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Abstract—The purpose of this paper is to propose a new
approach to deal with multi-criteria group decision-making
(MCGDM) problems under type-2 single valued neutrosophic
set (T2SVNS) environment. Firstly, we give the concepts of
single valued neutrosophic set (SVNS) and T2SVNS, and then
we define probabilistic operators with T2SVN information.
Secondly, two type of binary logarithm similarity measures
(BLSM) and weighted binary logarithm similarity measures
(WBLSM) for T2SVNSs are defined. Hybrid binary logarithm
similarity measure (HBLSM) and weighted hybrid binary
logarithm similarity measure (WHBLSM) for T2SVNSs are
also defined. In addition, a MCGDM model based on TOPSIS
method is proposed under T2SVNS environment. Finally, a
numerical example is given to illustrate the effectiveness and
feasibility of the proposed method.

Index Terms—T2SVNS, probabilistic operators, binary loga-
rithm function, MCGDM, TOPSIS method.

I. INTRODUCTION

SMARANDACHE[1] put forward neutrosophic sets
(NSs), which attracted the attention of many scholars

and laid a foundation for further dealing with uncertainty
and inconsistency. Wang et al. [2] developed the concept of
single valued neutrosophic sets (SVNSs), which is a subclass
of the NSs for solving scientific and engineering problems.
SVNSs have been widely used in different fields, such as
engineering problems [3], [4], medical problems [5], [6], [7],
image processing problems [8], [9], [10], decision-making
problems [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], social problems [24], [25], conflict
problems [26].

In order to express mathematical uncertainty, Zedeh [27]
proposed a fuzzy set theory and its extension, such as
interval-valued IFS [28], intuitionistic fuzzy set(IFS) [29],
cubic intuitionistic fuzzy set [30] and linguistic interval-
valued IFS [31]. The operations between two type-2 fuzzy
sets were studied in [32], [33], [34]. Mendel et al. [35]
proposed a new representation of type-2 fuzzy set and defined
some of its operations. Therefore, many scholars have also
studied type-2 fuzzy sets, such as Yang et al. [36] introduced
the similarity between type-2 fuzzy sets and discussed their
properties, Hung et al. [37] proposed similarity methods
between two type-2 fuzzy sets, and obtained the properties of
these methods. Sing [38] introduced two type-2 fuzzy sets
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based on the distances between Euclidean and Hamming.
Zhao et al. [39] were the first to study the type-2 intuitionistic
fuzzy set(T2IFS), they gave the concept of T2IFS, and
discussed the relation of T2IFS. Cuong et al. [40] introduced
some operations between two T2IFSs. Sukhveer et al. [41]
redefined T2IFSs as the following four functions: primary
membership function (PMF), secondary membership func-
tion (SMF), primary non-membership function (PNMF), sec-
ondary non-membership function(SNMF). Many researchers
have studied multi-criteria decision-making (MCDM), such
as similarity measurement [42], Correlation coefficient [43],
[44], Grey correlation analysis [45], TOPSIS method [46],
VIKOR method [47], aggregation operator [48]. Recently,
Abdel Basset et al. [49] defined the concept of type-2 neu-
trosophic number (T2NN). At this time, they also introduced
many concepts, such as score function and precision function
of T2NN, aggregation operator of T2NN. In addition, they al-
so proposed TOPSIS method based on information of T2NN.
Distance measure is an important tool for measure, especially
in similarity measures and decision making. Mondal et al.
[50], [51] proposed sine hyperbolic similarity measure and
tangent similarity measure methods to deal with MADM
problems. Lu et al. [52] proposed logarithmic similarity
measure and applied it in fault diagnosis strategy under in-
terval valued fuzzy set environment [53]. Based on the above
analysis, the main objectives of this paper are as follows:To
define some new probabilistic aggregation operators under
SVNS and T2SVNS environment. To define binary logarithm
similarity measures for T2SVNSs. To develop a MCGDM
model based on proposed operators and similarity measures.
To present a numerical example to illustrate the effectiveness
and feasibility of the proposed method.

The structure of the rest of this paper is as follows.
In section 2, the concepts of SVNSs and T2SVNSs are
given. In section 3, we define BLSM, WBLSM, HBLSM
and WHBLSM similarity measures between two T2SVNSs.
In section 4, we propose a MCGDM method under T2SVN
environment by TOPSIS method with the proposed operators
and distance measure methods. In section 5, an example
is given to illustrate the effectiveness and feasibility of the
proposed model. In section 6, we come to the conclusion.

II. PRELIMINARIES

A. The Single Valued Neutrosophic Sets

Definition 1[54] Let X be a universal space of points
(objects), with a generic element in X denoted by x, single
valued neutrosophic set (SVNS) Q ⊂ X is characterized by
truth-membership function tq(x), indeterminacy-membership

IAENG International Journal of Applied Mathematics

Volume 54, Issue 8, August 2024, Pages 1507-1514

 
______________________________________________________________________________________ 



function iq(x) and falsity-membership function fq(x). A
SVNS can be expressed as

Q = {[〈x, tq(x), iq(x), fq(x)〉] |x ∈ X} . (1)

where tq(x), iq(x), fq(x) are real standard or nonstandard
subsets of [0, 1], so that it means tq(x): X→ [0, 1], iq(x):
X→ [0, 1], fq(x): X→ [0, 1], with the condition of 0 ≤
sup tq(x) + sup iq(x) + sup fq(x) ≤ 3, for all x ∈ X .

