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Abstract—An integer-fractal mobile-immobile (MIM) model
for reactive solute transport in a heterogeneous porous media
is investigated, where the transport in the mobile zone is given
by an advection-dispersion equation, and the diffusion in the
immobile zone is described by a time fractional differential
equation. A finite difference scheme is put forward to solve
the MIM model, and convergence and stability of the scheme
are proved based on the spectrum estimation of the coefficient
matrix. An inverse problem of identifying the fractional order
and the degradation coefficient is considered with the measured
data in the mobile zone, and uniqueness of the inverse problem
is proved by the method of Laplace transform. Numerical
inversions with noisy data are presented to demonstrate a
numerical stability of the inverse problem.

Index Terms—MIM solute transport, integer-fractal model,
inverse problem, finite difference scheme, Laplace transform,
uniqueness, numerical inversion.

I. INTRODUCTION

SOIL and groundwater pollution has become a serious
threat to sustainable development throughout the world.

It is important to characterize transport and diffusion be-
haviors in mathematics for solute transport in heterogeneous
porous media. Assume that the porous media is divided
into mobile and immobile zones due to the heterogeneity,
and there is the first-order kinetic mass transfer between
the two zones, and no adsorption and degeneration in the
transportation, then there holds (see [10], [11] for instance):{

θm
∂cm
∂t + θim

∂cim
∂t = L(x)cm,

θim
∂cim
∂t = ω(cm − cim),

(1.1)

where cm, cim are solute concentrations in the mobile and
immobile zones respectively; θm and θim are volumetric wa-
ter contents of the mobile and immobile zones respectively,
and θm + θim = θ where θ denotes the volumetric water
content of the media; L(x) is an elliptic operator describing
hydrologic convection and dispersion in space; and ω is
the first-order mass transfer rate between the mobile and
immobile zones.

The system (1.1) is called a mobile-immobile (MIM)
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solute transport model in the case of no sources in the porous
media. If denoting β = θm/θ as a partition parameter of the
mobile water zone, there is 1 − β = θim/θ. Furthermore,
considering linear adsorption, first-order degeneration reac-
tions in the process, and one gets a MIM solute transport
model (see [20], [21], [27], [33], for instance){

βR ∂cm
∂t + (1− β)R ∂cim

∂t = L(x)cm − µ1cm,

(1− β)R∂cim
∂t = ω(cm − cim)− µ2cim,

(1.2)

where R ≥ 1 is retardation factor due to the adsorption, and
µ1 and µ2 are degeneration coefficients in the mobile and
immobile zones respectively, and other symbols denote the
same meanings as in (1.1).

The equations (1.1) and (1.2) are integer-order MIM solute
transport models which have been studied and applied widely
by hydrogeologists not only in lab but also in field tests.
However, fractional diffusion equations have been reported
to be more effective than the integer-order equations in mod-
eling and describing solute transport behaviors with heavier
tails, or earlier breakthrough phenomena during the last three
decades. We only refer to Metzler et al. [24], Metzler and
Klafter [25], Zaslavsky [37] for some early work. Actually, it
is always not a instantaneous process but a longtime dynamic
process for solute mass transfer and/or chemical reactions
in heterogeneous media. This non-instantaneous dynamic
process can be described by fractional diffusion equations
[3], [13], [39]. Recently, transient anomalous diffusions and
power-law relations of solute transport were observed under
suitable conditions by employing the fractional MIM models
[7], [8], [32].

It is noted that Schumer et al. [30] proposed a fractional
MIM equation by choosing a suitable power-law memory
function, which was referred to as the FMIM model. Follow-
ing the research in [30], there have had quite a few of studies
for anomalous diffusion of solute transport in heterogeneous
porous media, see [4], [9], [22], [23], [32], [35] for instance.
Very recently, the authors considered an integer-fractal solute
transport system with source terms in a two-zone porous
media, and an inverse source problem of determining two
space-time-dependent sources in the model was investigated
from numerics [36]. Based on the models (1.1)-(1.2) and the
work in [36], this paper will deal with numerical solution
and multi-parameters inversion for the integer-fractal solute
transport system, which is different from that work in [36].

It is known that research on fractional diffusion models lies
mainly in numerical methods and applications [1], [26], and
the first work of this paper is to give numerical solutions to
the integer-fractal solute transport model. By discretizing the
time-fractional derivative and the integer-order derivatives as
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done in [22], a finite difference scheme to the integer-fractal
MIM system is proposed, and its stability and convergence
are proved under natural conditions of the model parameters
which is one of the contributions of this paper.

On the other hand, some parameters in the model are
always unknown or can not be measured directly, such as
the order of the fractional derivative, the mass transfer rate,
and the initial distribution of the solute ions, etc., in which
cases we have to encounter with inverse problems for the
MIM solute transport system. As for inverse problems in
fractional diffusion equations, we refer to [6], [29] for early
typical work, and recently see [5], [14], [18], [34], etc.
Nevertheless, to the authors’ best knowledge, there are few
studies on inverse problems associated with a system of
fractal differential equations [2], [19], [36].

