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Abstract—In this paper, conducted within the purview of
deformable fractional calculus, we explore a distinct class of
fractional logistic differential equation models endowed with
variable coefficient intrinsic growth rates. By using the intrinsic
properties of deformable fractional calculus and employing
precise analytical techniques, we have successfully deduced
the analytical solution of the model. To further elucidate
our main findings, we present detailed examples and perform
corresponding numerical simulations. Remarkably, in contrast
to the prevailing literature, the fractional logistic differential
equation model examined herein incorporates a novel feature of
variable coefficient intrinsic growth rates. Therefore, this work
not only extends previous research results but also enriches the
literature in the related field.

Index Terms—Fractional logistic equation, Deformable frac-
tional derivative, Variable coefficient intrinsic growth rate,
Analytical solution

I. INTRODUCTION

IN recent years, the logistic equation has garnered signif-
icant scholarly attention due to its extensive applicability

in various fields such as biomedicine, economics, optical
network data security, and notably, in modeling the dynamics
of the COVID-19 pandemic [1]. The logistic equation is
especially relevant in scenarios where the aggregate growth
rates diminish with increasing population size. Fundamen-
tally, the per capita growth rate within a population model
is characterized as a diminishing function of the population
size, represented by λ − ax. This principle was originally
posited by Verhulst in 1838 and is succinctly expressed
through the subsequent logistic differential equation

x′(t) = x(t)(λ− αx(t)). (1)

Upon further examination, Pearl and Reed (1920) reformu-
lated equation (1) as follows

x′(t) = rx(t)
[
1− x(t)

K

]
, (2)

where r is called the intrinsic growth rate, and K is rep-
resented the carrying capacity of the population [2]. If the
population size at time t = 0 is x0, that is, x(0) = x0, then
equation (2) has the following analytical solution

x(t) =
Kx0

x0 + (K − x0) exp(−rt)
. (3)
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On the other hand, due to the extensive applications
of fractional differential equations in various disciplines,
including physics, biomedicine, finance, non-Newtonian fluid
mechanics, control theory, and signal processing [3–9], etc.
Based on the powerful theoretical and practical background
of fractional calculus, some scholars have cultivated a pro-
found interest in the study of fractional logistic equations,
yielding many intriguing findings [1, 10–19]. In 2007, El-
Sayed et al. [10] discussed the initial value problem of the
fractional logistic differential equation as follows

Dα[x(t)] = ρx(t)(1− x(t)), t > 0, x(0) = x0, (4)

where α ∈ (0, 1], x0 > 0, Dα represents the Caputo frac-
tional derivative. The author discussed the stability, existence,
uniqueness, and numerical solution of equation (4).

In 2015, West [11] investigated the following initial value
problem of a fractional logistic differential equation

Dα
t [u(t)] = kαu(t)[1− u(t)], t > 0, u(0) = u0, (5)

where α ∈ (0, 1], k > 0, u0 > 0, Dα
t represents the Caputo

fractional derivative. The author obtained the solution of
equation (5) by using Laplace transform and matrix methods.

It is noteworthy that the definitions of fractional differ-
ential operators, including Riemann-Liouville, Caputo, and
Hadamard, are characterized by singular kernels, which
engender a high computational cost and diminished effi-
ciency in the fractional differential equations formulated by
these operators, particularly in computations over extended
durations. Consequently, a faction of scholars advocates
for local fractional calculus approaches such as Caputo-
Fabrizio, Conformable, Deformable, and fractal calculus. Of
late, some researchers have delved into the analytical solution
conundrum of local fractional logistic differential equations
[1, 12].

In 2020, Abreu-Blaya, et al. [12] studied the following ini-
tial value problem of fractional logistic differential equation
involving local fractional derivative

GαT [y(t)] = ay(t) [K − y(t)] , y(t0) = y0, (6)

where α ∈ (0, 1], a,K > 0 and GαT represents the
conformable fractional derivative. The author obtained the
analytical solution of equation (6) in the following form

y(t) =
Ky0

(K − y0) exp
(
−aKJαT,t0(1)(t)

)
+ y0

.