When X is continuous, a SVNS Q can be written as

Q =

∫
X

〈tq(x), iq(x), fq(x)〉/x, x ∈ X; (2)

When X is discrete, a SVNS Q can be written as

Q =
n∑
i=1

〈tq(xi), iq(xi), fq(xi)〉/xi, xi ∈ X. (3)

Definition 2[55]Let P and Q be two SVNSs, P =
〈tp(x), ip(x), fp(x)〉, Q = 〈tq(x), iq(x), fq(x)〉, then∀ x ∈
X , operations can be defined as follows:

1) A SVNS Q is contained in the other SVNS P, denoted
as Q ⊂ P, iff, tp(x) ≥ tq(x), ip(x) ≤ iq(x), fp(x) ≤ fq(x),
for all x ∈ X .

2) Two SVNSs Q and P are equal, denoted as Q = P, iff,
Q ⊆ P and Q ⊆ P , for all x ∈ X .

3) The complement of a SVNS P is denoted by P c and
is defined by tpc(x) = fp(x), ipc(x) = 1− ip(x), fpc(x) =
tp(x), for all x ∈ X .

4) P
⋃

Q=〈max(tp(x), tq(x)),min(ip(x), iq(x)),min(fp
(x), fq(x))〉, for all x ∈ X .

5) P
⋂

Q=〈min(tp(x), tq(x)),max(ip(x), iq(x)),max(fp
(x), fq(x))〉, for all x ∈ X .

Definition 3[56], [57], [58] Let Q and P be two SVNSs,
Q = 〈tq(x), iq(x), fq(x)〉, P = 〈tp(x), ip(x), fp(x)〉, then∀
x ∈ X , ∀ λ ∈ R and λ > 0, there is

1) Q⊕P = 〈tq(x)+tp(x)−tq(x)·tp(x), iq(x)·ip(x), fq(x)·
fp(x)〉;

2) Q⊗P = 〈tq(x)·tp(x), iq(x)+ip(x)−iq(x)·ip(x), fq(x)
+ fp(x)− fq(x) · fp(x)〉;

3) λQ = (1− (1− tq(x))λ, iq(x)
λ
, fq(x)

λ
);

4) Qλ = (tq(x)
λ
, 1− (1− iq(x))λ, 1− (1− fq(x))λ).

Definition 4[59] Let Nj = (tj , ij , fj) be “n” SVNNs,

ωj > 0 with
n∑
j=1

ωj=1 and pj > 0 with
n∑
j=1

pj=1 be the

subjective and objectively weights of Nj . A map P-SVNWA
called the probabilistic single valued neurotrophic weighted
average operator is defined as

P−SV NWA(N1, N2, . . . , Nn) =
n⊕
j=1

νjNj

= (1−
n∏
j=1

(1− tj)νj ,
n∏
j=1

i
νj
j ,

n∏
j=1

f
νj
j )

(4)

where νj = (1 − β)pj + βωj be the weight vector with
n∑
j=1

νj=1 and β ∈ [0, 1].

Definition 5[59] Let Nj = (tj , ij , fj) be “n”SVNNs,

ωj > 0 with
n∑
j=1

ωj=1 and pj > 0 with
n∑
j=1

pj=1 be the

subjective and objectively weights of Nj . A map P-SVNWG

called probabilistic single valued neutrosophic weighted ge-
ometric operator is defined as

P−SV NWG(N1, N2, . . . , Nn) =
n⊗
j=1

N
νj
j

= (
n∏
j=1

t
νj
j , 1−

n∏
j=1

(1− ij)νj , 1−
n∏
j=1

(1− fj)νj )

(5)

where νj = (1 − β)pj + βωj be the weight vector with
n∑
j=1

νj=1 and β ∈ [0, 1].

B. The Type-2 Single Valued Neutrosophic Sets

Definition 6[60] A T2SVNS Ñ is a set of pairs
{µN (a), ηN (a), νN (a)}, a ∈ A, µN (a), ηN (a) and νN (a)
are respectively the degrees of the truth-membership,
indeterminacy-membership and falsity membership, defined
as

µN (a) =

∫
uN∈jTa

ta(uN )/uN ;

ηN (a) =

∫
nN∈jIa

ia(nN )/nN ;

νN (a) =

∫
vN∈jFa

fa(vN )/vN

(6)

where uN ,nN and vN are named primary truth member-
ship function (PTMF), primary indeterminacy membership
function (PIMF) and primary falsity membership function
(PFMF). ta(uN ), ia(nN ) and fa(vN ) are called secondary
truth-membership function (STMF), secondary indetermina-
cy membership function (SIMF) and secondary falsity mem-
bership function (SFMF). jTa , jIa and jFa are called as primary
truth membership, primary indeterminant membership and
primary falsity membership, respectively.

T2SVNS Ñ in universe of discourse A can be expressed
as follows:

Ñ ={〈(a, uN , nN , vN ), (ta(uN ), ia(nN ), fa(vN ))〉
|a ∈ A, uN ∈ jTa , nN ∈ jIa, vN ∈ jFa }.

