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Abstract—This paper analyzes the M/M/c queueing system
with server working breakdown and impatient customers under
the classical truncated retry strategy. The steady-state equilib-
rium conditions of the system are obtained using the matrix-
geometric solution method. Then the steady-state probabilities
and the performance indicators of the system in the steady-
state case are obtained using the Markov process theory
and Gauss-Seidel iterative algorithm. Numerical experiments
are conducted to assess the system’s steady-state performance
indicators. Finally, we developed an optimization model for the
system and derived the optimal parameters from the analysis
of the optimization function.

Index Terms—retrial queue, server working breakdown,
impatient customers, matrix-geometric solution, system opti-
mization.

I. INTRODUCTION

THE retrial queueing model is commonly implemented
in computer science, telecommunications, and various

other industries. The retrial queueing model pertains to a
scenario in which a customer enters the system and all
servers are occupied. In such a case, the customer enters
a virtual waiting room for retries. At the same time, each
customer can independently retry seeking service after a
random period. This retrial model holds practical significance
and has attracted scholars’ attention. Tien [1] analyzed the
application of the retrial queueing system in the dynamic
host configuration protocol and conducted simulation ex-
periments. Kim and Kim [2] discussed the retrial queueing
model under several different assumptions. Ye and Chen
[3] analyzed a retrial queueing model involving working
breakdowns. They used matrix-geometric solution and the
generalized eigenvalue method to solve the problem, and
compared the two methods. Kumar [4] analyzed the M/M/c
retrial queueing model for impatient customers with a PH
distribution retrial rate and conducted numerical experiments
on performance measures. Shin [5] studied several different
multi-service desk retrial queueing models, analyzed the
effect of the retry rate on the model captain, and verified
its monotonicity. Recently, Shweta [6] investigated a retrial
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queueing model with Bernoulli vacation. The problem was
solved using a Markov chain approach and various cost
optimization algorithms. Han et al. [7] examined the M/M/1
retrial queueing model. They considered the presence of
impatient customers and delayed maintenance, which could
occur when the machine is idle. Finally, they performed
an equilibrium analysis of the system. Zhang and Wang
[8] analyzed an M/M/1 unreliable queueing model with
a constant retrial rate. They investigated system indicators
for visible and invisible captains and provided the payoff
function.

In practical applications, servers may fail due to long-
term usage. The traditional fault-repairable model has lim-
itations, so working breakdowns are introduced to be more
relevant. With a working breakdown, a server can continue
working at a lower rate after a fault occurs, rather than
stopping. Karthick and Suvitha [9] conducted a study on
fault-repairable queuing systems with vacation strategies,
while varying service rates. Lv et al. [10] used matrix-
geometric solutions to examine a queuing model with two
different fault types and negative customers. They analyzed
the performance indicators of the system at steady state
conditions and came to a reasonable conclusion. Kalidass
and Kasturi [11] initially proposed a working breakdown and
solved the model using steady-state conditions, probability
functions, and numerical analysis. Lv et al. [12] examined
a system with a standby server and startup period, which is
repairable in case of complete and incomplete failures. Jing et
al. [13] examined a retrial queueing system that had a single
server, customer stops, and working breakdowns. They uti-
lized matrix-geometric solutions to obtain clear solutions for
the steady-state probabilities. Additionally, they conducted
numerical experiments to analyze the performance indexes,
applying their conclusions to real-world situations. Lv et al.
[14] examined the impact of varying input and failure rates
on queuing systems. Ye and Liu [15] analyzed the MAP/M/1
queueing system with a working breakdown. They calculated
the steady-state probabilities using the matrix-geometric so-
lution method while analyzing the impact of parameters.
Yang et al. [16] discussed the M/M/1/N queuing model
with working breakdown. They derived the performance
index by solving the steady-state probability and conducted
a sensitivity analysis. Zhang and Xu [17] conducted a study
on an incomplete breakdown queueing system that involves
two types of customers with different arrival times. Once a
failure occurs, the machine stops accepting new customers
and continues to complete the ongoing service at a reduced
rate. They also examined the impact of system parameters
on customer behavior.
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Customers waiting in a queue may become impatient
after a long wait. Kumar and Sharma [18] analyzed the
M/M/c queueing model with infinite capacity. The system
included impatient customers who would enter with a certain
probability upon arrival and wait for a certain period before
leaving if they became impatient. Finally, the researchers
obtained the steady-state probability solution of the system
by applying the generating function. Kumar and Raja [19]
analyzed the M/M/c retrial queueing model with discourage-
ment and feedback. They provided steady-state conditions
and probabilities, analyzed parameter effects on performance
metrics, and conducted optimization experiments. Liu and Li
[20] studied the MAP/PH/1 queueing model with impatient
customers. Shan and Yue [21] conducted a study on an
inventory queueing system that has impatient customers
and two different vacation policies. They used an iterative
approach to derive the steady-state probability and com-
pared the two policies. Finally, they conducted numerical
experiments to analyze Performance indicators of the system.
Chang et al. [22] analyzed the M/M/c retrial queuing model
with impatient customers and feedback. They proposed the
classical truncated retrial and constant retrial policies. They
also derived the steady-state probability using an iterative
algorithm and performed numerical analysis under both
retrial policies to assess their practical applicability.

