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Abstract—Background: The common spatial patterns (CSP) 

is a widely used EEG feature extractor for motor imagery-

based brain-computer interfaces, with the optimal spatial filter 

formulated as a generalized Rayleigh quotient. However, the 

traditional CSP uses Euclidean metric, which ignores the 

specific geometric structure of symmetry positive definite (SPD) 

matrices, resulting in issues such as swelling effect, non-

complete space, and indefinite matrices. Methods: To address 

these limitations, this paper introduces three alternative 

approaches with considering the geometric properties of SPD 

matrices. The geometry-aware CSP with diagonalization 

(gaCSPd) replaces the Euclidean means in the joint 

diagonalization principle of CSP with Riemannian means. The 

geometry-aware CSP with maximum discriminative 

information between classes (gaCSPb) aims to find an optimal 

projection matrix on a Riemannian manifold while maximizing 

the Riemannian distance between classes. The geometry-aware 

CSP with maximum within-class variance (gaCSPw) seeks a 

low-dimensional submanifold with the maximum intra-class 

variance in the projected data. Results: Experiment results on 

two BCI competition datasets demonstrate the competitiveness 

against state-of-the-art methods and confirm the effectiveness 

of geometry-aware CSP as a feature extractor for motor 

imagery-based brain-computer interfaces. 

 

Index Terms—Brain-Computer Interfaces; Motor Imagery; 

Common Spatial Patterns; Dimensionality Reduction; 
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I. INTRODUCTION 

otor imagery-based brain-computer interface (MI-BCI) 

is a technology that allows individuals to interact with 

extern devices using their brain signals [1], providing a 

novel communication pathway for individuals with a 

severely disabilities. One of the most extensively studied 

MI-BCI is based on electroencephalography (EEG), which 

measures the electrical activity of neural oscillations 

associated with motor imagery. When performing a specific 

mental task, certain frequency bands in specific locations of 

brain exhibit relative power decrease or increase, known as 

event-related desynchronization or synchronization of neural 

oscillation [2]. By analyzing these changes, the motion 

intentions can be decoded from the EEG signals [3] and 

converted into recognizable computer commands for 

controlling a wheelchair [4] or a prosthetic limb[5],[6]. 

However, accurately and efficiently decoding sensorimotor 

rhythms poses a great challenge due to the sensitivity to 

noise and susceptibility to environmental and mental states 

of the subject.  

Common Spatial Pattern (CSP) has shown to be one of the 

most efficient feature extractors for multi-channel EEG 

signals [7]. It effectively finds a set of spatial filters that 

maximize the variance of band-pass filtered EEG signals 

from one class while minimizing it from the other class 

[8],[9]. In essence, CSP is designed to maximize the 

projected variance ratio between the covariance matrices of 

two classes of EEG patterns [10], where the optimization 

problem is typically solved using as a generalized eigenvalue 

decomposition between the two inter-class covariance 

matrices. However, a standard CSP tends to be over fitted in 

a small training set [11], [12]. To address this issue, various 

regularized CSPs have been developed by incorporating a-

prior information to the estimation of the inter-class 

covariance matrix [13]. The regularization matrix can take 

different forms, such as an identity matrix [13], a diagonal 

matrix [14], an l1 or l2 regularizer [15], or a generic 

covariance matrix constructed as a weighted sum of 

covariance matrices using data from other subjects [16]. 

Nevertheless, none of these methods consider the geometric 

properties of the covariance matrix itself.  

Covariance matrices are used to capture the spatial 

dynamics of EEG signals, while interclass means encode the 

discriminative information [17]. Moreover, these covariance 

matrices can be viewed as points on a Riemannian manifold 

[18], which is a mathematical space with a curved structure. 
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By leveraging the intrinsic structure of this manifold, novel 

approaches for EEG data analysis can be developed. 

Barachant et al. [19],[20] introduced Riemannian geometry 

into the classification of motor imagery BCI and proposed 

the minimum distance to the Riemannian mean algorithm 

(MDRM) and the tangent space classification algorithm, 

whose experimental results outperformed complex and 

highly parametrized CSP classifiers. The MDRM also 

achieved competitive results in the classification of evoked 

potentials [21], [22] and event-related potential [23]. Xie et 

al. [24],[25] presented a series of dimensionality reduction 

algorithms for covariance matrices by combining 

Riemannian metric with traditional dimensionality reduction 

algorithms such as local linear embedding and isometric 

mapping. Horev et al. [26] formulated the principle 

component analysis (PCA) on Riemannian manifold, 

projecting covariance matrices of EEG signals into a lower-

dimensional subspace to best preserve variance, analogous 

to PCA in the Euclidean space. Additionally, capitalizing on 

the geometric properties of symmetric positive definite (SPD) 

matrices, several domain adaptation techniques have been 

developed to make the time-series data across sessions or 

subjects comparable [27]. Zanini et al. [28] proposed a 

Riemannian alignment method that normalizes the 

covariance matrices of sessions or subjects with respect to 

the reference matrix in the resting state. Yair et al. [29] 

introduced a domain adaptation method using parallel 

transport on the SPD manifold, which projects the 

symmetric matrices onto a shared tangent space to alleviate 

domain shifts. Rodrigues et al. [30] presented a Riemannian 

Procrustes analysis, which estimates the statistical 

characteristics of datasets with the geometric means of the 

SPD matrices and matches statistical distributions through 

simple geometric transformations like translation, scaling, 

and rotation. Zhang et al. [31] introduced a manifold 

embedded knowledge transfer framework, which centers 

covariance matrices of subjects with respect to their 

Riemannian mean and performs domain adaptation by 

minimizing distribution divergence between domains while 

preserving geometric structure.  

In light of the advantages of the geometric properties of 

Riemannian manifold, three geometry-aware CSP (gaCSP) 

frameworks are presented. The first framework, geometry-

aware CSP with diagonalization (gaCSPd), modifies the 

joint diagonalization principle of CSP by utilizing 

Riemannian means instead of Euclidean means. The second 

framework, Geometry-aware CSP with maximum 

discriminative information between classes (gaCSPb), seeks 

an optimal projection matrix on Riemannian manifold while 

maximizing the interclass Riemannian distance to enhance 

the separability of different classes in the feature space. The 

third framework, Geometry-aware CSP with maximum 

within-class variance (gaCSPw), interprets CSP filtering as a 

dimensionality reduction technique on Riemannian manifold 

with the goal of maximally preserving discriminative 

information within each class.  

The exiting CSP algorithm relies on Euclidean mean and 

PCA, which may not be suitable for analyzing SPD matrices 

due to a non-complete space [32]. The Euclidean mean may 

lead to distortions in regression or average, resulting in the 

swelling effect, where the determinant of the average is 

larger than any of the individual matrices [33]. To overcome 

this issue, the proposed geometry-aware CSP frameworks 

replace the Euclidean mean with the Riemannian mean. 

Additionally, the traditional CSP achieves maximum 

variance by applying PCA to the covariance matrices, while 

the Euclidean formulation of PCA fails to capture data 

variation in regions of high curvature [26], making it 

inefficient for analyzing SPD matrices. In contrast, 

geometry-aware CSP frameworks formulate the 

discriminative intra-class or inter-class information in terms 

of geodesics, leveraging the geometric interpretation of the 

optimal problem and the intrinsic structure of the data. 

The main contributions of this paper are as follows: 

1) Three different derivation forms in Riemannian 

manifold are presented based on the theory of the CSP 

algorithm. 

2) A closed-form solution on the Stiefel manifold is 

proposed for optimizing the geometry-aware CSP methods.  

The rest of this paper is arranged as follows. Section 2 

provides a brief introduction to the Riemannian metric 

theory and the principle of the CSP algorithm. Section 3 

explains the rationale behind the proposed methods and 

presents the formulations for solving the optimization 

problem. Section 4 describes the experiments conducted to 

evaluate the performance of the proposed methods. Section 

5 explores the advantages of gaCSP, and Section 6 

concludes this paper. 

II.  BACKGROUND 

Notions 

In this paper, 
nS  denotes the space spanned by the n n  

SPD matrices, and nS  denotes a space spanned by n n  

symmetric matrices. nI  denotes an n n  identity matrix. 
n t

iE   denotes a ‘trial’ that holds the EEG signal 

recorded with n  electrodes and t  time samples. iC  

represents a covariance matrix in the Euclidean space, and 

iX  denotes a covariance descriptor in the Riemannian 

manifold. ( )GL n  is a group of real invertible n n  matrices. 

(.)XExp  and (.)XLog  denote the exponential and 

logarithmic maps at the reference point X, respectively. 

exp(.) : n nS S   is defined as 1 2exp( ) (exp( , ,X Udiag   .. 

, )) T

n U  and the matrix logarithmic operator 

log(.) : n nS S  is defined as 1 2log( ) (log( , ,...,X Udiag    

)) T

n U . (.)T
denotes the transpose operator. 

F
X   

( )TTr X X  represents the Frobenius norm, where (.)Tr  is 

the sum of the diagonal elements.  

A. Common Spatial Patterns  

( )c n t

iE   denotes an EEG record of class {1,2}c , and 

the covariance matrix of a signal trial is expressed as:  
( ) ( )

( )

( ) ( )

.

( . )

c c T

c i i

i c c T

i i

E E
C

Tr E E
 , (1) 
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CSP aims to find a decomposition in a set of dichotomous 

data by jointly diagonalizing the inter-class covariance 

matrices, resulting in modes that are common to both data 

sets while maximizing the distinguishability between them. 

The joint diagonalization steps are implemented as follows.  

First, the covariance matrices of two groups are pooled to 

form two normalized symmetric matrices, denotes as 1  and 

2 , then an orthogonal matrix U  are achieved by: 

1 2( ) TU U    , (2) 

Equation (2) is further compressed or stretched along the 

principal axes to adjust the directions to an isotropic 

distribution, whose transformation matrix is 1TP U   . 

Thus (2) amounts to: 

1 2

T TP P P P I    , (3) 

Let 1 1

TS P P  , 2 2

TS P P  , where 1S  and 2S  are 

symmetric matrices. 1 1

TS B B  and 2 2

TS B B are the 

diagonalizations of 1S and 2S , respectively, with the 

constraint 1 2 I   . Then, (3) is expressed as: 

1 2( )T TB P P B I   , (4) 

Let TW B P , (4) is simplified as 1 2( ) TW W I   . 

Equation (4) captures the essence of the CSP method, 

which states that the common transformation matrix ( W ) 

whitens the combined data from both classes, resulting in 

each individual having same principles axes and 

eigenvectors, with their corresponding eigenvalues adding 

up to one. As a consequence, the direction with the largest 

(smallest) eigenvalue of one of the groups is the eigenvector 

with the smallest (largest) eigenvalue of the other group. The 

solution for the transformation matrix can be summarized as 

a two-step process: joint whitening and individual 

diagonalization. Whitening matrix ensures the data from 

both classes have the same principal axes and eigenvectors, 

allowing for a common representation. Individual 

diagonalization then produces an orthogonal matrix that 

maximizes the separation between the two classes. The 

common spatial filter (  ) is obtained by multiplying the 

orthogonal matrix with the whitening matrix. 

For a given EEG signal, the extracted feature is the 

logarithm of its variance after projection onto  : 

( )
log( )

( ( ( )))

i

i

i

var E
f

sum var E




 , 

 (5) 

where (.)var  and (.)sum  represent the operation of the 

variance and summing, respectively. 

B. Riemannian Geometry  

The solving procedure of the CSP algorithm reveals that 

the optimal solution involves the generalized eigen-

decomposition of the inter-class means of covariance 

matrices. Since the covariance matrix is symmetric and 

positively definite, it can be identified as a point in a 

Riemannian manifold. Therefore, it is feasible to introduce 

Riemannian metric to analyze covariance matrices.  

Riemannian mean: The Riemannian mean is defined as the 

point minimizing the metric dispersion: 

*

2 *

1

arg min ( , )
n

N

R R i
X S i

M X X
 

  , 
(6) 

where 
*( , )R iX X  denotes a distance suitable for the 

Riemannian manifold. Different from algebraic mean, 

Riemannian mean does not have a closed-form solution [34], 

but it can be solved using an iterative algorithm. 

Affine-Invariant Riemannian Metric: The affine-invariant 

Riemannian metric (AIRM) defines the geodesic between 

two metrics:  
1/ 2 1/ 2( , ) log( )air i j i j i F

X X X X X   , (7) 

Log-Euclidean Metric: The Log-Euclidean Metric (LEM) 

defines the geodesic distance of two SPD matrices [35] by 

computing the distance between their corresponding tangent 

vectors at the identity matrix:  

( , ) log( ) log( )lem i j i j F
X X X X   , (8) 

Let TX U U   be the eigendecomposition of the SPD 

matrix, where   is the diagonal matrix of the eigenvalue. 

The logarithmic map can be computed easily by 

log( ) log( ) TX U U  . Compared to the AIRM, the Log-

Euclidean requires less computation. Additionally, the LEM 

uniquely defines the Riemannian mean by 

exp( log( ) N)R i
M X  , while the affine-invariant mean 

is obtained through an iterative process.   

For any two covariance matrices from class 1 and class 2, 

assume that there exists an orthogonal transformation matrix 

W  that satisfies 1 2( )T i jW C C W I  . Let 1 1

iWC W , then 

2 1( )jWC I W  , the Euclidean distance between two 

projected matrices is given by the Frobenius norm: 

2

1 2 1

1

( , ) 4( 0.2)
p

i T j T i

E

i

WC W WC W 


  , (9) 

The geodesic distance measured by Log-Euclidean metric 

is expressed as: 

2 1

1 2

1 1

( , ) log ( )
1

ip
i T j T

lem i
i

WX W WX W








 , (10) 

Based on (9) and (10), the functional relationship between 

distance and eigenvalues is given by ( ) 2 | 0.5 |Ef    for 

Euclidean space, and 2( ) log ( 1 )Rf      for 

Riemannian metric, with [0 1] .  

Fig. 1 depicts the curve of distance (.)f  changing with 

eigenvalue i . It is observed that for any eigenvalue, the 

corresponding Riemannian distance is greater than the 

Euclidean distance. The largest and smallest eigenvalues 

correspond to the maximum distance. As the value deviates 

from 0.5, the gap between Euclidean distance and 

Riemannian distance increases rapidly. Conversely, as the 

eigenvalue approaches 0.5, the gap decreases sharply. 

Regardless of the specific eigenvalue, the Riemannian 

distance consistently outperforms the Euclidean distance, 

indicating that the Riemannian metric is more suitable for 

describing the difference between two matrices than the 

Euclidean distance. The following text explores the 
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feasibility of introducing Riemannian metrics into CSP to 

improve its feature description capabilities. 

 

III. RIEMANNIAN GEOMETRY-BASED CSP 

A. gaCSP with diagonalization (gaCSPd) 

The gaCSPd algorithm extends the joint diagonalization 

principle used in the CSP algorithm to incorporate the 

Riemannian mean, which the key idea is to align each 

covariance matrix by approximating it as an identity. The 

gaCSPd algorithm reformulates a two-step solving process 

that is applicable to the Riemannian mean. The first step 

involves aligning the covariance matrices by approximating 

them as identity matrices. The second step involves applying 

the joint diagonalization technique to further refine the 

alignment and extract discriminative features. 

Whitening: In gaCSPd, the interclass mean is whitened 

using the Riemannian mean, resulting in: 
1 2 1 2

1 2( ) 2 nX X X X I   , (11) 

Let 1 2 1 2

1 1P X X X   and 1 2 1 2

2 2P X X X  , it can be 

proven that 
1P  and 

2P  are symmetric positive definite 

matrices. 

Diagonalization: Subsequently, a singular value 

decomposition is performed on
1P , yielding 

1 1

TP U U  . 

Substituting this into (11) yields 
2 12 T

nP I U U   , which 

is equivalent to 1 2 2T

nU U I  （ ） . This relationship 

guarantees that the two transformation matrices 
1P  and 

2P  

have the same principle axes and eigenvectors, and the 

dominant eigenvector produces the most discriminative 

features. 

Finally, the geometrical transform matrix ( n m  ) is 

constructed using the eigenvectors corresponding to the m/2 

largest and smallest eigenvalues, where 1 2ˆ TU X   with 

1: / 2, / 2:
ˆ

m n m nU U  .  

Overall, although both gaCSPd and CSP are based on the 

principle of joint diagonalization decomposition, there are 

two significant differences: 1) gaCSPd uses a Riemannian 

mean instead of the algebraic mean (the differences between 

the two means will be detailed in the discussion section); 2) 

the whitening matrix of gaCSPd is composed of all 

eigenvectors and eigenvalues of the Riemannian mean. 

B. gaCSP with maximum inter-class distance (gaCSPb) 

When applied to EEG recordings, CSP filter compresses 

the covariance matrix of filtered signals into a low 

dimensional SPD matrix, which implies that the spatial filter 

transforms the SPD matrices into a more discriminative 

submanifold.  

The generic dimensionality reduction on the Riemannian 

manifold is defined as : n mf S S 
： 

( ) Tf X X  , (12) 

where X  is a matrix in 
nS  ( 0 nX S ). To guarantee that 

the output of (12) is an SPD matrix in the submanifold 
mS , 

the transform matrix n m  （m n ） must be full rank, 

i.e., 
T

mI   .  

The gaCSPb aims to find a projection matrix to reduce the 

dimension of the covariance matrix of raw EEG recording 

while preserving the distinguishability between classes. By 

employing the Riemannian distance as the criterion for 

interclass discrimination, the objective function is 

formulated as: 
* 2

1 2arg max ( , )

. .

n m

T T

R

T

m

X X

s t I



     

 






, (13) 

where cX is the Riemannian mean from c-class. 

Compared to the spatial filter of CSP, the projection 

matrix of gaCSPb is an orthogonal matrix, which can more 

strictly eliminate redundant information, reducing 

dependence on irrelevant information. 

C. gaCSP with maximum within-class Variance 

(gaCSPw) 

The gaCSPw aims to find a low-dimensional SPD 

manifold where the projected data have the greatest variance 

within the class. To characterize the variance between the 

SPD matrices, the PCA is extended for matrix data that 

collectively have a maximum Riemannian distance to their 

Riemannian mean. Simultaneously, an effort should also be 

made to preserve the discriminative information provided by 

labels, thus a constraint condition is imposed to preserve the 

distinguishing information between classes.  

The objective function of gaCSPw is given by: 

2

1

1 2

( ) arg max ( , )

. . ( )

c

n m

N
T i T

R c c

i

T

m

J X X

s t X X I



     

 

 



 


, (14) 

where 
i

cX  represents the i-th covariance matrix and cX is 

the Riemannian mean from c-class, and X  denotes the 

Riemannian mean of the entire set. 

Formula (14) is a distance-based optimization that 

preserves the maximum dispersion of the covariance 

matrices rather than the maximum variance of EEG records. 

However, there are two key issues in the optimization of 

(14). The first is that the function (14) does not accurately 

describe the distance of the low-dimensional matrices. As 

 

Fig. 1. The relationship between the divergence and the 

eigenvalues 
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the output of 
T

cX   is a compressed value of the c-class 

Riemannian mean, rather than the mean ( cM ) of the 

compressed matrix set { }T i

cX  , i.e.,
T

c cX M    

Furthermore, according to the definition of equation (12), 

dimensionality reduction on Riemannian manifold requires 

the projection matrix to be a point on the Stiefel manifold. 

However, since not every point on the Stiefel manifold can 

satisfy the constraint of (14), the objective function (14) 

cannot be unified into an optimization problem on the Stiefel 

manifold.  

To address the first issue, centroid alignment is performed 

using (11), which approximately transforms the raw 

covariance matrix to an identity matrix, resulting 

in i i i

c c cX X MX M , where 1 2 2M X  represents the 

transformed matrix. As a result, the inter-class mean 

(denoted as
cX ) of the transformed matrix  icX is 

approximately a diagonal matrix, and its compressed mean is 

also a diagonal matrix, i.e., T

c mX    . This makes it 

quite reasonable to approximate the mean of the compressed 

dataset ({ }T i

cX  ) using the compressed mean ( T

cX  ). 

Another consequence of centroid alignment is to simplify the 

constraint of (14) into an orthogonal constraint (
T

mI   ).  

The above improvements transform the objective function 

(14) into: 

2

1

( ) arg max ( , )

. .

c

n m

N
T i T

R c c

i

T

m

J X X

s t I



     

 

 






, (15) 

The final optimal solution is expressed as 

1 2[ : ]M    , where c  represents the optimal 

projection corresponding to c-class solved by (15).  

D.  Optimization 

Given that both (13) and (15) involve unitary constraints, 

the optimization problem can be transformed into an 

unconstrained solution on the Stiefel manifold [36]. In 

gaCSPb and gaCSPw, various metrics can be adopted to 

encode the distance between SPD matrices, such as LEM, 

AIRM, the Stein divergence, or the Jeffrey divergence. For 

ease of calculation, the presented optimization scheme 

selects LEM as the metric and transforms the optimization 

problem on the Stiefel manifold into an iterative generalized 

eigen-decomposition problem.  

The LEM distance of (15) is expressed as: 
2

2 ( , ) log( ) log( )T i T T i T

R c c c c
F

X X X X          , (16) 

According to the proof in reference [32], log( )T X  is 

approximated as log( )T X  , thus equation (15) is further 

simplified as: 
2

*

1

arg max ( ( ) )

. .

( ) (log( ) log( )) . (log( ) log( ))

n m

T

c

T

m

i T i

c c c c

Tr F

s t I

F X X X X



   

 

 

 





  





 (17) 

where ci N , cN  denotes the number of c-class samples.  

It is evident that ( )F   is explicitly determined by  , 

resulting in a problem of (17) without a closed-form solution. 

Through the logarithmic map, SPD matrices is flattened into 

Euclidean space, allowing for optimal solution using an 

iterative eigen-decomposition. 

At the t-th iteration, 
( ) ( )tF   is calculated by ( 1)t  : 

c

( ) ( 1) ( 1)( ) (log( ) log( )) (log( ) log( ))t i t t T i

c c c c

i N

F X X X X   



  

(18) 
 

 

The optimal projection matrix ( )t  obtained by the t-th 

iteration is expressed as: 
2

( ) ( )

1

arg max ( ( ) ) . .
n m

t T t T

m

c

Tr F s t I


     
 

  , (19) 

Thus, the optimization of (15) boils down to a generalized 

eigenvector-eigenvalue decomposition problem. The 

transform matrix ( )t  is given by the m largest eigenvectors 

of 
( ) ( )tF  . The whole iterative procedure is shown in 

Algorithm 1, and the solving process of gaCSPb is similar to 

that of gaCSPw, except for replacing (18) involved in step 4 

of algorithm 1 with: 
( ) ( 1) ( 1)

1 2 1 2( ) (log( ) log( )) (log( ) log( ))t t t TF X X X X     

(20) 

 

E. Classification of gaCSP features 

After processing with gaCSP, the covariance matrices of 

the EEG signals are embedded into a low-dimensional 

Riemannian manifold, where the EEG signal features is 

represented as point in this manifold. There are two 

conventional approaches for the classification of SPD 

matrices. One is the minimum distance to the Riemannian 

mean algorithm (MDRM) [37], which determines the type of 

sample by the shortest Riemannian distance between the 

tested matrix and the two interclass means, and assigns a 

label based on the nearest distance. The other approach is 

the linear classifier in tangent space [38], which maps the 

SPD matrices onto a common tangent plane and then opts to 

Algorithm 1 Iterative eigendecomposition solver for 

gaCSPw with the Log-Euclidean metric 

Input: training set with labels 1{ ,y }N

i i iX  , dimension m , 

iterations iteN , and threshold    

Output: the optimal spatial filers n m   

1. Initialize (0)  with an identity matrix (0)  n mR   

2. Calculate the inter-class means 1X  and 2X  and X  

3. for t=1:1: [ 1iteN  ] 

4.   Construct 
( ) ( )tF   using (19) 

5.   Implement eigendecomposition on 
( ) ( )tF   

6.   ( )t  m largest eigenvectors of 
( ) ( )tF   

7.     if 
2

( ) ( 1)t t

F
     

8.         Break; 

9.     end if 

10.  end for 

11. Eventual projection matrix M   , where M  

denotes a whitening matrix. 
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linear classifiers to classify these vectorized matrices. This 

paper investigates the effectiveness of gaCSP using MDRM 

and SVM classifier in tangent space (TSVM). For MDRM, 

gaCSP is used to embed the trained covariance matrices into 

a low-dimensional manifold and to obtain the corresponding 

Riemannian means. For a given test instance, the label is 

assigned based on the nearest Riemannian mean. For TSVM, 

the covariance matrices are transformed with gaCSP, and the 

Riemannian mean of the low dimensional SPD matrix is 

calculated. Then all matrices are mapped to the tangent 

space at reference point of Riemannian mean, where a 

traditional classifier (such as LibSVM) is used. Fig. 2 shows 

a schematic diagram of MDRM and TSVM algorithms. 