The fractional order is an essential parameter to describe
the anomalous diffusion behavior which is always unknown
in advance, and the degradation coefficient of the solute
in the mobile zone is also unknown in most cases. So it
is meaningful to study the inverse problem of determining
these two parameters. Recently the authors studied an inverse
problem of determining two orders in a fractional MIM
model [19], and the uniqueness was proved by the method
of Laplace transform.

In this paper, we will consider with an inverse problem
of identifying the fractional order and the degradation co-
efficient in the integer-fractal MIM solute transport system
also utilizing the method of Laplace transform. We aim to
prove the uniqueness of the inverse problem by the maximum
principle of elliptic operator in the positive real-space of
Laplace transform, which is the main contribution of this
paper. Furthermore, numerical inversions are performed by
using a modified Levenberg-Marquart (LM in short) algo-
rithm to support the theoretical analysis.

The rest of this paper is organized as follows.
In Section 2, an integer-fractal MIM solute transport

model is introduced, and a finite difference scheme for the
forward problem is put forward. In Section 3, stability and
convergence of the difference scheme are proved by spectral
analysis of the coefficient matrix. In Section 4, an inverse
problem of identifying the factional order and the degradation
coefficient is investigated, and the uniqueness is proved by
Laplace transform. Numerical inversions with noisy data are
presented in Section 5, and concluding remarks are given in
Section 6.

II. THE INTEGER-FRACTAL MIM MODEL AND THE
DIFFERENCE SCHEME

Consider a modification of the integer-order transport
model (1.2) in a finite domain in 1D case. Suppose that there
are no sources in the domain, and the solute transport begins
in the mobile phase by the left boundary input, and there are
no solute ions in the immobile at the beginning. So the mass
transfer happens from the mobile to the immobile along with
a classical hydrodynamic advection-dispersion in the mobile
and a dynamical process in the immobile. If the porous
media is of low-permeability, the dynamical diffusion in the
immobile can be described by a time-fractional differential
equation, which leads to the integer-fractal mobile-immobile
solute transport model.

A. The integer-fractal MIM model

By dimensionless we denote Ω = (0, 1) and Ω∞ =
Ω × (0,∞). Based on (1.2) and the dynamic diffusion in
the immobile, an integer-fractal MIM solute transport model
is given as follows:{

βR∂u1

∂t = 1
P

∂2u1

∂x2 − ∂u1

∂x − ω(u1 − u2)− λu1,
(1− β)R∂γ

t u2 = ω(u1 − u2)− µu2,
(2.1)

where (x, t) ∈ Ω∞, and u1 = u1(x, t) and u2 = u2(x, t)
denote the solute concentrations in the mobile and immobile
zones respectively; P > 0 is the Pelect number, ω > 0
also denotes the mass transfer rate from the mobile to the
immobile, and λ, µ > 0 are the degradation coefficients in the
mobile and the immobile zones respectively, and β ∈ (0, 1)
and R ≥ 1 denote the same meanings as in (1.2), and ∂γ

t u2,
0 < γ < 1, denotes the Caputo fractional derivative of u2

on time t > 0 which is defined by [15], [28]

∂γ
t u2 =

1

Γ(1− γ)

∫ t

0

(t− s)−γ ∂u2(x, s)

∂s
ds, (2.2)

where Γ(·) denotes the Gamma function.
The model (2.1) is a system combining the hydrologic

advection-dispersion transport in the mobile with a fractional
diffusion in the immobile zone, which can be regarded as the
deformation of the FMIM equation. Here the system model
(2.1) can be utilized directly to describe the diffusion and
mass transfer processes in the mobile and immobile zones,
and it should be more practical than that of the FMIM
equation from the viewpoint of engineering applications.

For the model (2.1), the initial condition is given as:

u1(x, 0) = 1, u2(x, 0) = 0, 0 ≤ x ≤ 1, (2.3)

which means that the solute concentration in the immobile
zone is zero at the initial stage. The boundary conditions are
given as

u1(0, t) = 1, u2(0, t) = 0, 0 ≤ t < ∞, (2.4)

and
∂u1

∂x
(1, t) = 0,

∂u2

∂x
(1, t) = 0, 0 ≤ t < ∞, (2.5)

which imply that the left-hand side of the region in the
mobile keeps a constant same as the initial distribution, and
the right-hand boundary is impermeable.

As a result, we get a determined system composed by
(2.1) with (2.3)-(2.5) which is called the forward problem.
The solution of the forward problem can be expressed by the
inverse of Laplace transform, however, it is very difficult to
work out the solution due to the complexity of the inverse
Laplace transformation.

In what follows we give a finite difference solution to
the forward problem for (x, t) ∈ Ω × (0, T ) for any given
time T > 0, and prove its stability and convergence by the
estimation of the spectral radius of the coefficient matrix.