(7)

For the convenience of calculation, Ñ can be abbreviated
as Ñ = 〈(uN , ta(uN ), nN , ia(nN ), vN , fa(vN ))〉, which is
called type-2 single valued neutrosophic number (T2SVNN).
Example Let A=(a1, a2, a3, a4, a5), we give a T2SVNS Ñ ,
which is shown as:

Ñ ={〈(a1, 0.7, 0.4, 0.3), (0.4, 0.22, 0.55)〉,
〈(a2, 0.2, 0.2, 0.3), (0.2, 0.1, 0.1)〉,
〈(a3, 0.6, 0.5, 0.1), (0.2, 0.1, 0.1)〉,
〈(a4, 0.4, 0.1, 0.7), (0.7, 0.5, 0.1)〉,
〈(a5, 0.5, 0.0, 0.4), (0.5, 0.6, 0.6)〉}

Another form of Ñ is as follows:

Ñ =〈(a1, 0.7, 0.4, 0.4, 0.22, 0.3, 0.55)〉,
〈(a2, 0.2, 0.2, 0.2, 0.1, 0.3, 0.1)〉,
〈(a3, 0.6, 0.2, 0.5, 0.1, 0.1, 0.1)〉,
〈(a4, 0.4, 0.7, 0.1, 0.5, 0.7, 0.1)〉,
〈(a5, 0.5, 0.5, 0.0, 0.6, 0.4, 0.6)〉
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Definition 7[60] Let Ñ be a T2SVNS, x, y and z are
variance margin functions of a T2SVNS Ñ , which are
defined as

xN = |uN (ak)− tak(uN )|, yN = |nN (ak)− iak(nN )|,
zN = |vN (ak)− fak(vN )|,∀k.

Definition 8 Let Γ be the collection of all T2SVNNs
Ñj = 〈(ujN , tja(uN ), njN , i

j
a(nN ), vjN , f

j
a(vN ))〉, ωj > 0

with
n∑
j=1

ωj=1 and pj > 0 with
n∑
j=1

pj=1 be the weight

and probabilistic weight of Ñj . A map P-T2SVNWA called
probabilistic Type-2 single valued neutrosophic weighted
average operator is defined as

P−T2SV NWA(Ñ1, Ñ2, . . . , Ñn) =
n⊕
j=1

δjÑj

= (1−
n∏
j=1

(1− ujN )δj , 1−
n∏
j=1

(1− tja(uN ))δj ,

n∏
j=1

(njN )δj ,
n∏
j=1

(ija(nN ))δj ,
n∏
j=1

(vjN )δj ,
n∏
j=1

(f ja(vN ))δj )

(8)

where δj = (1 − β)pj + βωj be the weight vector with
n∑
j=1

δj=1 and β ∈ [0, 1].

Definition 9 A probability Type-2 single valued neutro-
sophic weighted geometric (P-T2SVNWG) operator is a map
P-T2SVNWG: Γn → Γ defined as

P−T2SV NWG(Ñ1, Ñ2, . . . , Ñn) =
n⊗
j=1

(Ñj)
δj

= (
n∏
j=1

(ujN )δj ,
n∏
j=1

(tja(uN ))δj , 1−
n∏
j=1

(1− njN )δj ,

1−
n∏
j=1

(1− ija(nN ))δj , 1−
n∏
j=1

(1− vjN )δj ,

1−
n∏
j=1

(1− f ja(vN ))δj )

(9)

where δj = (1 − β)pj + βωj be the weight vector with
n∑
j=1

δj=1 and β ∈ [0, 1].

III. SIMILARITY MEASURES BETWEEN T2SVNSS

In this section, we define two type of binary logarithm
similarity measures (BLSM) and weighted binary logarith-
m similarity measures (WBLSM), hybrid binary logarithm
similarity measure (HBLSM) and weighted hybrid bina-
ry logarithm similarity measure (WHBLSM) between two
T2SVNSs.

Definition 10 Let SV2(A) be the collection of all T2SVNS
over the universe A, a similarity measure of T2SVNSs is a
real valued function s : SV2(A) × SV2(A) → [0, 1], which
satisfies the following four properties:

1) 0 ≤ s(Ñ1, Ñ2) ≤ 1,∀Ñ1, Ñ2 ∈ SV2(A);
2) s(Ñ1, Ñ2) = 1, if and only if Ñ1 = Ñ2;
3) s(Ñ1, Ñ2) = s(Ñ2, Ñ1);
4) If s(Ñ1, Ñ2) = 1, s(Ñ1, Ñ3) = 1, Ñ3 ∈ SV2(A), then

s(Ñ2, Ñ3) = 1.

Distance measures is another important measure in the
T2SVNS theory. Next, based on similarity measures of the
T2SVNSs, we give the concept of distance mersure of
T2SVNSs:

Let d be a mapping d : SV2(A)× SV2(A)→ [0, 1]. Then
the distance between Ñ1 and Ñ2 is defined as:

d(Ñ1, Ñ2) = 1− s(Ñ1, Ñ2) (10)

where d(Ñ1, Ñ2) satisfies the following four properties:
1) 0 ≤ d(Ñ1, Ñ2) ≤ 1,∀Ñ1, Ñ2 ∈ SV2(A);
2) d(Ñ1, Ñ2) = 0, if and only if Ñ1 = Ñ2;
3) d(Ñ1, Ñ2) = d(Ñ2, Ñ1);
4) If d(Ñ1, Ñ2) = 0, d(Ñ1, Ñ3) = 0, Ñ3 ∈ SV2(A), then

d(Ñ2, Ñ3) = 0.
Now, for any two T2SVNSs Ñ1 and Ñ2, we define the

some similarity measures with T2SVNSs as follows:
Definition 11 The binary logarithm similarity mea-

sures(BLSM)(type I):

sBL1
(Ñ1, Ñ2) =

1

m

m∑
j=1

log2{2−
1

9
(|uN1

(aj)−

uN2
(aj)|+ |nN1

(aj)− nN2
(aj)|+ |vN1

(aj)−
vN2

(aj)|+ |taj (uN1
)− taj (uN2

)|+ |iaj (nN1
)−

iaj (nN2
)|+ |faj (vN1

)− faj (vN2
)|+ |xN1

(aj)−
xN2

(aj)|+ |yN1
(aj)− yN2

(aj)|+ |zN1
(aj)−

zN2
(aj)|)}

(11)

Theorem 1 The defined binary logarithm similarity mea-
sure sBL1(Ñ1, Ñ2) between any two T2SVNSs Ñ1 and Ñ2

satisfies the following properties:
1) 0 ≤ sBL1

(Ñ1, Ñ2) ≤ 1,∀Ñ1, Ñ2 ∈ SV2(A);
2) sBL1

(Ñ1, Ñ2) = 1, if and only if Ñ1 = Ñ2;
3) sBL1

(Ñ1, Ñ2) = sBL1
(Ñ2, Ñ1);

4) If sBL1
(Ñ1, Ñ2) = 1, sBL1

(Ñ1, Ñ3) = 1, Ñ3 ∈
SV2(A), then sBL1

(Ñ2, Ñ3) = 1.
Definition 12 The binary logarithm similarity mea-

sures(BLSM)(type II):

sBL2
(Ñ1, Ñ2) =

1

m

m∑
j=1

log2{2−
1

3
[max(|uN1

(aj)−

uN2
(aj)|, |nN1

(aj)− nN2
(aj)|, |vN1

(aj)−
vN2

(aj)|) +max(|taj (uN1
)− taj (uN2

)|,
|iaj (nN1

)− iaj (nN2
)|, |faj (vN1

)− faj (vN2
)|)+

max(|xN1
(aj)− xN2

(aj)|, |yN1
(aj)− yN2

(aj)|,
|zN1

(aj)− zN2
(aj)|)]}

(12)

Definition 13 The weighted binary logarithm similarity
measures(WBLSM)(type I):

sBLW
1

(Ñ1, Ñ2) =

m∑
j=1

ωj log2{2−
1

9
(|uN1

(aj)−

uN2
(aj)|+ |nN1

(aj)− nN2
(aj)|+ |vN1

(aj)−
vN2

(aj)|+ |taj (uN1
)− taj (uN2

)|+ |iaj (nN1
)−

iaj (nN2
)|+ |faj (vN1

)− faj (vN2
)|+ |xN1

(aj)−
xN2

(aj)|+ |yN1
(aj)− yN2

(aj)|+ |zN1
(aj)−

zN2
(aj)|)}

(13)

where ωj ∈ [0, 1] and
m∑
j=1

ωj = 1.
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Definition 14 The weighted binary logarithm similarity
measures(WBLSM)(type II):

sBLW
2

(Ñ1, Ñ2) =
m∑
j=1

ωj log2{2−
1

3
[max(|uN1

(aj)

−uN2
(aj)|, |nN1

(aj)− nN2
(aj)|, |vN1

(aj)−
vN2

(aj)|) +max(|taj (uN1
)− taj (uN2

)|,
|iaj (nN1

)− iaj (nN2
)|, |faj (vN1

)− faj (vN2
)|)

+max(|xN1
(aj)− xN2

(aj)|, |yN1
(aj)− yN2

(aj)|,
|zN1

(aj)− zN2
(aj)|)]}

(14)

where ωj ∈ [0, 1] and
m∑
j=1

ωj = 1.

Definition 15 The hybrid binary logarithm similarity mea-
sures(HBLSM):

sHBL(Ñ1, Ñ2) =
1

m
{λ{

m∑
j=1

log2[2− 1

9
(|uN1

(aj)−

uN2
(aj)|+ |nN1

(aj)− nN2
(aj)|+ |vN1

(aj)−
vN2

(aj)|+ |taj (uN1
)− taj (uN2

)|+ |iaj (nN1
)−

iaj (nN2
)|+ |faj (vN1

)− faj (vN2
)|+ |xN1

(aj)−
xN2

(aj)|+ |yN1
(aj)− yN2

(aj)|+ |zN1
(aj)−

zN2
(aj)|)]}+ (1− λ){

m∑
j=1

log2{2−
1

3
[max(

|uN1
(aj)− uN2

(aj)|, |nN1
(aj)− nN2

(aj)|,
|vN1

(aj)− vN2
(aj)|) +max(|taj (uN1

)− taj (uN2
)|,

|iaj (nN1
)− iaj (nN2

)|, |faj (vN1
)− faj (vN2

)|)+
max(|xN1

(aj)− xN2
(aj)|, |yN1

(aj)− yN2
(aj)|,

|zN1
(aj)− zN2

(aj)|)]}}}

(15)

where λ ∈ [0, 1].
Definition 16 The weighted hybrid binary logarithm sim-

ilarity measures(WHBLSM):