Additionally, gaCSP can also extract the variance-based 

features of EEG signals using (5), allowing the use of 

conventional linear classifiers for classification.  

IV. EXPERIMENTS AND RESULTS 

A. Dataset Description 

A series of experiments were performed on two public 

datasets to validate the effectiveness of the proposed gaCSP. 

BCI Competition III Dataset IVa (DatasetIVa) contains 

two-class EEG signals, with a total of 280 cue-based trials 

recorded by 118 channels at a 100Hz sampling rate.  

BCI Competition IV Dataset IIa (DatasetIIa) consists of 

the four-class cued motor imagery data recorded by 22 

channels with a 250Hz sampling rate. Please refer to [39] for 

more information about these two datasets. 

In our experiments, the two datasets were first filtered by 

a six-order 8-30Hz bandpass filter and then segmented. As 

recommended by the competition winner, the trials of 

DatasetIIa were segmented from 2.5s to 4.5s, and 

DatasetIVa was captured using a window of 3s after a cue 

onset 0.5s, resulting in trials of 22×500 and 118×300, 

respectively. The spatial filter pairs and the value m  in 
mS  

was determined by the energy indicator of the eigenvectors 

with =0.95 . 

Fig. 3 shows the cue timing schedule and event-related 

desynchronization (ERD) brain topography of DatasetIVa 

and DatasetIIa, respectively. It is observed that each task 

induces a unique ERD distribution, and the energy 

distribution exhibits significant individual differences. In 

terms of electrode-based feature representation, each 

electrode is considered as a dimension of the feature space, 

and the corresponding energy value represents the feature 

value. In this context, the CSP spatial filter is interpreted as 

a mechanism to reduce the influence of irrelevant electrodes 

and enhance the discriminative power of relevant electrodes 

by emphasizing the electrodes carrying more discriminative 

information and de-emphasizing irrelevant electrodes. 

B. Results 

1) Feature Distribution  

This section visualized the feature distributions of gaCSP 

using the t-SNE toolkit. The gaCSP frameworks and CSP 

extracted variance-based features of the training samples by 

(5). Fig. 4 shows the transformed data distributions of 140 

training samples of Subject ‘AA’, with different feature 

extractors. It is observed that gaCSPb and gaCSPw exhibit 

outstanding discriminability with smaller intra-class 

divergence and larger inter-class distance, highlighting the 

advantage of integrating CSP with Riemannian metrics. 

Additionally, although the distribution of gaCSPd is similar 

to CSP, gaCSPd exhibits better distinguishability between 

samples.  

2) Sptial Filter 

The projection matrix of gaCSP approximates the spatial 

filters of CSP, where each column corresponds to a principal 

direction and the corresponding value is the weight of the 

electrode. To verify the effectiveness of gaCSP in capturing 

task-related electrodes, topographical maps corresponding to 

the largest spatial filter were drawn under different task 

conditions ("right-handed foot", "left-right hand", and "foot-

tongue"). Fig. 5 displays these maps, where color depth 

represents the correlation between the functional area and 

the specific task. Red indicates the degree of being activated, 

blue indicates inhibition, and green indicates that the given 

functional area is irrelevant to the task. It is observed that 

gaCSPd, although similar to CSP in shape, has fewer 

associated electrodes and higher weights on the task-related 

electrodes compared to CSP. gaCSPb and gaCSPw 

accurately locate the most active electrodes in CSP, resulting 

in more stable and accurate results compared to traditional 

CSP methods. This results illustrated that gaCSP are more 

resistant to noise and non-stationary signals than CSP. 

3) Classification  

This section delves into the classification performance of 

gaCSP on two publicly available datasets. DatasetIVa has 

been randomly divided into training and test data, with an 

equal number of samples for each class. DatasetIIa has been 

divided into two binary datasets, one for left and right tasks 

and another for foot and tongue tasks. gaCSP is capable of 

extracting both variance-based features and reduced SPD 

matrix features. 

i)  variance-based feature  

The classification accuracies of CSP, gaCSPd, gaCSPw, 

and gaCSPb on DatasetIVa and DatasetIIa are summarized 

in Tables I and II, respectively. The SVM classifier was 

used for classification. The results indicate that, compared to 

CSP, average classification accuracies of the three gaCSP 

frameworks have been improved to varying degrees, with 

gaCSPb showing a more prominent improvement of 

3.17%，3.66% and 2.5%, respectively. A Wilcoxon signed-

rank test (one-sided) was conducted on Table I and II to 

investigate the significance of accuracy differences over the 

CSP method (p<0.05). The results of Table III confirm the 

significant superiority of gaCSP in improving classification 

performance. 

ii) SPD matrix feature 

This section investigates the performance of SPD matrix 

feature generated by gaCSP. Table IV-VI report the results 

classified by MDRM and TSVM on DatasetIVa, DatasetIIa 

of Left-Right hand and DatasetIIa of Foot-Tongue, 

respectively. MDRM and TSVM are used as benchmark 

classifiers, with TSVM utilizing PCA to process tangent 

vectors to extract dimensions with 95% contribution rate. 

Overall, the results obtained with MDRM are superior to 
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those obtained with TSVM. Specifically, gaCSPb achieves 

average accuracies of 83.07%, 78.03%, and 74.51% on 

MDRM, compared to average accuracies of 79.37%, 

75.97%, and 72.06% on TSVM. Similarly, gaCSPw 

achieves average accuracies of 82.8%, 77.02%, and 73.78% 

on MDRM, which are 4.4%, 3.98%, and 1.56% higher than 

those on TSVM. Additionally, gaCSPd achieves results of 

80.41%, 73.67%, and 72.07% on MDRM, and 76.87%, 

74.58%, and 71.86% on TSVM. The reason for these results 

may be that geometric features are able to better preserve 

discriminative information compared to flattened vector 

features. Table VII shows the p-values of different 

comparisons using Wilcoxon signed-rank test, which reveals 

that gaCSPb and gaCSPw have significantly higher 

performance than gaCSPd, but there is no significant 

difference between gaCSPb and gaCSPw.  

4) Computational Efficiency 

This section investigated the computational efficiency of 

each gaCSP algorithm. Table VIII reports the computational 

time evaluated under the environment of MATLAB R2016a 

on a laptop with 3.2GHz CPU (AMD Ryzen 7 5800H), 

16GB RAM. It is worth noting that gaCSPd takes slightly 

more time than CSP with additional time spent on estimating 

Riemannian mean, and the time overrun increases with the 

increase of data dimensionality. In gaCSPb and gaCSPw, 

most of time is spent on estimating the Riemannian mean 

and calculating the Riemannian distance. It should be 

emphasized that although gaCSPb and gaCSPw require more 

computational time during the training phase, they do not 

require estimating Riemannian mean and distance for testing. 

Therefore, considering their significant classification results, 

gaCSPb and gaCSPw are still competitive. 

 

 

TABLE VIII  

THE TRAINING TIME (SECOND) OF CSP, GACSPD, GACSPB AND GACSPW. 

 CSP gaCSPd gaCSPb gaCSPw 

DatasetIVa 0.328 1.259 11.402 72.435 

DatasetIIa 0.098 0.149 0.283 5.011 

 

 

 

TABLE VII 

 OVERVIEW OF WILCOXON SIGNED-RANK TEST P-VALUES (ONE-SIDED) FOR DIFFERENT COMPARISONS BASE ON TABLE IV-VI. 

 MDRM TSVM 

Comparison DatasetIVa DatasetIIa 

(Left-Right hand) 

DatasetIIa 

(Foot-Tongue) 

DatasetIVa DatasetIIa 

(Left-Right hand) 

DatasetIIa 

(Foot-Tongue) 

gaCSPd vs gaCSPb 0.0021 0.0043 0.0033 0.0426 0.1722 0.2726 

gaCSPd vs gaCSPw 0.0302 0.0019 0.0132 0.2041 0.0672 0.1985 

gaCSPw vs gaCSPb 0.0572 0.4219 0.0382 0.0874 0.2283 0.3824 

 

TABLE I   

CLASSIFICATION ACCURACIES ACHIEVED BY CSP, GACSPD, GACSPB 

AND GACSPW ON DATASET IVA, RESPECTIVELY. 

 AA AL AV AW AY Ave. Std. 

CSP 70.57 97.86 65.45 83.43 82.29 79.9211.28 

gaCSPd 72.14 96.43 70.15 90.24 82.29 82.2510.13 

gaCSPw 77.86 99.29 67.71 87.14 80.62 82.5210.22 

gaCSPb 76.07 97.86 69.32 90.79 81.43 83.099.81 

 

TABLE III  

 OVERVIEW OF WILCOXON SIGNED-RANK TEST P-VALUES (ONE-

SIDED) FOR DIFFERENT COMPARISONS BASE ON TABLE I AND TABLE II. 

Comparison Dataset 

IVa 

Dataset IIa 

(Left vs Right) 

Dataset IIa 

(Foot vs. Tongue) 

gaCSPd vs CSP 0.0421 0.0832 0.0671 

gaCSPb vs CSP 0.0031 0.0016 0.0301 

gaCSPw vs CSP 0.0052 0.0019 0.0078 

 

TABLE II  

CLASSIFICATION ACCURACIES ACHIEVED BY CSP, GACSPD, GACSPB AND GACSPW ON DATASET IIA, RESPECTIVELY. 

Left hand vs. Right hand Foot vs. Tongue 

 

CSP 

 

gaCSPd gaCSPw gaCSPb CSP 

 

gaCSPd gaCSPw gaCSPb 

A01 76.31 76.31 78.83 80.91 63.45 68.19 72.69 74.81 

A02 60.56 62.34 63.81 62.34 82.71 84.44 85.62 83.65 

A03 89.67 89.67 88.39 90.48 76.49 74.5 79.65 78.54 

A04 65.78 61.86 65.61 67.74 61.09 61.09 63.89 61.34 

A05 56.81 60.61 66.97 70.51 63.43 60.31 65.54 64.71 

A06 60.37 58.64 63.43 62.03 60.92 64.47 60.31 63.27 

A07 73.45 75.19 72.89 77.46 74.73 74.73 72.46 75.19 

A08 86.17 86.17 86.63 90.36 87.71 85.28 87.19 88.82 

A09 88.17 88.17 88.56 90.81 70.14 71.33 69.03 72.85 

Ave. 73.03 73.22 75.01 76.96 71.19 71.59 72.93 73.69 
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V.  DISCUSSION 

The experimental results demonstrates that gaCSP 

algorithm is generally superior to CSP. Specifically, the 

features extracted by gaCSP are significantly more 

discriminating than those of CSP, as shown in Fig. 4. 

Furthermore, gaCSP frameworks consistently outperform 

CSP in terms of accuracy across most subjects, as 

demonstrated by the results in Tables I-VI. In addition, 

gaCSP frameworks exhibit stronger anti-interference ability 

and better filter robustness, as shown in Fig. 5. In order to 

further understand the reasons for these remarkable results, it 

is necessary to analyze the principles behind the algorithms.  

TABLE IV  

CLASSIFICATION ACCURACIES ACHIEVED BY GACSPD, GACSPW AND GACSPB ON DATASET IVA, CLASSIFIED BY MDRM AND TSVM. 

 
MDRM gaCSPd gaCSPw gaCSPb TSVM gaCSPd gaCSPw gaCSPb 

AA 65.43 67.86 71.32 73.28 65.36 74.64 67.7 70.32 

AL 96.43 97.86 98.57 98.57 75.36 90.71 97.14 98.57 

AV 60.71 67.75 70.21 67.03 53.17 56.86 65.29 63.57 

AW 73.5 83.57 87.96 88.62 68.57 82.86 81.84 83.86 

AY 78.93 85 85.94 87.86 75.36 79.29 80.53 80.03 

Ave. 75.00 80.41 82.80 83.07 67.56 76.87 78.50 79.27 

 

TABLE V 

 CLASSIFICATION ACCURACIES ACHIEVED BY GACSPD, GACSPW AND GACSP WITH MDRM BEING THE CLASSIFIER ON DATASET IIA.  

 
Left hand vs. Right hand Foot vs. Tongue 

 
MDRM gaCSPd gaCSPw gaCSPb MDRM gaCSPd gaCSPw gaCSPb 

A01 74.72 71.94 78.89 81.4 60.94 67.09 74.09 74.19 

A02 60.06 63.61 62.39 62.51 79.5 81.67 84.6 85.92 

A03 88.53 85.83 90.43 92.25 74.19 73.81 73.72 76.86 

A04 65.03 62.86 67.33 67.16 62.42 61.94 61.15 63.45 

A05 55.83 68.06 75.4 77.38 66.25 62.92 65.7 67.09 

A06 58.25 60.78 62.75 64.04 63.31 63.61 64.94 60.5 

A07 73.81 73.42 76.9 75.43 74.73 76.11 78.5 77.97 

A08 85.44 86.36 88.51 89.59 85.28 88.19 86.32 88.66 

A09 86.92 90.14 90.59 92.54 72.11 73.33 74.97 75.91 

Ave. 72.07 73.67 77.02 78.03 70.97 72.07 73.78 74.51 

 

TABLE VI  

CLASSIFICATION ACCURACIES ACHIEVED BY GACSPD, GACSPW AND GACSP WITH WITH TSVM BEING THE CLASSIFIER ON DATASET IIA.  

 
Left hand vs. Right hand Foot vs. Tongue 

 
TSVM gaCSPd gaCSPw gaCSPb TSVM gaCSPd gaCSPw gaCSPb 

A01 75.42 77.42 81.4 78.89 63.03 68.58 74.09 74.19 

A02 56.89 70.17 62.51 62.39 78.14 78.83 81.6 81.92 

A03 85.75 88.53 89.25 88.43 66.56 72.11 73.72 76.86 

A04 53.44 65.03 67.16 67.33 43.19 65.94 61.15 58.45 

A05 55.81 63.61 77.38 75.4 56.14 64.56 63.7 65.09 

A06 51.19 58.94 62.04 60.75 64.69 66.78 64.94 60.5 

A07 61.22 75.89 73.9 76.43 71.33 74.11 74.5 76.97 

A08 81.28 83.36 89.59 88.51 85.14 83.06 86.32 82.66 

A09 86.92 88.31 88.54 90.59 67.25 72.81 69.97 71.91 

Ave. 67.55 74.58 76.86 76.52 66.16 71.86 72.22 72.06 
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A. Riemannian Mean vs. Euclidean Mean  

Both gaCSPd and CSP utilize the joint diagonalization 

principle of inter-class means of covariance matrices and 

share a similar solving producers. However, in gaCSPd, the 

algebraic mean used in CSP is replaced with the Riemannian 

mean, which is a key different between gaCSPd and CSP. 

Fig. 6 visually illustrates the difference between Riemannian 

mean and arithmetic mean. To facilitate visualization, only 

EEG series on C3 and C4 electrodes were considered, and 

50 trials were selected from the training set of subject ‘AW’. 

Among these trials, 44 samples were grouped together, while 

the remaining 6 samples were located far away from the 

cluster center.  

The covariance matrix iC  of the i -th trial is defined as: 

3 3 4

3 4 4

( ) ( , )

( , ) ( )

i i i

i

i i i

Var C Cov C C
C

Cov C C Var C

 
  
 

, (21) 

where 3iC  and 4iC  are the time series of the i-th trial.  

As illustrated in Fig. 6, for the concentrated SPD matrices 

(denoted by '+'), the discrepancy between Riemannian mean 

(represented by ‘○’) and algebraic mean (represented by ‘□’) 

are tiny, and both perform well in elaborating the central 

tendency for the variance. However, when outliers (denoted 

by ‘⁎’) are considered, the geometric mean (marked by a 

filled circle ‘●’) deviates less from the center compared to 

the arithmetic mean (represented by a filled square‘■’), 

indicating that Riemannian metric is more robust to outliers. 

In other words, the Riemannian mean is less influenced by 

the presence of outliers and provides a more reliable 

estimate of the central tendency in the presence of extreme 

data points. This quality is profit to alleviate the influence of 

noise and artifacts, providing a more robust and anti-

interference mean for analyzing nonstationary EEG signals. 

To further demonstrate the ability of Riemannian mean 

against noise interference, an eigendecomposition was 

performed on the inter-class Riemannian mean. Fig. 7 

depicts the spatial patterns corresponding to the four largest 

eigenvalues from gaCSPb and CSP. Each pattern represents 

the source activities of signals acquired at different 

electrodes. The first two spatial patterns of gaCSPb are 

almost consistent with those of CSP, indicating that both 

methods can capture the most prominent variance direction. 

In contrast, in the latter two patterns, gaCSPb exhibits less 

interference compared to CSP, indicating that Riemannian 

mean has better anti-interference ability, resulting in cleaner 

and more informative spatial patterns. 

B. gaCSP feature vs. CSP feature 

Fig. 8 summarizes the difference in average accuracy 

between manifold-based features and variance-based 

features. It is observed that in MDRM classifier scenario, 

SPD matrix features extracted by gaCSP have better 

performance than variance features extracted by CSP. The 

following analyzes the differences between CSP features and 

geometric features in principle.  

Let   be the matrix holding the first m/2 and last m/2 

eigenvectors of 
1

1 2

  , such that 1 1

T     and 

2 2

T    , where 1  and 2  are diagonal matrices. 

Given two arbitrary covariance matrices, after filtering with 

 , results in 1 1

T i iC D    and 2 2

T j jC D   , with diagonal 

elements denoted as 
,

1

i pd  and 
,

2

j pd , respectively. The 

diagonal elements are the variances of the EEG trials filtered 

by  , and their logarithm values are the variance features 

obtained by (5). Therefore, the Euclidean distance between 

two variance-based features can be expressed as 
, , 2

1 2(log log )
p

m i p j pd d . Since the Riemannian distance 

(
2

1 2( , )i j

R D D ) between 1

iD  and 2

jD  is a function of the 

eigenvalues of 
1

1 2( )i jD D
 as per (8), the distance of 

geometric features are associated with the extreme 

eigenvalues of the CSP features. However, matrices 1

iD  and 

2

jD are not diagonal, thus their diagonal elements are not 

their eigenvalues, resulting in: 
, , 2 2

1 2 1 2(log log ) ( , )m i p j p i j

p Rd d D D  , (22) 

The equality only holds when 1

iD  and 2

jD  are diagonal 

matrices. The inequality suggests that the manifold features 

of gaCSP exhibit a greater inter-class distance compared to 

the variance features of CSP, which could potentially 

explain why the classification results of gaCSP on the 

MDRM classifier are better than those of the variance 

features. Additionally, gaCSP manifold features demonstrate 

enhanced robustness in the presence of noise or non-

stationary factors.  

 

C. gaCSP vs. other Geometric Dimension Reduction 

Methods 

This section compares the performance of the proposed 

manifold dimensionality reduction frameworks, gaCSPb and 

gaCSPw, with other manifold dimensionality reduction 

algorithms mentioned in the literature. Harandi et al. [32] 

introduced a graph mapping dimensionality reduction on the 

SPD manifold with the aim to preserve the manifold 

structure of the original data in the submanifold, where the 

affinity matrix encodes the similarities of adjacent data. Li et 

al. [42] proposed a locality preserving projection on 

Grassmann manifold, aiming to preserve the local structure 

of data without considering labels, where the Grassmann 

manifold is spanned by a q-dimensional orthonormal matrix 

of the SPD manifold. Wang et al. [34] introduced the local 

 

Fig. 8. Comparison of accuracy between gaCSP-based manifold 

feature and CSP-based variance feature. 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 7, July 2024, Pages 1476-1489

 
______________________________________________________________________________________ 



 

linear embedding into the Grassmann manifold to maintain 

local discriminant information in an adequate lower-

dimensional feature space, where the involved affinity 

matrix encodes the information of the inter-class dispersion 

and the intra-class compactness. In comparison to these 

approaches, our proposed gaCSPb and gaCSPw frameworks 

consider global discriminant information using maximum 

inter-class distance rule and intra-class separability using 

maximum intra-class variance.  

Fig.9 summarizes the performance of gaCSPb and 

gaCSPw with other dimensionality reduction algorithms. It 

is observed that both gaCSPb and gaCSPw consistently 

outperform other methods in all scenarios, with a significant 

difference (paired t-test p<0.01). Furthermore, it is noted 

that [42] performs poorly in all scenarios, possibly due to its 

unsupervised mechanism. On the other hand, [32] and [34] 

exhibit similar performance, and a paired t-test shows no 

significant difference. This similarity in performance may be 

attributed to the fact that they adopt similar objective 

functions and constraints, despite operating on different 

manifolds. It is worth mentioning that [32] reduces 

dimensionality by preserving the local neighborhood of 

samples on the Riemannian manifold, while gaCSPb and 

gaCSPw maximize inter-class dispersion from a global 

perspective. 

 

D.  Limitations 

Based on the experimental results, it appears that the 

gaCSP methods enhance feature extraction performance by 

utilizing Riemannian metrics. However, there are still some 

limitations to be addressed. Firstly, the gaCSP algorithm 

essentially is a supervised feature extractor that relies on 

labeled data to estimate the inter-class mean. Although 

gaCSP exihibits better robustness than CSP, it does not 

completely eliminate the influence of noise or small training 

settings. Secondly, gaCSP generally requires more time for 

training compared to CSP, and gaCSPw takes even longer 

due to factors such as data dimensions, initial conditions, 

and optimization methods. The convergence time is also 

significantly affected by the chosen initializations. Strategies 

such as using spatial filters obtained by CSP as initial values 

can help reduce training time while still improving the 

performance of gaCSP. Lastly, previous studies have 

confirmed that the performance of CSP is influenced by the 

frequency band and time window of the EEG signal [40],[41] 

and the integration of CSP with frequency or time 

optimization schemes has significantly improved its 

performance. Therefore, our future work will focus on 

combining gaCSP with frequency-band and time-window 

selection schemes. To sum up, gaCSP can serve as an 

alternative to the CSP algorithm in scenarios where training 

time is not a significant concern. 

VI. CONCLUSIONS 

This paper presents three geometry-aware CSP 

frameworks to enhance the spatial patterns and features 

extracted from EEG signals. gaCSPd jointly diagonalizes the 

inter-class Riemannian means by utilizing the robustness of 

the geometric mean to outliers, gaCSPb seeks an optimal 

projection matrix on the Riemannian manifold while 

maximizing the inter-class Riemannian distance, and 

gaCSPw extends spatial filtering to principal component 

analysis in Riemannian manifold, preserving discriminative 

information within classes while maximizing inter-class 

discrimination. Furthermore, the optimization problems of 

gaCSPb and gaCSPw are solved by an iterative generalized 

eigen-decomposition on the Stiefel manifold. To evaluate 

the effectiveness of gaCSP, a series of experiments have 

been conducted on two public EEG datasets, and gaCSP has 

been compared with several other competing methods. 

Experimental results indicate that gaCSP is a promising 

candidate for improving MI-based BCI performance. 

Specifically, 1) the projection matrix of gaCSP has a better 

anti-interference ability and better robustness. 2) The 

features of gaCSP, whether variance-based features or low-

dimensional SPD matrix features, are more discriminative. 3) 

gaCSP is a better alternative to CSP.  

Although the spatial patterns and features of gaCSP are 

significantly improved compared with CSP, gaCSP is also 

limited by the inherent limitations of CSP, such as 

overfitting on small training sets and being affected by signal 

frequency band and time window selection. To address these 

limitations, future work will focus on combining gaCSP with 

frequency band optimization, time window optimization, or 

prevalent regularization methods to explore the potential of 

gaCSP in reducing the calibration time and addressing the 

challenges of cross-subject. 

 

(a) MDRM 

 

(b) TSVM 

Fig. 9 Classification accuracies achieved by several manifold 

dimensionality reduction algorithms with (a) MDRM, and (b) TSVM 

being the classifier, respectively 
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Fig. 3. ERD distributions and the timing schedules of the datasets, (a) ERD distribution and timing schedule of DatasetIVa;(b) ERD distribution 

and timing schedule of DatasetIIa. 
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Fig. 7. The largest four spatial patterns learned by the CSP and gaCSP for the right hand/foot motor imagery data. 
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 Fig. 4. t-SNE visualization of of the discriminative features learned by different CSP variants on DatasetIVa- subject ‘AA’.  
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