B. The finite difference scheme

For any finite time T > 0, let m,n be positive integers,
and h = 1/m, τ = T/n be grid steps to discretize the
domain (0, 1)× (0, T ). Denote xi = ih(i = 0, · · · ,m), tk =
kτ (k = 0, · · · , n) as the grid points, and ui,k

1 ≈ u1(xi, tk),
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ui,k
2 ≈ u2(xi, tk) as the approximations.
Assume that the solutions u1 and u2 are suitably smooth,

then by using ordinary finite difference method to discretize
the derivatives in (2.1) at (xi, tk+1), there hold:

∂u1

∂t
|(xi,tk+1) =

ui,k+1
1 − ui,k

1

τ
+O(τ), (2.6)

∂u1

∂x
|(xi,tk+1) =

ui,k+1
1 − ui−1,k+1

1

h
+O(h), (2.7)

∂2u1

∂x2
|(xi,tk+1) =

ui+1,k+1
1 − 2ui,k+1

1 + ui−1,k+1
1

h2
+O(h2),

(2.8)
and

∂γ
t u2|(xi,tk+1) = 1

τγΓ(2−γ)

k∑
j=0

[ui,j+1
2 − ui,j

2 ]

·[(k + 1− j)1−γ − (k − j)1−γ ] +O(τ).
(2.9)

Denote r = τ
βRPh2 as the grid ratio, and denote{

A = τ
βRh + r, C = r, D = ωτ

2βR , E = ωτγΓ(2−γ)
2(1−β)R ;

B = 1 +A+ C + 2D + τ
βRλ, F = 1 + 2E + 2E

ω µ.

(2.10)
By utilizing the above notations and omitting the remainder
terms in (2.6)-(2.8) and (2.9), the system (2.1) is discretized
as

−Aui−1,k+1
1 +Bui,k+1

1 − Cui+1,k+1
1 −Dui−1,k+1

2

−Dui+1,k+1
2 = ui,k

1 ,

−Eui−1,k+1
1 − Eui+1,k+1

1 + Fui,k+1
2 = ui,k

2

−
k−1∑
j=0

(ui,j+1
2 − ui,j

2 )[(k + 1− j)1−γ − (k − j)1−γ ].

(2.11)
The initial boundary value conditions are discretized as

U (0) = (1, 1, · · · , 1; 0, 0, · · · , 0)T ;

and
u0,k
1 = 1, u0,k

2 = 0, k = 0, 1, · · · , n;

and

um−1,k
1 = um,k

1 , um−1,k
2 = um,k

2 , k = 0, 1, · · · , n,

respectively. By rearranging (2.11) we get an implicit differ-
ence scheme in the matrix form:

MU1 = U0,

MUk+1 = NUk +
k−1∑
j=1

Ψk
jU

j +N0U
0, k = 1, · · · , n− 1,

(2.12)
where Uk = (u1,k

1 , · · · , um−1,k
1 , u1,k

2 , · · · , um−1,k
2 )T for k =

1, · · · , n. The matrices in the difference scheme (2.12) are
given as follows.

Firstly, M is a 2(m− 1)-order matrix defined by

M =

(
M11 M12

M21 M22

)
, (2.13)

where M11,M12,M21 and M22 are all m−1-order matrices
given by

M11 =


B −C 0 · · · 0
−A B −C · · · 0

...
. . . . . . . . .

...
0 · · · −A B −C
0 · · · 0 −A B − C

 ,

M12 =


0 −D 0 · · · 0

−D 0 −D · · · 0
...

. . . . . . . . .
...

0 · · · −D 0 −D
0 · · · 0 −D −D

 ,

M21 =


0 −E 0 · · · 0

−E 0 −E · · · 0
...

. . . . . . . . .
...

0 · · · −E 0 −E
0 · · · 0 −E −E

 ,

M22 =


F 0 0 · · · 0
0 F 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 F 0
0 · · · 0 0 F


respectively. Secondly, N and N0 in (2.12) are both 2(m−1)-
order matrices and defined by

N =

(
I O
O (2− 21−γ)I

)
, N0 =

(
O O
O akI

)
, (2.14)

respectively, where I is the m − 1-order identity matrix, O
denotes the m− 1-order zero matrix, and

ak = (k + 1)1−γ − k1−γ , k = 1, · · · , n− 1. (2.15)

Finally, the matrix Ψk
j is defined by

Ψk
j =

(
O O
O bkj I

)
, (2.16)

where

bkj = 2(k+1−j)1−γ−(k−j)1−γ−(k−j+2)1−γ , (2.17)

for j = 1, · · · , k − 1 and k = 2, · · · , n− 1.
By solving the difference equation (2.12), numerical so-

lutions of the forward problem can be obtained, and we
need to prove the solvability, stability and convergence of
the difference scheme.

III. STABILITY AND CONVERGENCE OF THE DIFFERENCE
SCHEME

According to the background of solute transport in porous
media and the physical/chemical laws, the parameters in the
system (2.1) should satisfy the condition:

0 < γ < 1, 0 < β < 1, R ≥ 1, P > 0, ω > 0, λ > 0, µ > 0,
(3.1)

with which we will prove the solvability, stability and con-
vergence of (2.12). Therefore we need some preliminaries
on the coefficient matrix.

A. Preliminaries on the coefficient matrix

Lemma 3.1([12]) For k = 1, 2, · · ·, and 0 < γ < 1, there
holds

2kγ − (k − 1)γ − (k + 1)γ > 0, (3.2)

and then the coefficients bkj (j = 1, · · · , k − 1, k = 2, 3, · · ·)
given in (2.17) are all positive.

By direct computations we get the following assertion.
Lemma 3.2 Let 0 < γ < 1, and the coefficients ak (k =
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1, 2, · · ·) and bkj (j = 1, · · · , k − 1, k = 2, 3, · · ·) be defined
by (2.15) and (2.17) respectively, there hold 0 < ak < 1,

and ak +
k−1∑
j=1

bkj = 21−γ − 1.

Proposition 3.1 For the matrix M defined by (2.13), there
holds

Mii > 1 +
2m−2∑

j=1,j ̸=i

|Mij |, (3.3)

with
2m−2∑

j=1,j ̸=i

Mij < 0 for i = 1, 2, · · · , 2m− 2.

Proof Obviously, the coefficients A,B,C,D and E,F
defined in (2.10) are all positive under the natural condition
(3.1), and the assertion is valid by the following verifications.

(i) i = 1. Noting M11 = B > 0 and
2m−2∑
j=2

M1j = −C−D <

0, there is

M11 = 1 +A+ C + 2D +
τ

βR
λ > 1 +

2m−2∑
j=2

|Mij |.

(ii) i = 2, · · · ,m − 1. Noting Mii = B > 0 and
2m−2∑

j=1,j ̸=i

Mij = −A− C − 2D < 0, we get

Mii = 1 +A+ C + 2D +
τ

βR
λ > 1 +

2m−2∑
j=1,j ̸=i

|Mij |.

(iii) i = m. Since Mmm = F > 0 and
2m−2∑

j=1,j ̸=m

Mmj =

−E < 0, there is

Mmm = 1 + 2E +
2E

ω
µ > 1 +

2m−2∑
j=1,j ̸=m

|Mmj |.

(iv) i = m + 1, · · · , 2m − 2. Noting Mii = F > 0 and
2m−2∑

j=1,j ̸=i

Mij = −2E < 0, we get

Mii = 1 + 2E +
2E

ω
µ > 1 +

2m−2∑
j=1,j ̸=i

|Mij |.

The proof is completed.
Corollary 3.1 By this proposition, the coefficient matrix M
of the difference scheme (2.12) is strictly diagonal dominant,
and the the difference scheme is uniquely solvable.

Based on (3.3) it is not difficult to get the estimate of
the spectral radius of the coefficient matrix with the same
method as used in [12], [17].
Lemma 3.3 For the coefficient matrix M there holds

1

2∥M∥∞ − 1
< ρ(M−1) < 1, (3.4)

and there exists a matrix norm ∥ · ∥∗ such that

∥M−1∥∗ < 1, (3.5)

here ∥M∥∞ = max
1≤i≤2m−2

{Mii}, and ρ(M−1) is the spectral

radius of M−1, and M−1 denotes the inverse matrix of M .

B. Stability and convergence

We discuss the stability and convergence of the difference
scheme (2.12) by the norm ∥ · ∥∗ given in Lemma 3.3, and
we denote it as ∥ · ∥ for convenience of writing.
Theorem 3.1 Assume that the solutions u1 and u2 are
suitably smooth, and the model parameters satisfy the natural
condition (3.1), then the finite difference scheme (2.12) is
stable.
Proof By linearity of the scheme (2.12), we get

ME1 = E0, E0 = Ũ0 − U0,

MEk+1 = NEk +
k−1∑
j=1

Ψk
jE

j +N0E
0,

(3.6)

where Ũ0 denotes the initial function with noises, Ek =
Ũk − Uk denotes the solutions’ difference at the k-th level,
and k = 0, 1, · · ·.

By (3.6) and Lemma 3.3, there holds

∥E1∥ ≤ ∥M−1∥∥E0∥ < ∥E0∥. (3.7)

Suppose that there are ∥Ej∥ < ∥E0∥ for j = 1, 2, · · · , k.
Then we get also by (3.6) and Lemma 3.3

∥Ek+1∥ ≤ ∥M−1∥∥NEk +
k−1∑
j=1

Ψk
jE

j +N0E
0∥

< ∥NEk +
k−1∑
j=1

Ψk
jE

j +N0E
0∥

< (∥N∥+
k−1∑
j=1

∥Ψk
j ∥+ ∥N0∥)∥E0∥.

(3.8)
On the other hand, by the definitions of N,N0 and Ψk

j

given in (2.14) and (2.16), and noting 2 − 21−γ < 1, we
have

∥N∥∞ = 1, ∥N0∥∞ = ak, ∥Ψk
j ∥∞ = bkj (j = 1, · · · , k−1),

(3.9)
for k = 1, 2, · · ·. Thus by Lemma 3.2 there holds

∥N∥∞ + ∥N0∥∞ +
k−1∑
j=1

∥Ψk
j ∥∞ = 1 + ak +

k−1∑
j=1

bkj = 21−γ .

(3.10)
Henceforth by (3.8), and thanks to the equivalence of the
norm in finite-dimensional space, there exists a positive
constant c > 0 independent of k ∈ N such that

∥Ek+1∥ ≤ c∥E0∥, (3.11)

which implies that the assertion of this theorem is valid by
the inductive principle. The proof is over.

Denote the errors in the solutions by

ek = (u1(x1, tk)− u1,k
1 , · · · , u1(xm−1, tk)− um−1,k

1 ,

u2(x1, tk)− u1,k
2 , · · · , u2(xm−1, tk)− um−1,k

2 )T ,
(3.12)

for k = 1, 2, · · · , n, where uj(xi, tk) and ui,k
j , j = 1, 2, are

the exact and numerical solutions at (xi, tk) of the forward
problem respectively. Now we prove the convergence of the
finite difference scheme (2.12).
Theorem 3.2 Under the conditions of Theorem 3.1, the
difference solution of (2.12) is convergent to the exact
solution with the order of O(hτ1−γ + τ) as h, τ → 0 for
any finite time T < ∞, and there holds

∥ek∥ ≤ cγT
γ(hτ1−γ + τ), (3.13)
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TABLE I
SOLUTION ERRORS AND CONVERGENCE RATES WITH GRIDS RATIOS

h τ = h2 Err1 Rat1 Err2 Rat2

1/4 1/16 3.87549e-2 2.25301e-1

1/10 1/100 1.44610e-2 2.680 6.55298e-2 3.438

1/20 1/400 7.00629e-3 2.064 2.74381e-2 2.388

1/40 1/1600 3.45238e-3 2.029 1.22166e-2 2.246

1/80 1/6400 1.71439e-3 2.014 5.70225e-3 2.142

where cγ is a positive constant related with the order γ ∈
(0, 1) but independent of k ∈ N.
Proof Also by the linearity of the scheme (2.12), we have

Me1 = R1,

Mek+1 = Nek +
k−1∑
j=1

Ψk
j e

j +Rk+1,
(3.14)

where Rk denotes the truncated term in the solutions’
approximation for k = 1, 2, · · ·.

By the difference approximations (2.6)-(2.9), there holds

∥Rk∥ ≤ c(hτ + τ1+γ), k = 1, 2, · · · , (3.15)

here c > 0 also denotes a positive constant independent of
k ∈ N. Thus by a similar method as used in Theorem 3.1,
one can get

∥ek+1∥ ≤ (∥N∥∥ek∥+
k−1∑
j=1

∥Ψk
j ∥∥ej∥)/∥N0∥+ ∥Rk+1∥

≤ c
ak
(∥N∥+

k−1∑
j=1

∥Ψk
j ∥+ ∥N0∥)(hτ + τ1+γ)

≤ c·21−γ

ak
τγ(hτ1−γ + τ).

(3.16)
Noting τ = T/n and n ≥ k, there holds

∥ek+1∥ ≤ c · 21−γ

akkγ
T γ(hτ1−γ + τ). (3.17)

By the limitation lim
k→∞

akk
γ = 1 − γ, we get the assertion

(3.13), where cγ = c·21−γ

1−γ . The proof is over.

C. Numerical experiment

Let the analytic solution of the forward problem be{
u1(x, t) = (x2 − 2x)t+ 1,
u2(x, t) = ( 12x

2 − 1
3x

3)t,
(3.18)

for (x, t) ∈ (0, 1)× (0, 1). The model parameters are chosen
as γ = 0.75, P = 10, β = 0.5, ω = 1, R = 2 and λ = 0.05,
µ = 0.01. Using the scheme (2.12) to solve the system, the
errors in the solutions with the grid ratios are listed in Table
1, where h, τ are the space and time steps, Rat1 and Rat2
denote the convergence rates of u1 and u2 respectively, and
Err1, Err2 denote the solutions errors for u1 and u2 at t = 0.5
respectively, where Err1 is given by

Err1 =
∥u1(x, 0.5)− u∗

1(x, 0.5)∥2
∥u1(x, 0.5)∥2

, (3.19)

here u∗
1 denotes the numerical solution, and Err2 is given

similarly to (3.19).
From Table 1 it can be seen that the difference solutions

give good approximations to the exact solution. The conver-
gent rates for u1 and u2 are basically in accordance with
each other as the grid goes to fine with τ = h2.

IV. INVERSE PROBLEM OF IDENTIFYING MODEL
PARAMETERS

A. The inverse problem

Suppose that the fractional order γ and the degradation
coefficient λ in the model (2.1) are unknown, we aim to
identify and determine them with some additional informa-
tion based on the forward problem.

The additional observation is given for the solute concen-
tration in the mobile zone at one space-point x0 ∈ Ω:

u1(x0, t), 0 < t < ∞, (4.1)

with which an inverse problem is formulated composed by
(2.1), (2.3)-(2.5) together with (4.1).

An inverse problem is often investigated in an admissible
set of the unknowns. For the considered inverse problem,
assume that (γ, λ) ∈ Sad, where Sad is given by

Sad = {(γ, λ) : 0 < γ < 1, 0 < λ < K}, (4.2)

and K is a positive constant. In addition, assume that the
solutions of the forward problem belong to C2,1(Ω∞), and
they satisfy growth condition as t → ∞ such that Laplace
transform can be performed for the system (2.1).

For proof of the uniqueness of the inverse problem, we
also need the following lemmas.
Lemma 4.1 Suppose that the Laplace transforms of u1(·, t)
and u′

1(·, t) on t > 0 exist, then there holds

sû1(·, s) → u1(·, 0), Re(s) → ∞. (4.3)

where û1(·, s) denotes the Laplace transform of u1(·, t) on
t > 0.

