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Abstract—This scientific article investigates non-increasing
functions and their integral properties, shedding light on their
behavior. By examining

∞∫
0

h(s)ds = 1 − l > 0. Furthermore,

examining h(t) =
∫∞
t

Eα+1(s)ds about E(t) and T > 0, we
establish

∫∞
t

Eα+1(s)ds ≤ TEα(0)E(t), showing how E(t)
influences h(t). For t ≥ T , Eα+1(t) follows a power-law decay.
Our study unveils a set of inequalities providing insights into
these relationships, offering potential applications in control
theory, differential equations, and dynamical systems.

Index Terms—Wave equation, Viscoelasticity, Memory term,
Stabilization, