n2 − n+ 6k, where equality
holds if and only if G ∼= Gk

n.

Theorem III.2. Let G be an n-vertex k-cycle cactus of
diametetr D with 0 ≤ k ≤ n−1

2 . Then,

RSD(G) ≤n(n− 1)2 + (n− 1)(n+ k − 1)− n2 − n+ 6k

2
,

where equality holds if and only if G ∼= Gk
n and is of

diameter two.

Proof: Recall that G has n + k − 1 edges. By the
definition of RSD and Lemma (III.1)

RSD(G) =
∑

u∈V (G)

σG(u)σG(u) (20)

where σG(u) ≤ 2(n− 1)− degG(u),

σG(u) ≤
1

2
(n− 1) +

1

2
degG(u) with equality iff

D ≤ 2.

By substituting the value of σG(u) and σG(u) in equation
(20). Hence,

RSD(G) ≤
∑

u∈V (G)

[
(2(n− 1)− degG(u))(

1

2
(n− 1)

+
1

2
degG(u))

]
=

∑
u∈V (G)

(n− 1)2 +
1

2
(n− 1)degG(u)−

1

2
deg2G(u)

≤ n(n− 1)2 +m(n− 1)− 1

2
M1(G)

≤ n(n− 1)2 +m(n− 1)− 1

2
M1(G

k
n)

= n(n− 1)2 + (n− 1)(n+ k − 1)− n2 − n+ 6k

2
.

The equality is true if and only if G ∼= Gk
n and is of

diameter at most two.

According to Theorem III 7, yields immediate results for
the RSD of trees and unicyclic graphs.

Corollary III.3. Consider a tree T with n ≥ 2 vertices.
Then,

RSD(T ) ≤ n(n− 1)2 + (n− 1)2 − n2 − n

2
.

Equality occurs if and only if T is isomorphic to the star
graph Sn

Corollary III.4. Suppose G is a unicyclic graph with n ≥ 3
vertices. Then,

RSD(G) ≤ n(n− 1)2 + n(n− 1)− n2 − n+ 6

2
.

IV. GRAPH CONSTRUCTION: Kp
n REPRESENTATION

In this section, the representation Kp
n is introduced, in-

dicating the graph formed by attaching p pendant edges
to a vertex of Kn−p. To proceed with the discussion, the
following results will be utilized.

Lemma IV.1. [11] Let G be an n-vertex connected graph
with p pendent vertices. Then,

M1(G) ≤n3 − (3p− 1)n2 + (3p2 + 6p+ 1)n

− p3 − 3p2 − 2p− 1.

With equality if and only if G ∼= Kp
n

Theorem IV.2. Let G be a connected graph with n vertices
and p pendent vertices. Then,

RSD(G) ≤n(n− 1)2 + (n− 1)
[ (n− p)2 + 3p− n

2

]
− 1

2
[n3 − (3p− 1)n2 + (3p2 + 6p+ 1)n

− p3 − 3p2 − 2p− 1].

The equality holds if G is isomorphic to Kp
n.

Proof: Let G∗ be a connected graph with n ver-
tices where p vertices u1, u2, ..., up are pendent such that
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G[V (G∗)−{u1, u2, ..., up}], which represents the sub graph
of G∗ induced by the vertices in V (G∗) − {u1, u2, ..., up},
forms a clique within G∗. We may conclude that G∗ has
p +

(
n−p
2

)
= p + (n−p)(n−p−1)

2 edges, based on Corollary
(III) and Lemma (IV.1). Hence,

RSD(G∗) ≤ n(n− 1)2

+ (n− 1)m− M1(G
∗)

2

= n(n− 1)2 + (n− 1)
[ (n− p)2 + 3p− n

2

]
− M1(G

∗)

2
≤ n(n− 1)2

+ (n− 1)
[ (n− p)2 + 3p− n

2

]
− Kp

n

2
.

The equivalence is true if G∗ has a diameter of at most 2.
Observe that Kp

n has diameter 2. So,

RSD(G) ≤n(n− 1)2 + (n− 1)
[ (n− p)2 + 3p− n

2

]
− 1

2
[n3 − (3p− 1)n2 + (3p2 + 6p+ 1)n

− p3 − 3p2 − 2p− 1]

with equality if and only if G ∼= Kp
n. This concludes the

proof.

Hence, both lower and upper bounds for the reciprocal
status distance have been determined using a variety of
graph invariants. These include the degree distance, Harary
index, first Zagreb index, forgotten topological index, first
reformulated Zagreb index, reciprocal degree distance, first
status distance sum, and first status connectivity index and
coindex.
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