With the advent of the Internet, the traditional way of
purchasing tickets through a physical ticketing window is
gradually being replaced by online ticketing platforms such
as Railway 12306, Meituan, and others. However, when there
are too many customers using the system to purchase tickets,
the system may crash. In such cases, customers may either
refresh the page to repurchase or leave the system altogether.
Based On the above literature, this paper describes the
M/M/c retrial queueing system with impatient customers and
working breakdown. we utilize the matrix-geometric solution
method to obtain the steady-state probability vector of the
system. Afterwards, we solve system-related performance
indexes and provide numerical experiments using MATLAB.
Finally, the article subsequently constructs cost and benefit
functions, to further optimize the breakdown problem and
the impatience problem in the retrial system.

II. MODEL DESCRIPTION

1) This is an M/M/c queueing model. In this model,
customer arrivals follows a Poisson process with arrival rate
λ.

2) This queueing system incorporates working break-
downs. During the normal working period, the server’s
service time is distributed exponentially with the parameter
µ. The server may break down during the normal working
process. The arrival of the breakdown follows a Poisson
process with a breakdown rate α. After a breakdown occurs,
the server continues to provide service at a lower rate
η (η < µ). The system features c repairmen who immediately
begin work after a service desk failure. Each repairman can
only focus on one faulty machine at a time, and once they
complete their work, the service desk is restored to a new
state. The repair time follows an exponential distribution with
parameter β. During the repair period, the server remains to
serve at a rate η.

3) In this queueing system, the behavior of impatient
customers is considered. When the customer arrives, they
will be immediately served if there is at least one server
available. However, if all servers are busy, the customer has
two choices: either wait in a retrial space with a probability
of b or leave with a probability of 1− b.

4) There is a retry space where customers will attempt to
request service after a random period. The maximum number
of customers allowed to retry is denoted by N . Even though
the system itself can handle an infinite number of customers,
in reality, there is a limit to the number of customers who can
use the system simultaneously. Therefore, we need to apply
a truncated retrial strategy. Suppose that, at a certain point in
time, there are n customers waiting to retry, and the average
number of times that each of them sends a retry request in
a unit of time is θ. Then the total number of retry requests
in the retry space in a unit of time is θn = min{n,N}θ. If
a customer in the retry space sends a retry request and finds
that the server is still occupied, they may choose to continue
retrying with a probability of r or leave with a probability
of 1− r.

5) Assuming that the customer arrival process, retry pro-
cess, service process, failure process, and repair process are
all independent of each other. The order of service is first-
come-first-served (FCFS) and the capacity of the retry space
is infinite.

Let N (t) denote the number of customers in the retry
space at moment t, I (t) denote the number of servers in
working condition at moment t, and J (t) denote the number
of servers in working breakdown condition at moment t.