For the Caputo fractional derivative ∂γ
t u2(·, t) (0 < γ <

1), there holds the Laplace transform formula:

L{∂γ
t u2(·, t); s} = sγ û2(s)− sγ−1u2(·, 0), (4.4)

where û2(·, s) denotes the Laplace transform of u2(·, t) on
t > 0.
Lemma 4.2 ([31])) Let I be a bounded interval in R, and
u = u(x) be a nonconstant solution of

a(x)u′′ + b(x)u′ + h(x)u ≥ 0, x ∈ I, (4.5)

where the coefficients a(x), b(x) and h(x) are bounded and
h(x) ≤ 0 in I , and there exists a constant a0 > 0 such that
a(x) ≥ a0 > 0 in I . Then a nonnegative maximum of u can
only occur on ∂I , and du/dν > 0 there, where ν denotes a
normal vector pointing outward at the boundary.
Corollary 4.1 Let I = (0, 1). Under the conditions of
Lemma 4.2, suppose further that u(0) = 0 and u′(1) = 0,
then there must have u(x) < 0, x ∈ I .

B. The uniqueness

For any given (γ, λ) ∈ Sad, denote uγ,λ
1 (x, t), uγ,λ

2 (x, t)
as the smooth solutions of the forward problem in the mobile
and immobile zones respectively.
Theorem 4.1 For given λ > 0, let uγ

1 , uγ
2 be the solutions

of the forward problem in the mobile and immobile zones,
corresponding to the factional order γ ∈ (0, 1) respectively,
and x0 ∈ Ω be the measured point. If uγ1

1 (x0, t) = uγ2

1 (x0, t)
for t ∈ (0,∞) and γ1, γ2 ∈ (0, 1), then there holds γ1 = γ2.
Proof By using Laplace transform for the model (2.1), and
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utilizing the initial conditions u1|t=0 = 1 and u2|t=0 = 0,
there hold

βR(sû1
γ − 1) =

1

P

d2û1
γ

dx2
− dû1

γ

dx
−ω(û1

γ − û2
γ)− λû1

γ ,

(4.6)
and

(1− β)R(sγ û2
γ) = ω(û1

γ − û2
γ)− µû2

γ . (4.7)

From (4.7) there is

û2
γ =

ωû1
γ

(1− β)R sγ + ω + µ
. (4.8)

Substituting (4.8) into (4.6) we get

1
P

d2û1
γ

dx2 − dû1
γ

dx

+{ ω2

(1−β)Rsγ+ω+µ − ω − λ− βRs}û1
γ + βR = 0.

(4.9)
Now for γ1, γ2 ∈ (0, 1), there hold the expressions for

û1
γ1 and û1

γ2 corresponding to (4.9). Let U(x) = û1
γ1 −

û1
γ2 and γ1 > γ2. There holds for x ∈ Ω

1

P

d2U

dx2
− dU

dx
+ cU = d, (4.10)

where

c = −ω − λ− βRs+
ω2

(1− β)Rsγ1 + ω + µ
, (4.11)

and

d = û1
γ2

ω2(1− β)R (sγ1 − sγ2)

[(1− β)Rsγ1 + ω + µ] [(1− β)Rsγ2 + ω + µ]
,

(4.12)
and the boundary conditions are U(0) = 0 and U ′(1) = 0.

Let us consider the case of s > 0 and large enough. Thanks
to the priori conditions of ω > 0, λ > 0, µ > 0 and R ≥
1, 1− β > 0, there holds

c = −ω − λ− βRs+ ω2

(1−β)Rsγ1+ω+µ

≤ −ω − λ− βRs+ ω
= −λ− βRs < 0, s > 0.

Rewrite (4.12) as

d = sû1
γ2

ω2(1− β)R
(
sγ1−1 − sγ2−1

)
[(1− β)Rsγ1 + ω + µ] [(1− β)Rsγ2 + ω + µ]

,

(4.13)
for s > 0. Since sû1

γ2 → u1(x, 0) = 1, s → ∞ by Lemma
4.1, there exists s0 > 0 large enough such that

sû1
γ2 > 0, s ≥ s0. (4.14)

On the other hand, by the assumption γ1 > γ2, there is
sγ1 > sγ2 for s ≥ s0, and we have

sγ1−1 > sγ2−2, s ≥ s0.

Then by (4.13) together with (4.14) follows that d ≥ 0 for
s ≥ s0 > 0.

Henceforth, by using Corollary 4.1 for the equation (4.10),
we deduce that U(x) < 0 for x ∈ Ω and there holds U(x0) <
0 for s ≥ s0 > 0. On the other hand, by performing the
Laplace transform on the overposed condition uγ1

1 (x0, t) =
uγ2

1 (x0, t), there holds

U(x0) = û1
γ1(x0, s)− û1

γ2(x0, s) = 0. (4.15)

This is a contradiction and there must have γ1 ≤ γ2.
Similarly, γ1 < γ2 is impossible. Therefore γ1 = γ2. The
proof is completed.