In 2021, Nieto [1] considered the initial value problem
of the following fractional logistic differential equation via
local fractional derivative

Dα [x(t)] = x(t)[1− x(t)], t > 0, x(0) = x0, (7)
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where α ∈ (0, 1], x0 > 0, Dα is Caputo-Fabrizio fractional
derivative. The author obtained the analytical solution of
equation (7) in implicit form given as follows

x(t)− x2(t)
[1− x(t)]2/α

=
x0 − x20

(1− x0)2/α
exp(t).

Motivated by the above literature, we observe that most
studies on fractional logistic differential equations assume a
constant intrinsic growth rate of the population. Therefore, in
this paper, we explore a different type of fractional logistic
differential equation that involves a non-singular kernel (local
fractional derivative), where the intrinsic growth rate is a
function of time t. Specifically, we consider the following
initial value problem of a fractional logistic differential
equation

Dαx(t) = r(t)x(t)
[
1− x(t)

K

]
, t > 0, x(0) = x0, (8)

where α ∈ (0, 1], Dα represents deformable fractional
derivative, r(t) is a continuous function, x0 > 0. Through
analysis, we get the analytical solution of equation (8) in the
following explicit form

x(t) =
Kx0 exp(h(t))

x0 exp(h(t)) +K − x0 +
x0β

α

∫ t

0

exp(h(s))ds

, (9)

where α + β = 1, h(t) =

∫ t

0

r(s)− β
α

ds. The fractional

logistic model (8) contains the following problems as its
special case
• If α → 1, then the equation (8) degenerates into the

following classical logistic differential equation initial
value problem

x′(t) = r(t)x(t)
[
1− x(t)

K

]
, t > 0, x(t) = x0.

(10)
It follows from (9) that the logistic differential equation
(10) possesses an analytical solution in the following
explicit form

x(t) =
Kx0

x0 + (K − x0) exp
(
−
∫ t

0

r(s)ds
) .

• If α → 1, and setting r(t) ≡ r (r is a constant), then
equation (8) degenerates into the initial value problem
of the logistic differential equation (2), and the equation
(9) can degenerate into (3).

Finally, by utilizing the python, we plotted numerical sim-
ulation images for equation (9) with different values of α.
The novelty of this paper is manifested as follows:
(1) In population ecology, considering variable intrinsic

growth rates is essential due to the phenomenon known
as the Allee effect. In natural environments, resource
availability can fluctuate, such as due to seasonal
changes or environmental pollution. If we only consider
constant intrinsic growth rates, we cannot adequately
reflect the impact of these changes on populations.
Environmental conditions may also vary across dif-
ferent regions or over time. Variable intrinsic growth
rates allow us to more accurately describe population
growth under diverse environmental conditions. Fur-
thermore, interactions and changes within ecosystems

influence population dynamics. Therefore, considering
variable intrinsic growth rates is crucial for understand-
ing population growth and adaptability within ecosys-
tems. Hence, the research presented in this paper holds
significant importance.

(2) This paper extends the fractional logistic model with
constant intrinsic growth rates considered in existing
literature [1, 10–19] to a variable-coefficient fractional
logistic model. By analysis, we obtain an analytical
solution. Firstly, this paper generalizes the existing
models, forming a new class of problems. Secondly, this
extension has a certain biological significance, beyond
mere mathematical research. Therefore, this paper is
novel.

II. PRELIMINARIES

In this section, we recall some fundamental definitions of
deformable fractional calculus and related results, for more
details we refer readers to [20] and references therein.
Definition 1. The deformable fractional integral of order α
for a function x ∈ C([a, b] ,R) is defined as

Iαax(t) =
1

α
exp

(
− β

α
t
)∫ t

a

exp
(β
α
s
)
x(s)ds, t ∈ [a, b],

where α+ β = 1, α ∈ (0, 1].
Definition 2. The deformable fractional derivative of order
α for a function x : [a, b]→ R is defined as

Dαx(t) = lim
ε→0

(1 + εβ)x(t+ εα)− x(t)
ε

, t ∈ (a, b),

if the right limit exists, where α+β = 1, α ∈ (0, 1], we say
that x is α-differentiable at t.
Remark 1. If α = 1, β = 0, the deformable fractional
derivative of the function will degenerate into the classical
first-order derivative.
Lemma 1. Let x be a real valued function on [a, b],
(i) If x ∈ C[a, b], then Iαa (x) is α-derivative on (a, b) and

Dα(Iαax)(t) = x(t).