Then {N (t) , I (t) , J (t)} is a three-dimensional Markov
process, its state space is

Ω = {(i, j, k) , i ≥ 0, c ≥ j ≥ 0, j ≥ k ≥ 0} .

The state transition diagram for this system with c = 3 is
shown in Fig. 1.

we can organize the states in dictionary order. This allows
us to derive the state transfer rate matrix for the system,
expressed as follows:

Q =



A0 C0

B1 A1 C
. . . . . . . . .

BN−1 AN−1 C
BN AN C

BN AN C
. . . . . . . . .


,

where

A0 =



E0 F1

D1 E1 F2

D2 E2 F3

. . . . . . . . .
. . . . . . . . .

Dc−1 Ec−1 Fc

Dc Ec


.

Fi (k, k) = λ, 1 ≤ k ≤ i. (1)
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Fig. 1. The state transition diagram of the system

{
Di (k, k) = (i− k + 1)µ, 1 ≤ k ≤ i,
Di (k + 1, k) = kη, 1 ≤ k ≤ i.

(2)

When 1 ≤ i ≤ c− 1, 1 ≤ k ≤ i,
Ei (k, k + 1) = (i− k + 1)α,
Ei (k + 1, k) = kβ,
Ei (k, k) = −(i− k + 1)µ−
(i− k + 1)α−λ−kη−kβ.

(3)

When 1 ≤ k ≤ i,
Ec (k, k + 1) = (i− k + 1)α,
Ec (k + 1, k) = kβ,
Ec (k, k) = −(i− k + 1)µ
−(i− k + 1)α−λ−kη−kβ−bλ.

(4)


Ai (k, k + 1) = (c + 1− k)α,
Ai (k + 1, k) = kβ, 1 ≤ k ≤ c,
Ai (k, k) = −(k− 1)β
−bλ−(c + 1− k)α−iθ(1− r), 1 ≤ k ≤ c+ 1.

The other elements of the matrix Di, Ec, Fi, Ai are 0.

E0 = (−λ) ,C0 =

(
C1

C

)
,

C =



bλ
bλ

bλ
. . .

. . .
bλ


,

Bi =


iθ (1− r)

iθ (1− r)
. . .

. . .
iθ (1− r)

 .

From the structure of the Q matrix, it appears that the
Markov process is a QBD process.

III. STEADY-STATE CONDITIONS

Theorem 1. If Nθ(1− r)>bλ, the system is stationary.
Proof Assuming H = AN + BN + C is an infinites-

imal generator, X is a stationary probability vector for
H , then the sufficient and necessary condition to ensure
the existence of the steady-state probability distribution of
{N (t) , I (t) , J (t) , t ≥ 0} is XBNe>XCe.

H =


−cα cα
β −β − (c− 1)α (c− 1)α

. . .
. . . . . . α

cβ −cβ

 .

Assuming

X = {x1, x2, · · · · · · , xN} ,

{
XH = 0,
Xe = 1.

(5)

Taking H and X into Eq. (5) obtain:

x1 =
1

1 +
c∑

i=1

i∏
j=1

(c+1−j)α
jβ

, (6)

xi =

i−1∏
j=1

(c+1−j)α
jβ

1 +
c∑

i=1

i∏
j=1

(c+1−j)α
jβ

, 2 ≤ i ≤ N. (7)

Form XBNe>XCe obtain:

Nθ(1− r)>bλ.

Then the system is stationary.
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IV. STEADY-STATE PROBABILITY

If the matrix equation R2BN + RAN + C = 0 has
a minimal non-negative solution R, and its spectral radius
SP (R)<1, the QBD process {N (t) , I (t) , J (t) , t ≥ 0}
is positive recurrence. Additionally the system of linear
homogeneous equations (P0,P1, · · · ,PN )B[R] = 0 has a
positive solution.

When the Markov process is positive recurrence, the
steady-state probability is defined as:

Pi,j,k = lim
t→∞

P {N(t) = i, I(t) = j, J(t) = k} , (i, j, k) ∈ Ω.