Furthermore, the fractional order and the degradation
coefficient in (2.1) can be uniquely determined also by the
additional measurement u1(x0, t), 0 < t < ∞.
Theorem 4.2 Let uγ,λ

1 , uγ,λ
2 be the solutions of the forward

problem in the mobile and immobile zones, corresponding
to γ ∈ (0, 1) and λ > 0 respectively, and x0 ∈ Ω be
the measured point. If uγ1,λ1

1 (x0, t) = uγ2,λ2

1 (x0, t) for
t ∈ (0,∞) and (γi, λi) ∈ Sad (i = 1, 2), then there hold
λ1 = λ2 and γ1 = γ2.
Proof Assume that λ1 > λ2. Denote û1

γ,λ(x, s) as the
Laplace transform of the solution uγ,λ

1 (x, t) on t > 0 for
(γ, λ) ∈ Sad, and let V (x, s) = û1

γ2,λ2(x, s)− û1
γ1,λ1(x, s)

for x ∈ Ω and s > 0. With a similar method as used in
Theorem 4.1, there holds

1

P

d2V

dx2
− dV

dx
+ c̄V = d̄, (4.16)

where

c̄ = −ω − λ1 − βRs+
ω2

(1− β)Rsγ1 + ω + µ
, (4.17)

and

d̄ = û1
γ2,λ2{λ1 − λ2

+ ω2(1−β)R(sγ1−sγ2 )
[(1−β)Rsγ1+ω+µ][(1−β)Rsγ2+ω+µ]},

(4.18)

and the boundary conditions are V (0) = 0 and V ′(1) = 0.
Also consider the case of s > 0 and large enough.

Obviously there is c̄ ≤ −λ1 − βRs < 0. Let us analyze the
sign of the coefficient d̄. Also as done in the above, rewrite
(4.18) as

d̄ = sû1
γ2,λ2{λ1−λ2

s

+ ω2(1−β)R(sγ1−1−sγ2−1)
[(1−β)Rsγ1+ω+µ][(1−β)Rsγ2+ω+µ]},

(4.19)

for s > 0. As done in Theorem 4.1, there exists s0 > 0 large
enough such that sû1

γ2,λ2 > 0 as s ≥ s0. By the a priori
conditions for the known parameters we have

ω2(1−β)R(sγ1−1−sγ2−1)
[(1−β)Rsγ1+ω+µ][(1−β)Rsγ2+ω+µ]

∼ ω2

(1−β)R
s−γ2−s−γ1

s , s → ∞.
(4.20)

Since γ1, γ2 ∈ (0, 1), and s−γ2 −s−γ1 → 0 as s → ∞, there
holds

s−γ2 − s−γ1

s
= O(s−1−γ∗

), s → ∞,

where γ∗ = min{γ1, γ2}. By the assumption λ1 > λ2, there
holds

λ1 − λ2

s
+

ω2(1− β)R(sγ1−1 − sγ2−1)

[(1− β)Rsγ1 + ω + µ][(1− β)Rsγ2 + ω + µ]
≥ 0,

(4.21)
for s ≥ s0. Then there holds d̄ ≥ 0 for s ≥ s0 by (4.19).
So by applying Corollary 4.1 for the equation (4.16), there
must have V (x, s) < 0 for x ∈ Ω and s ≥ s0 > 0.

With a completely same arguments as stated in Theorem
4.1, we get a contradiction which gives the assertion λ1 ≤
λ2. Consequently we can get λ1 ≥ λ2. Thus there must have
λ1 = λ2.

Denote λ1 = λ2 := λ, and by the same arguments as
given in Theorem 4.1, we get γ1 = γ2. The proof is over.
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V. NUMERICAL INVERSIONS

In this section, we present numerical inversions for simul-
taneously identifying the fractional order and the degradation
coefficient in the model (2.1) by the modified Levenberg-
Marquart (LM) algorithm. We refer to [12], [38] for detailed
procedures of the inversion algorithm.

A. The inversion algorithm

Here and henceforth, we denote z := (γ, λ) ∈ Sad as the
exact solution to the inverse problem, and Sad is given by
(4.2), and we write the solution of the forward problem in
the mobile zone as u1[z] for any prescribed z ∈ Sad. We
firstly introduce the LM method.

Consider a nonlinear least square problem

min
x∈X

∥F (x)− y∥22, (5.1)

where F (x) is always a nonlinear function on x ∈ X , X is a
bounded domain in Rd, and y is a vector of measurements.
For given xn, by setting

xn+1 = xn + sn, n = 0, 1, · · · , (5.2)

and choosing a suitable parameter µn, and work out sn by
the normal equation

(F ′(xn)
∗F ′(xn) + µnI)sn = F ′(xn)

∗(y − F (xn)), (5.3)

where F ′(xn) denotes the Jacobi matrix of F (xn), F ′(xn)
∗

is the adjoint matrix of F ′(xn), I is the identity matrix, and
µn > 0 is the so-called LM parameter. This is the main idea
of the LM method.