(ii) If x is α-differentiable, then

Iαa (D
α)x(t)=x(t)− exp

(β
α
(a− t)

)
x(a).

III. MAIN RESULTS

In this section, we define Banach space X = C1[a, b]. If
x ∈ X is the solution of equation (8), then we have:

Iα0D
α
0x(t) = Iα0 r(t)x(t)

[
1− x(t)

K

]
.

By using Lemma 1 (ii), one has

x(t)− exp
(
− β

α
t
)
x(0) (11)

=
1

α
exp

(
− β

α
t
)∫ t

0

exp
(β
α
s
)
r(s)x(s)

[
1− x(s)

K

]
ds.

Multiplying both sides of equation (11) by exp(βt/α), we
obtain

exp
(β
α
t
)
x(t)− x(0) (12)

=
1

α

∫ t

0

exp
(β
α
s
)
r(s)x(s)

[
1− x(s)

K

]
ds.
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Taking derivative to the both sides of equation (12) with
respect to t, we derive

β

α
exp

(β
α
t
)
x(t) + exp

(β
α
t
)
x′(t)

=
1

α
exp

(β
α
t
)
r(t)x(t)

[
1− x(t)

K

]
.

It then follows that
β

α
x(t) + x′(t) =

1

α
r(t)x(t)

[
1− x(t)

K

]
. (13)

Rearranging the equation (13) gives

x′(t) +
[β
α
− 1

α
r(t)

]
x(t) = − 1

αK
r(t)x2(t). (14)

Let y(t) = x−1(t), then

y′(t) = −x−2(t)x′(t).

Equation (14) becomes a linear equation

y′(t)−
[β
α
− 1

α
r(t)

]
y(t) =

1

αK
r(t). (15)

Considering the homogeneous equation corresponding to
equation (15) by

y′(t)−
[β
α
− 1

α
r(t)

]
y(t) = 0. (16)

Solving equation (16) yields

y(t) = C̃ exp
{∫ [β

α
− 1

α
r(t)

]
dt
}
, C̃ ∈ R.

Using the method of variation of constants, let

y(t) = C̃(t) exp
{∫ [β

α
− 1

α
r(t)

]
dt
}

be the solution to equation (15), then

y′(t) = C̃ ′(t) exp
{∫ [β

α
− 1

α
r(t)

]
dt
}

+ C̃(t)
[β
α
− 1

α
r(t)

]
exp

{∫ [β
α
− 1

α
r(t)

]
dt
}
.

Substituting y(t) and y′(t) into equation (15), we obtain

C̃ ′(t) exp
{∫ [β

α
− 1

α
r(t)

]
dt
}
=

1

αK
r(t). (17)

Solving equation (17), we get

C̃(t)=

∫
1

αK
r(t) exp

{
−
∫ [β

α
− 1

α
r(t)

]
dt
}
dt+C, C∈R.

Therefore, we obtain the solution to equation (14) as follows

1

x(t)
= exp

{∫ [β
α
− 1

α
r(t)

]
dt
}

(18)

×
[∫ 1

αK
r(t) exp

{
−
∫ [β

α
− 1

α
r(t)

]
dt
}
dt+ C

]
.

Substituting the initial condition x(0)=x0 into equation (18),
we obtain

x(t) =
Kx0 exp(h(t))

x0 exp(h(t)) +K − x0 +
x0β

α

∫ t

0

exp(h(s))ds

. (19)

Therefore, we have obtained the solution for fractional lo-
gistic equation (8).

Corollary 1. Consider the following fractional logistic dif-
ferential equation{

Dαx(t) = tx(t)[1− 2x(t)], t > 0,
x(0) = 1/2,

(20)

then example (20) has analytic solution

x(t) =
α exp(g(t))

α exp(g(t)) + α+ (1− α)
∫ t

0

exp(g(s))ds

, (21)

where g(t) =
t2 − 2(1− α)t

2α
.