The steady-state probability vector is

P = (P0,P1,P2, · · ·),

where{
P0 = (P0,0,0, P0,1,0, P0,1,1, P0,2,0, P0,2,1, · · · , P0,c,c) ,
Pl = (Pl,c,0, Pl,c,1, Pl,c,2, · · · , Pl,c,c) , l>0.

Taking the steady-state probability vector into the equilib-
rium equation, then

P0A0 + P1B1 = 0,
P0C0 + P1A1 + P2B2 = 0,
P1C + Pl+1Al+1 + P l+2Bl+2 = 0, 1 ≤ l ≤ N − 1,
PlC + Pl+1AN + Pl+2BN = 0, l ≥ N.

(8)
To solve for the boundary probability vector, a (c+1)×(c+

2)/2+N×(c+1)-dimensional random matrix is constructed
as follows:

B[R] =


A0 C0

B1 A1 C
. . . . . . . . .

BN−1 AN−1 C
BN RBN +AN

 .

Theorem 2. If {N (t) , I (t) , J (t) , t ≥ 0} is a positive
recurrence, the steady-state distribution of the system satis-
fies the following equations:

(P0,P1,P2, · · · ,PN )B[R] = 0,

P0e1 +
N−1∑
l=1

Ple2 + PN (I −R)
−1

e2 = 1,

Pl = PNRl−N , l ≥ N,

(9)

where e1 = (1, 1, · · · , 1)T is a (c+1)(c+2)/2 dimensional
column vector, e2 = (1, 1, · · · , 1)T is a (c+ 1) dimensional
column vector, I is a (c+ 1) dimensional unit matrix.

Proof 1) Proving that

Pl = PNRl−N , l ≥ N. (10)

When l = N , Pl = PNRl−N clearly holds. When l>N ,
the hypothesis test is applied. Assuming that Pl = PNRl−N

holds, take it into the equilibrium equation Eq. (8), then

PlC + Pl+1AN + Pl+2BN

= PNRl−NC + PNRl+1−NAN + PNRl+2−NBN

= PNRl−N (C +RAN +R2BN )
= 0,

so Pl = PNRl−N , l ≥ N holds.
2) Proving that

(P0,P1,P2, · · · ,PN )B[R] = 0.

Bringing the matrix B[R] into the above equation, we can
obtain:

(P0,P1,P2, · · · ,PN )B[R]
= (P0A0 + P1B1, · · · ,PN−1C + PN (RBN +AN ))
= (P0A0 + P1B1, · · · ,PN−1C + PNAN + PNRBN ),

(11)
substituting Eq. (10) into Eq. (11), then

(P0,P1,P2, · · · ,PN )B[R]
= (P0A0 + P1B1, · · · ,PPN−1C + PNAN + PN+1BN ).

From the equilibrium equation Eq. (8) obtain:

(P0,P1,P2, · · · ,PN )B[R] = 0.

3) Proving that

P0e1 +
N−1∑
l=1

Ple2 + PN (I −R)
−1

e2 = 1.

By the regularisation condition of Pe = 1 and the theorem
of Pl = PNRl−N , l ≥ N , we have

Pe

= P0e1 +
∞∑
l=1

Ple2

= P0e1 + P1e2 + · · ·+ PNe2 + PN+1e2 + PN+2e2 + · · ·

= P0e1 +
N−1∑
l=1

Ple2 + PNe2 + PNRe2 + PNR2e2 + · · ·

= P0e1 +
N−1∑
l=1

Ple2 + PN (I +R+R2 + · · ·)e2.

Since SP (R)<1, I + R + R2 + · · · converges to
(I −R)−1.

Then we have

P0e1 +
N−1∑
l=1

Ple2 + PN (I −R)
−1

e2 = 1.

The analysis mentioned above is based on the matrix ge-
ometric solution theory. To analyze the various performance
indexes of the system, it is essential to solve the exact
expression of R. However, due to the large dimensionality
and complex structure of the matrix, finding the specific
expression of R is difficult. Therefore, we employ the Gauss-
Seidel iterative algorithm to obtain an approximate solution
for the rate matrix R. To ensure the convergence of the al-
gorithm, we set the accuracy of the algorithm ε(ε = 10−10).
The detailed steps of the algorithm are shown in Table I.