Based on the LM method, we consider the following
minimization problem by involving with the regularization
strategy and homotopy idea:

min
x∈X

{(1− α)∥F (x)− y∥22 + α∥x∥22}, (5.4)

where α ∈ (0, 1) is the homotopy parameter which decreases
continuously from 1 to 0. By the same induction as for the
LM method, we can get a normal equation for given xn

((1− αn)F
′(xn)

∗F ′(xn) + αnI) sn
= (1− αn)F

′(xn)
∗(y − F (xn)),

(5.5)

by which an optimal perturbation sn is solved and we get
xn+1 also by (5.2).

A key problem on performing the inversion algorithm is
how to choose the homotopy parameter. As done in [16],
[38], we choose the Sigmoid-type function as the homotopy
parameter given as

αn =
1

1 + eσ(n−n0)
, (5.6)

where n is the number of iterations, n0 is the preestimated
number of iterations, and σ > 0 is the adjust parameter. The
procedures of the inversion algorithm are given as follows:
Step 1. Give the target function F (x) and the data vector y,
and the control precision eps;
Step 2. Give initial guess xn(n = 0, 1, · · ·), and work out
F (xn) and the Jacobi matrix F ′(xn);
Step 3. Work out an optimal perturbation sn by (5.5) where
the homotopy parameter is chosen by (5.6);
Step 4. If ∥sn∥2 ≤ eps, then xn+1 = xn+sn is the inversion
solution, and the algorithm terminates; Otherwise, replacing
xn with xn+1, and turn to Step 2 to go on.

TABLE II
THE INVERSION RESULTS IN EX.5.1

δ z̄inv Ērr n̄

5% (0.54286268, 0.021777354) 8.89e-2 46.5

1% (0.50355608, 0.0098008279) 7.12e-3 45

0.1% (0.49982613, 0.0096872755) 7.15e-4 45

0.01% (0.49996940, 0.010017620) 7.06e-5 45

0 (0.49999999, 0.0099999979) 1.56e-8 44

B. Numerical examples

For the considered inverse problem, denote the target
function as F (z)(t) = u1[z](x0, t), t ∈ (0, T ] for any given
time T > 0, and the additional data function is supposed to
be contaminated by random noises, which satisfies

∥uδ
1(x0, t)− u1(x0, t)∥L2(0,T ) ≤ δ, (5.7)

and δ > 0 denotes the noise level. By utilizing the modified
LM algorithm to solve the nonlinear equation

F (z)(t) = uδ
1(x0, t), t ∈ (0, T ], (5.8)

we get numerical inversions for each given noise level. On
performing the inversion algorithm, the forward problem is
solved numerically by the finite difference scheme (2.12),
where T = 1 and the time and space grid steps are h = 1/20
and τ = 1/20 respectively; and the initial iteration is always
chosen as zero, and the measured point is fixed at x0 = 0.5.
In addition, we choose n0 = 4 and σ = 0.3 in (5.6) in the
following computations.
Example 5.1 Let γ = 0.5 and λ = 0.01 be the exact
fractional order and the degradation coefficient, respectively.
In other words, the exact solution of the inverse problem
is z = (0.5, 0.01). The other known parameters are given
as P = 1, R = 2, β = 0.5, ω = 0.5 and µ = 0.5 in
this example. By substituting the exact parameters into the
forward problem, the solution is computed and the additional
data at x0 = 0.5 are obtained, with which the two parameters
are reconstructed using the inversion algorithm.

The inversion results with noisy data and exact data are
listed in Table 2, where δ denotes the random noise level
and δ = 0 denotes the inversion with exact data, and
z̄inv := (γ̄inv, λ̄inv) denotes the average inversion solution
with 10-time inversions, and Ērr denotes the relative error,
which is given by Ērr = ∥z− z̄inv∥/∥z∥, and n̄ denotes the
average number of iterations.
Example 5.2 In this example, we choose the known param-
eters as P = 5, R = 2, β = 0.5, ω = 1.5 and µ = 0.1.
Let γ = 0.75 and λ = 0.05, i.e., the exact solution of the
inverse problem is z = (0.75, 0.05). As done in Ex.5.1, the
inversion results with noisy data and exact data are listed in
Table 3, where δ, z̄inv , Ērr and n̄ are the same notations as
in Ex.5.1.

From Table 2 and Table 3 it can be seen that the inversion
solutions approximate and converge to the exact solution as
the noise level goes to zero, and the inversion algorithm is
of numerical stability against noises in the measured data.

VI. CONCLUSION

The integer-fractal MIM solute transport model is studied
from numerical solution and system identification. An effec-
tive finite difference scheme to solve the forward problem
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TABLE III
THE INVERSION RESULTS IN EX.5.2

δ z̄inv Ērr n̄

5% (0.81434955, 0.080588152) 9.48e-2 45.5

1% (0.75121139, 0.043785104) 8.42e-3 43.7

0.1% (0.75044171, 0.050252851) 6.77e-4 43.3

0.01% (0.75003291, 0.050032150) 6.12e-5 43

0 (0.74999999, 0.049999994) 1.19e-8 40

is proposed, and the uniqueness of identifying the fractional
order and the degradation coefficient is proved by the method
of Laplace transform, and numerical inversions with noisy
data are presented based on the difference solution. We
will give regularity analysis for the solution of the forward
problem, and focus on inverse problems of determining other
parameters in the model, such as the partition parameter and
the mass transfer rate in the near future.
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