Proof. Corresponding to problem (8), let

r(t) = t, K = 1, x0 =
1

2
.

Then, by using (19) the problem (20) has a solution (21).
Corollary 2. Consider the following fractional logistic dif-
ferential equation{

Dαx(t) = 2αx(t)[1− x(t)], t > 0,
x(0) = 1/2,

(22)

then (19) has analytic equation

x(t) =
exp(p(t))

exp(p(t)) + 1 +
1− α

2α − 1 + α
(exp(p(t))− 1)

, (23)

where p(t) =
2α − 1 + α

α
t.

Proof. Corresponding to equation (8), let

r(t) = 2α, K = 1, x0 =
1

2
.

Hence, by applying (19) the problem (22) has a solution (23).
Corollary 3. Consider the following fractional logistic dif-
ferential equation{

Dαx(t) = x(t)[1− x(t)], t > 0,
x(0) = 1/2,

(24)

then (24) has analytic equation

x(t) =
exp(t)

exp(t) + 1 +
1− α
α

(exp(t)− 1)
, (25)

Proof. Corresponding to equation (8), let

r(t) = 1, K = 1, x0 =
1

2
.

Hence, by applying (19) the problem (24) has a solution (25).

IV. NUMERICAL SIMULATION

We now plot the solutions of (20), (22) and (24) for
different values of α.
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Fig. 1. Explain the solutions of the logistic differential equations (20).
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Fig. 2. Explain the solutions of the logistic differential equations (22).
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Fig. 3. Explain the solutions of the logistic differential equations (24).

V. CONCLUSION

This study discussed a class of deformable fractional
logistic differential equations characterized by time-varying
intrinsic growth rates. Employing analytical methodologies,
we derive an analytical solution and furnish numerical sim-
ulations to corroborate our findings. Our result extends the

existing literature on fractional logistic differential equations
with constant intrinsic growth rates to include models with
variable coefficient intrinsic growth rates. Furthermore, as
α → 1 and r(t) ≡ r (a constant), our findings converge to
the results of the classical integer-order logistic differential
equation. Consequently, our research has significant impli-
cations for the field. Taking into account the background of
the logistic model in practical applications as well as that
of fractional calculus, we can explore following fractional
logistic model for mosquito population suppression based on
Wolbachia-infected mosquitoes in the future{

Dαx(t) = ax(t)− (µ+ ξx(t))x(t), t > 0,

x(0) = x0,

where α ∈ (0, 1], x0 > 0, a, µ, ξ ∈ R+, Dα is Caputo-
Fabrizio fractional derivative.
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APPENDIX

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import quad
from matplotlib import font_manager

plt.rc(’text’,usetex=True)
plt.rcParams[’text.latex.preamble’] =

r’\usepackage{amsmath}’
plt.rcParams[’pgf.preamble’] =

r’\usepackage{amsmath}’

def integrand(s, alpha):
return np.exp((s ** 2 - 2 * (1 - alpha) *

s) / (2 * alpha))

def function_1(t, alpha):
numerator = alpha * np.exp((t ** 2 - 2 *

(1 - alpha) * t) / (2 * alpha))
integral, _ = quad(integrand, 0, t,

args=(alpha,))
denominator = alpha * np.exp((t ** 2 - 2 *

(1 - alpha) * t) / (2 * alpha)) +
alpha + (1 - alpha) * integral

return numerator / denominator

def function_2(t, alpha):
numerator = np.exp(((2 ** alpha) - 1 +

alpha) / (alpha * t))
denominator = np.exp(((2 ** alpha) - 1 +

alpha) / alpha * t) + 1 + ((1 - alpha)
/ (2 ** alpha - 1 + alpha)) * (

np.exp(((2 ** alpha) - 1 + alpha)
/ alpha * t) - 1)

return numerator / denominator

def function_3(t, alpha):
numerator = (np.exp(t))
denominator =

(np.exp(t)+1+((1-alpha)/alpha)*(np.exp(t)-1))

return return numerator / denominator
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