V. SYSTEM STEADY-STATE PERFORMANCE MEASURES

1) The expected number of customers in the retry space

E(O) =

∞∑
i=1

iPi =

∞∑
i=1

c∑
j=1

j∑
k=0

iPi,j,k.

2) The steady-state mean queue length of the system

E(L) = P0u1 +
∞∑
i=1

iPi = P0u1 +
∞∑
i=1

c∑
k=0

iPi,

where

e3 = (0, 1, 1, 2, 2, 2, 3, 3, 3, 3, · · · c, c, · · · , c)T .
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Table I. Gauss-Seidel iterative algorithm.

Step Operation

Step 1 Set b, r, N , c, η, λ, µ, ε and R = 0

Step 2 Input AN , BN , C

Step 3 Define

Rn = R

n = n+ 1

Rn = −(R2
n−1BN +C)A−1

N

Step 4 If ∥Ri+1 −Ri∥>ε, Go to Step 3;

else, Go to Step 5

Step 5 Rn = R

3) The expected number of breakdown servers

E(BD) = P0u2 +
∞∑
i=1

Piu3 =P0u2 +
∞∑
i=1

c∑
k=0

Piu3,

where

u2 = (0, 0, 1, 0, 1, 2, 0, 1, 2, 3, · · · 0, 1, 2, 3, · · · c)T ,

u3 = (0, 1, 2, 3 · · · c− 1, c)T .

4) The number of impatient customers leaving the system

E(LF ) = (1− r)(c+ i)
∞∑
i=1

c∑
k=0

Pi,j,k.

5) The average waiting time of customers in the system

E(W ) =
E(L)

λ
.

VI. NUMERICAL EXPERIMENTS

A. Performance Indicator Analysis

After obtaining the steady-state probability through the
iterative algorithm and the system of steady-state equations
mentioned earlier, we can use MATLAB to plot the trend of
the system’s performance indicators.

Assuming that b = 0.7, r = 0.7, θ = 5, N = 30, β =
2, α = 0.5, µ = 2.5, η = 1.6. Fig. 2 depicts the relationship
between λ and E(O) for different numbers of servers. As
the number of servers c remains fixed, E(O) increases with
an increase in λ, but the rate at which it increases gradually
slows down after a certain point.

Assuming λ = 20 and η = 1, according to Fig. 2,
Fig. 3 displays the correlation between µ and E(O) in
different numbers of servers. As µ increases, E(O) gradually
decreases. This phenomenon occurs because as µ increases,
the probability of the customers in the retry space entering
the service area by retrying also increases. As a result, E(O)
decreases accordingly.

For different numbers of service stations, Fig. 4 shows
the effect of b and c on E(O) in the retry space. When c
is constant, E(O) increases as b increases and when b is
constant, E(O) decreases as c increases.

Fig. 5 reveals the significant influence of λ and β on
E(BD). When λ is fixed, E(BD) decreases as β increases.
Conversely, when β is constant, E(BD) increases as λ

18 20 22 24 26 28 30
0

5

10

15

E
(O

)

c = 15
c = 20
c = 25

Fig. 2. The trend of E(O) versus λ and c (µ = 2.5, β = 2,
α = 0.5, η = 1.6, b = 0.7, r = 0.7, θ = 5 and N = 30).
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c = 15
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Fig. 3. The trend of E(O) versus µ and c (λ = 20, η = 1,
β = 2, α = 0.5, b = 0.7, r = 0.7, θ = 5 and N = 30).
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Fig. 4. The trend of E(O) versus b and c (λ = 20, η = 1,
β = 2, α = 0.5, µ = 2.5, r = 0.7, θ = 5 and N = 30).
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increases. This is largely because servers are more likely
to break down when they are busy. As λ increases, more
servers get busy, resulting in an increase in E(BD).

11 11.5 12 12.5 13 13.5 14
7

7.5

8

8.5

9

9.5

10

E
(B

D
)

Fig. 5. The trend of E(BD) versus λ and β (µ = 2.5, α = 0.5,
η = 1.6, b = 0.7, r = 0.7, θ = 5, c = 15 and N = 30).

For different numbers of service stations, Fig. 6 illustrates
the effect of θ on E(BD). When c is constant, E(BD)
increases with θ. The rate at which E(BD) enhances with
θ is greater with larger c.
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Fig. 6. The trend of E(BD) versus θ and c (λ = 20, µ = 2.5,
α = 0.5, η = 1.6, b = 0.7, r = 0.7, β = 2 and N = 30).

Fig. 7 illustrates the impact of α and β on E(LI). When
β is constant, E(LI) increases as α increases. As the failure
rate rises, so does the number of faulty servers, resulting in
a decline in service rate and a greater influx of customers
in the retry space. However, fewer customers enter the
service area by retrying, causing E(LI) increases. When α
is constant, E(LI) increases as β decreases. Additionally,
when β decreases, the number of servers transitioning from
low to normal service rates also decreases. Consequently, the
low service rate persists, preventing customers from moving
from the retry space to the service area, leading to more
impatient customers.

Fig. 8 depicts E(O) versus θ for different service rates
µ. As θ increases, E(O) decreases. The probability of a
customer leaving the retry space and entering the service
area increases as θ increases, while the number of impatient
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Fig. 7. The trend of E(LI) versus α and β (λ = 20, η = 1.6,
µ = 2.5, b = 0.7, r = 0.7, θ = 5, c = 15 and N = 30).

customers decreases, leading to a smaller E(O). The E(O)
decreases faster with a larger value of µ.
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Fig. 8. The trend of E(O) versus θ and µ (λ = 20, η = 1.6,
β = 2, α = 0.5, b = 0.7, r = 0.7, c = 15 and N = 30).

Fig. 9 gives a three-dimensional plot of failure rate α
and arrival rate λ against E(L). As λ increases, E(L) also
increases, while E(L) decreases as α decreases.

B. Cost Analysis

After conducting the aforementioned analysis, it has be-
come apparent that each parameter has a significant impact
on the system. To optimize the model, we can alter the
parameter values. To determine the most effective way to
manage the system and assess its economic feasibility, we
will introduce a cost function F . This function will allow us
to minimize costs and expenses, thereby enhancing the sys-
tem’s efficiency. The system cost parameters are as follows:

1) The cost of a customer’s stay in the retry space ch.
2) The cost per unit of time that a server is busy cb.
3) The unit time cost of a server failure cd.
4) The fixed cost of providing a server cf .
5) The cost per unit of time to serve customers cs.
6) The unit time cost of providing repairs cr.
Then the cost function of the system per unit of time is

F = chE(O) + cbE(B) + cdE(BD) + cfc+ csµ+ crβ.
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Fig. 9. The trend of E(L) versus α and λ (µ = 2.5, β = 2,
η = 1.6, b = 0.7, r = 0.7, θ = 5, c = 15 and N = 30).

Table II. The cost function F for various values of β and µ.

(β, µ) c = 6 c = 8 c = 10 c = 12

(1.5,1.6) 773.3 204.5 292.4 331.0

(2,2.5) 1013.1 222.2 259.9 267.8

(2,3.5) 1177.4 210.9 224.9 227.9

(3,3.5) 1235.0 203.9 213.5 216.1

Table III. The cost function F for various values of θ and λ.

(θ, λ) c = 6 c = 8 c = 10 c = 12

(4,6) 1521.5 183.6 186.4 188.5

(5,6) 1574.5 184.0 186.5 188.5

(5,8) 1571.8 217.9 225.5 228.2

(5,10) 1013.1 222.3 259.9 267.8

(6,10) 1439.9 241.0 263.1 268.1

Table IV. The cost function F for various values of b and r.

(b, r) c = 6 c = 8 c = 10 c = 12

(0.3,0.9) 439.0 170.2 245.4 265.5

(0.8,0.9) 70.0 80.1 90.9 110.6

(0.8,0.5) 1782.7 250.5 264.5 267.2

(0.8,0.2) 2104.5 257.2 265.4 267.3

Assuming ch = 2, cb = 4, cd = 2.5, cf = 1, cs = 2 and
cr = 1.5, the following table shows the effect of changes in
the system parameters on the cost.

Based on Table II, we can conclude that the cost of
the system decreases with the increase of β, and decreases
with the increase of µ. The analysis reveals that when β
increases, the number of faulty machines reduces, and the
total system service rate goes up. An increase in µ leads
to more customers successfully entering the system, fewer
people in the retry space, and a lower average retry rate,

fewer customers leave due to impatience and lower costs.
However, with a fixed arrival rate, if the number of servers
is too small, the cost will increase and the system revenue
will be reduced.

Table III gives the effect of θ and λ on the cost F . As the
arrival and retry rates increase, the cost of maintaining the
retry space gradually goes up. Furthermore, when the number
of people in the retry space increases due to a higher λ, and
is coupled with an increase in θ, the cost of maintaining the
retry space in the system also goes up even further.

Table IV shows the effect of b and r on the cost expense
F . The combination of the three tables shows that the system
has the lowest cost when b = 0.8, and r = 0.9. With fixed
parameter λ = 10, the number of service stations is set to
c = 8, while β = 3 and µ = 3.5, resulting in the lowest cost
expense.

The above analysis shows that to maximize the benefits
and minimize the costs of the system, the appropriate number
of service stations should be set according to the arrival rate.
It’s important to monitor the status of machines promptly to
reduce the failure rate of servers. Additionally, improving the
repair rate can enhance the service efficiency of the servers.
These measures can collectively ensure that the system is
running smoothly and efficiently.

C. Benefit Analysis

In this section, we construct benefit functions from both
individual and societal perspectives.

Assuming that the personal benefit to the customer for a
completed service is Z, the expenditure per unit of time that
the customer stays in the system is G, and the fee that the
customer pays for accessing the system is f . Assuming that
UI denotes the customer’s personal benefit, then

UI = Z − f1E(W )− f2.

Assuming that b = 0.7, r = 0.7, θ = 5, N = 30, λ =
15, α = 0.5, η = 1, c = 15, Z = 50, f1 = 3, and f2 = 2. Fig.
10 depicts the impact of restoration β and µ on UI . When β
is constant, UI increases with µ. As µ increases, customers
experience reduced wait times within the system, resulting
in lower average costs per unit of time spent. This, in turn,
leads to enhanced individual benefits. Similarly, when µ is
constant, UI decreases as β decreases.

In order to devise the most effective strategy for the benefit
of society, we define the social benefit function as:

US = λ(Z − f1E(W )− f2).

Based on the given assumptions, Fig. 11 depicts US

in relation to β and µ. It can be observed that when µ
remains constant, it increases as β increases, and when β
remains constant, it increases as µ increases. However, if both
parameters are decreased simultaneously, US will decrease
and may even become negative. Therefore, it is crucial to
appropriately increase β and µ in case of server breakdown
to avoid negative social benefits and ensure the maximization
of social benefits in the system.

VII. CONCLUSION

In this paper, we analyze the M/M/c retrial queueing sys-
tem with impatient customers and server working breakdown.
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Fig. 10. The trend of UI versus β and µ (b = 0.7, r = 0.7,
θ = 5, N = 30, λ = 15, α = 0.5, η = 1, c = 15, Z = 50,

f1 = 3, f2 = 2).

Fig. 11. The trend of US versus β and µ (b = 0.7, r = 0.7,
θ = 5, N = 30, λ = 15, α = 0.5, η = 1, c = 15, Z = 50,

f1 = 3, f2 = 2).

We use matrix-geometric solutions and iterative algorithms
to compute the steady-state probabilities and determine the
performance indicators of the system. To assess the impact
of each parameter on the indicators, we conduct numerical
experiments using MATLAB. Finally, we optimize the model
using cost and benefit functions to determine the appropriate
parameters. In practical applications, it is crucial to establish
suitable servers based on arrival and service rates, along with
regular server maintenance to minimize failure rates. The
results are significant to various systems such as the Internet
ticketing system and after-sales service center system.
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