sHBLW (Ñ1, Ñ2) = λ{
m∑
j=1

ωj log2[2− 1

9
(|uN1(aj)−

uN2
(aj)|+ |nN1

(aj)− nN2
(aj)|+ |vN1

(aj)−
vN2

(aj)|+ |taj (uN1
)− taj (uN2

)|+ |iaj (nN1
)−

iaj (nN2
)|+ |faj (vN1

)− faj (vN2
)|+ |xN1

(aj)−
xN2

(aj)|+ |yN1
(aj)− yN2

(aj)|+ |zN1
(aj)−

zN2(aj)|)]}+ (1− λ){
m∑
j=1

ωj log2{2−
1

3
[max(

|uN1(aj)− uN2(aj)|, |nN1(aj)− nN2(aj)|,
|vN1(aj)− vN2(aj)|) +max(|taj (uN1)− taj (uN2)|,
|iaj (nN1)− iaj (nN2)|, |faj (vN1)− faj (vN2)|)+
max(|xN1(aj)− xN2(aj)|, |yN1(aj)− yN2(aj)|,

|zN1(aj)− zN2(aj)|)]}}

(16)

where λ ∈ [0, 1].

IV. THE MCGDM BASED ON TOPSIS APPROACH

In this section, a MCGDM based on TOPSIS approach
is presented by using the probabilistic operators and above-
defined similarity measures for T2SVNSs. Assume that D =
{D1, D2, . . . , Dd} be a committee of decision makers, A =

{A1, A2, . . . , Ak} be the alternatives, C = {C1, D2, . . . , Cs}
be the attributes of each alternative. Then, the following steps
are described for finding the best alternative(s).

Step 1: Determination of the T2SVN decision matrix of
the decision makers (DMs)

When an expert evaluate the given alternatives Ai under
different attributes Cj made by decision makers Dm(m =
1, 2, . . . , d) and represent their values in terms of T2SVNNs
dmij (i = 1, 2, . . . , k; j = 1, 2, . . . , s). Hence, the T2SVN
decision matrix Dm = (dmij )k×s can be written as follows:

Dm = (dmij )k×s =


C1 C2 · · · Cs

A1 dm11 dm12 · · · dm1s
A2 dm21 dm22 · · · dm2s
...

...
... · · ·

...
Ak dmk1 dmk2 · · · dmks

 (17)

where dmij = 〈umij , tmAi
(umij ), n

m
ij , i

m
Ai

(nmij ), v
m
ij , f

m
Ai

(vmij )〉.
Step 2: Determination of the aggregating decision matrix
By using Definition 2.8, the aggregating matrix B =

(bij)k×s is expressed as follows:

B = (bij)k×s =



b11 b12 · · · b1s

b21 b22 · · · b2s

...
... · · ·

...

bk1 bk2 · · · bks


(18)

where bij =
d⊕

m=1
(δmd

m
ij ) = (1−

d∏
m=1

(1−umij )δm , 1−
d∏

m=1
(1−

tmAi
(uij))

δm ,
d∏

m=1
(nmij )

δm ,
d∏

m=1
(imAi

(nN ))δm ,
d∏

m=1
(vmij )δm ,

d∏
m=1

(fmAi
(vij))

δm). δm = (1 − β)pm + βωm be the weight

vector with weights ωm > 0,
d∑

m=1
ωm = 1, a probabilities

pm > 0,
d∑

m=1
pm = 1 and β ∈ [0, 1].

Step 3: Calculating the positive ideal solution PIS h+ and
negative ideal solution NIS h−

The PIS h+ = {h+1 , h
+
2 , . . . , h

+
s } and NIS h− =

{h−1 , h
−
2 , . . . , h

−
s } are defined as follows:

h+j =〈max
i

(1−
d∏

m=1

(1− umij )δm ,max
i

(1−
d∏

m=1

(1−

tmAi
(uij))

δm),min
i

(
d∏

m=1

(nmij )
δm),

min
i

(
d∏

m=1

(imAi
(nN ))δm),min

i
(
d∏

m=1

(vmij )δm),

min
i

(
d∏

m=1

(fmAi
(vij))

δm)〉

(19)
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h−j =〈min
i

(1−
d∏

m=1

(1− umij )δm ,min
i

(1−
d∏

m=1

(1−

tmAi
(uij))

δm),max
i

(
d∏

m=1

(nmij )
δm),

max
i

(
d∏

m=1

(imAi
(nN ))δm),max

i
(
d∏

m=1

(vmij )δm),

max
i

(
d∏

m=1

(fmAi
(vij))

δm)〉

(20)

Step 4: Determination of the distance between each alter-
native and PIS h+ / NIS h−

d+i =
s∑
j=1

d4(bij , h
+
j )

d−i =
s∑
j=1

d4(bij , h
−
j )

for i = 1, 2, . . . , k. (21)

where d4 = 1 − s4, s4(4 ∈
{BL1, BL2, BL

W
1 , BLW2 , HBL,HBLW }) are defined

in section 3.
Step 5: Calculating the closeness coefficients of alterna-

tives

CCi =
d−i

d+i + d−i
for i = 1, 2, . . . , k. (22)

Step 6: Ranking the alternatives
The highest value of closeness coefficients CCi, the best

alternative Ai is.

V. NUMERICAL EXAMPLE

In this section, we applies the proposed MCGDM method
for the low carbon logistics service provider selection. Due
to the increasingly serious problems caused by carbon e-
missions, the concept of low carbon economy has gradually
attracted the attention of the international community. The
logistics industry is the basis and artery industry of national
economic development, and it is also an industry with large
energy consumption and carbon emission. With the advocacy
and implementation of the concept of low carbon economy,
the transformation and development of low carbon logistics
industry will be an inevitable trend. However, the real market
competition is not the competition between enterprises, but
the competition between supply chains. How to choose a
suitable low carbon logistics supplier is of great significance
to reduce the carbon emissions of the whole supply chain and
enhance the market competitiveness of the supply chain. We
will use a numerical example of the low carbon logistics ser-
vice provider selection problem provided by Chen et al.[61].
There are three DMs (D1, D2, D3) to evaluate, with four
alternatives Ai(i = 1, 2, 3, 4) and four attributes: C1:low-
carbon technology, C2: cost, C3: risk factor, C4: capacity.
The weight of criteria is τ = (0.30, 0.35, 0.15, 0.20). As-
sume that the importance to the subjective (probability) and
objective (weightage) information is taken as 40% and 60%,
respectively. Probabilistic data is p = (0.45, 0.35, 0.20) and
the importance of each T2SVNN is ω = (0.30, 0.25, 0.45),
so δm = (1 − β)pm + βωm is calculated as δ =
(0.36, 0.29, 0.35). Then the complete MCGDM model based
on TOPSIS method is summarized by the following steps:

Step 1: DMs evaluate alternatives for each criteria by
linguistic grade represented in Table 1. Tables 2-4 show their
evaluations.

D1 =



d11
d12
d13
d14
d21
d22
d23
d24
d31
d32
d33
d34
d41
d42
d43
d44



=



〈0.762, 0.500, 0.400, 0.238, 0.762, 0.500〉
〈1.000, 0.858, 0.400, 0.400, 1.000, 0.868〉
〈0.858, 0.248, 0.000, 0.238, 0.868, 0.238〉
〈0.858, 0.763, 0.762, 0.238, 0.868, 0.762〉
〈1.000, 0.762, 0.762, 0.762, 1.000, 0.762〉
〈1.000, 0.858, 0.762, 1.000, 1.000, 0.868〉
〈1.000, 0.762, 0.238, 0.400, 1.000, 0.762〉
〈1.000, 0.858, 0.238, 0.600, 1.000, 0.868〉
〈0.762, 0.500, 0.238, 0.000, 0.762, 0.500〉
〈0.858, 0.762, 0.500, 1.000, 0.868, 0.762〉
〈1.000, 0.858, 0.600, 0.500, 1.000, 0.868〉
〈0.762, 0.500, 0.400, 0.238, 0.762, 0.500〉
〈0.762, 0.858, 0.238, 0.400, 0.868, 0.868〉
〈0.762, 0.762, 1.000, 0.762, 0.500, 0.500〉
〈0.762, 0.400, 0.238, 1.000, 0.762, 1.000〉
〈1.000, 0.858, 0.500, 0.500, 1.000, 0.868〉



D2 =



d11
d12
d13
d14
d21
d22
d23
d24
d31
d32
d33
d34
d41
d42
d43
d44



=



〈0.762, 0.248, 1.000, 0.000, 0.762, 0.238〉
〈0.500, 0.500, 0.400, 0.600, 0.500, 0.500〉
〈0.762, 0.248, 0.238, 0.400, 0.762, 0.238〉
〈0.762, 0.248, 0.000, 0.500, 0.762, 0.238〉
〈0.858, 1.000, 0.000, 0.238, 0.868, 1.000〉
〈0.858, 0.248, 0.762, 0.400, 0.868, 0.238〉
〈0.858, 1.000, 0.000, 0.238, 0.868, 1.000〉
〈0.858, 1.000, 1.000, 0.000, 0.868, 1.000〉
〈0.858, 0.500, 0.500, 1.000, 0.868, 0.500〉
〈0.762, 0.248, 0.400, 0.600, 0.762, 0.238〉
〈0.858, 0.500, 0.762, 0.600, 0.868, 0.500〉
〈0.858, 0.500, 0.238, 0.238, 0.868, 0.500〉
〈0.858, 0.762, 0.400, 0.500, 1.000, 0.868〉
〈0.858, 0.762, 0.400, 0.500, 0.868, 0.762〉
〈0.858, 0.762, 0.400, 0.762, 0.868, 1.000〉
〈0.858, 1.000, 0.400, 1.000, 0.868, 1.000〉



D3 =



d11
d12
d13
d14
d21
d22
d23
d24
d31
d32
d33
d34
d41
d42
d43
d44



=



〈0.858, 0.762, 0.000, 0.000, 1.000, 0.868〉
〈0.248, 0.762, 1.000, 0.000, 0.238, 0.762〉
〈0.248, 0.762, 0.000, 0.238, 0.238, 0.762〉
〈0.500, 0.762, 0.000, 1.000, 0.500, 0.762〉
〈0.858, 0.248, 0.238, 0.400, 0.868, 0.238〉
〈0.858, 0.762, 0.600, 0.600, 0.868, 0.762〉
〈0.858, 0.858, 0.400, 0.600, 0.868, 0.868〉
〈0.858, 0.500, 0.000, 0.000, 0.868, 0.500〉
〈0.142, 0.000, 0.500, 0.500, 0.132, 0.000〉
〈0.248, 0.500, 0.500, 0.500, 0.238, 0.500〉
〈0.248, 0.762, 0.238, 0.238, 0.238, 0.762〉
〈0.500, 0.762, 0.400, 0.400, 0.500, 0.762〉
〈0.142, 0.500, 0.400, 0.000, 0.132, 0.500〉
〈0.142, 0.500, 0.600, 0.400, 0.132, 0.500〉
〈1.000, 0.858, 1.000, 1.000, 1.000, 0.868〉
〈1.000, 0.762, 0.238, 0.500, 1.000, 0.762〉


Step 2: Determination of the aggregating decision matrix

B = (bij)k×s.
According to the weight δ = (0.36, 0.29, 0.35) and E-
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TABLE I
EVALUATIONS OF THE ALTERNATIVES BY THE LINGUISTIC VARIABLES.

Grades PTMF STMF PIMF SIMF PFMF SFMF
Very good (VG) 1.000 1.000 0.000 0.000 0.000 0.000

Good (G) 0.858 0.858 0.238 0.238 0.132 0.132
Medium good (MG) 0.762 0.762 0.400 0.400 0.238 0.238

Fairly (F) 0.500 0.500 0.500 0.500 0.500 0.500
Medium poor (MP) 0.248 0.248 0.600 0.600 0.762 0.762

Poor (P) 0.142 0.142 0.762 0.762 0.868 0.868
Very poor (VP) 0.000 0.000 1.000 1.000 1.000 1.000

TABLE II
LINGUISTIC DECISION MATRIX BY DECISION MAKER D1 .

Alternatives C1 C2 C3 C4

A1 (MG, F, MG, G, MP, F) (VG, G, MG, MG, VP, P) (G, MP, VG, G, P, MG) (G, MG, P, G, P, MP)
A2 (VG, MG, P, P, VP, MP) (VG, G, P, VP, VP, P) (VG, MG, G, MG, VP, MP) (VG, G, G, MP, VP, P)
A3 (MG, F, G, VG, MP, F) (G, MG, F, VP, P, MP) (VG, G, MP, F, VP, P) (MG, F, MG, G, MP, F)
A4 (MG, G, G, MG, P, P) (MG, MG, VP, P, F, F) (VG, MG, MG, G, VP, MP) (VG, G, F, F, VP, P)

TABLE III
LINGUISTIC DECISION MATRIX BY DECISION MAKER D2 .

Alternatives C1 C2 C3 C4

A1 (MG, MP, VP, VG, MP, MG) (F, F, MG, MP, F, F) (MG, MP, G, MG, MP, MG) (MG, MP, VG, F, MP, MG)
A2 (G, VG, VG, G, P, VP) (G, MP, P, MG, P, MG) (G, VG, VG, G, P, VP) (G, VG, VP, VG, P, VP)
A3 (G, F, F, VP, P, F) (MG, MP, MG, MP, MP, MG) (G, F, P, MP, P, F) (G, F, G, G, P, F)
A4 (G, MG, MG, F, VP, P) (G, MG, MG, F, P, MP) (G, MG, MG, P, P, VP) (G, VG, MG, VP, P, VP)

TABLE IV
LINGUISTIC DECISION MATRIX BY DECISION MAKER D3 .

Alternatives C1 C2 C3 C4

A1 (G, MG, VG, VG, VP, P) (MP, MG, VP, VG, MG, MP) (MP, MG, VG, G, MG, MP) (F, MG, VG, VP, F, MP)
A2 (G, MP, G, MG, P, MG) (G, MG, MP, MP, P, MP) (G, G, MG, MP, P, P) (G, F, VG, VG, P, F)
A3 (P, VP, F, F, G, VG) (MP, F, F, F, MG, F) (MP, MG, G, G, MG, MP) (F, MG, MG, MG, F, MP)
A4 (P, F, MG, VG, G, F) (P, F, MP, MG, G, F) (VG, G, VP, VP, VP, P) (VG, MG, G, F, VP, MP)

q.(2.8), B matrix can be constructed. For example

b11 =〈1− (1− 0.762)0.36 · (1− 0.762)0.29 · (1− 0.858)0.35,

1− (1− 0.500)0.36 · (1− 0.248)0.29 · (1− 0.762)0.35,

0.4000.36 · 1.0000.29 · 0.0000.35,

0.2380.36 · 0.0000.29 · 0.0000.35,

0.7620.36 · 0.7620.29 · 1.0000.35,

0.5000.36 · 0.2380.29 · 0.8680.35〉
=〈0.801, 0.566, 0.000, 0.000, 0.838, 0.489〉

Other values in B matrix can be made by similar way as
follows:

B =



〈0.801, 0.566, 0.000, 0.000, 0.838, 0.489〉
〈1.000, 0.755, 0.551, 0.000, 0.495, 0.707〉
〈0.704, 0.497, 0.000, 0.277, 0.531, 0.358〉
〈0.744, 0.668, 0.000, 0.488, 0.689, 0.544〉
〈1.000, 1.000, 0.000, 0.434, 0.913, 0.549〉
〈1.000, 0.724, 0.701, 0.641, 0.913, 0.570〉
〈1.000, 1.000, 0.000, 0.340, 0.913, 0.863〉
〈1.000, 1.000, 0.000, 0.000, 0.913, 0.746〉
〈0.679, 0.363, 0.383, 0.000, 0.428, 0.000〉
〈0.704, 0.569, 0.469, 0.677, 0.531, 0.469〉
〈1.000, 0.755, 0.465, 0.407, 0.581, 0.707〉
〈0.734, 0.614, 0.344, 0.285, 0.683, 0.579〉
〈0.679, 0.744, 0.332, 0.000, 0.468, 0.716〉
〈0.679, 0.691, 0.641, 0.538, 0.368, 0.564〉
〈1.000, 0.723, 0.457, 0.924, 0.870, 0.952〉
〈1.000, 1.000, 0.361, 0.611, 0.960, 0.864〉


Step 3: Determination of the PIS and NIS.

By using Eqs.(4.3) and (4.4), we can get the PIS h+ and
NIS h− as following:

h+ =


〈1.000, 0.755, 0.000, 0.000, 0.495, 0.358〉
〈1.000, 1.000, 0.000, 0.000, 0.913, 0.549〉
〈1.000, 0.755, 0.344, 0.000, 0.428, 0.000〉
〈1.000, 1.000, 0.332, 0.000, 0.368, 0.564〉



h− =


〈0.704, 0.497, 0.551, 0.488, 0.838, 0.707〉
〈1.000, 0.724, 0.701, 0.641, 0.913, 0.863〉
〈0.679, 0.363, 0.469, 0.677, 0.683, 0.707〉
〈0.679, 0.691, 0.641, 0.924, 0.960, 0.952〉


Step 4: Determination of the distance between each alter-

native and the PIS h+ / the NIS h−.
By using distance measure and similarity measures for-

mulas given between T2SVNSs in section 3. the separation
measures d+i and d−i are shown in Table 5. The value of λ
does not affect the result of the operation, but the precision
of the operation can be adjusted. For the convenience of
calculation, the special case λ = 0.55 be chosen.

Step 5: Calculating the closeness coefficients CCi of
alternatives.

By using Eq.(4.6), the closeness coefficients can be ob-
tained and shown in Table 6.

Step 6: Ranking the alternatives.
According to Table 6, the resulting ranking order is

A1 � A4 � A3 � A2, alternative which has maximum
closeness coefficient is A1, according to all of distance
measures. Hence, the best supplier is A1.

Compared with the approach proposed by Karaaslan [60],
the difference is that this paper proposes some similarity
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TABLE V
SEPARATION MEASURES d+i AND d−i ACCORDING TO DISTANCE MEASURES.

d+1 d+2 d+3 d+4 d−1 d−2 d−3 d−4
dBL1 0.0774 0.1621 0.1498 0.1321 0.1840 0.1186 0.1310 0.1439
dWBL1

0.0780 0.1566 0.1363 0.1167 0.1840 0.1179 0.1342 0.1522
dBL2

0.1953 0.3765 0.2965 0.2739 0.3745 0.2535 0.2640 0.2912
dWBL2

0.1991 0.3909 0.2697 0.2513 0.3719 0.2537 0.2749 0.3262
dHBL 0.1304 0.2586 0.2158 0.1959 0.2697 0.1793 0.1908 0.2102
dWHBL 0.1325 0.2620 0.1963 0.1773 0.2686 0.1790 0.1975 0.2305

TABLE VI
THE CLOSENESS COEFFICIENTS OF ALTERNATIVES.

CC1 CC2 CC3 CC4 Ranking order
dBL1

0.7039 0.4225 0.4665 0.6502 A1 � A4 � A3 � A2

dWBL1
0.7023 0.4295 0.4961 0.5660 A1 � A4 � A3 � A2

dBL2
0.6572 0.4024 0.4710 0.5153 A1 � A4 � A3 � A2

dWBL2
0.6513 0.3935 0.5048 0.5648 A1 � A4 � A3 � A2

dHBL 0.6741 0.4094 0.4693 0.5176 A1 � A4 � A3 � A2

dWHBL 0.6696 0.4059 0.5015 0.5652 A1 � A4 � A3 � A2

measures and new distance measures between T2SVNSs, but
our ranking results and optimal supplier have the same values
to calculate the same decision problem as that of Karaaslan
[60], which is able to show our approach is practical and
effective.

VI. CONCLUSION

In this study, we presented a MCGDM method for the
low carbon logistics service provider selection under a type-
2 single valued neutrosophic set environment. The main
contributions of this paper can be summarized as follows:
(1) The concept of type-2 single valued neutrosophic sets is
defined. Using the existing theory of T2SVNSs, we define the
probabilistic operators with T2SVN information. (2) In order
to obtain the best alternative(s), we propose some similarity
measures and new distance measures between two T2SVNSs.
(3) A new TOPSIS based approach for MCGDM under type-
2 single valued neutrosophic environment is developed by
integrating proposed similarity measures and distance mea-
sures. (4) To illustrate validity and process of the proposed
MCGDM, a numerical example is given.

In the future, we hope that more information measures
and techniques are developed for decision-making problems
under type-2 single valued neutrosophic environment. The
proposed approach can be used for dealing with decision-
making problems, such as personal selection in academia,
project evaluation, manufacturing systems and many other
areas of management systems.
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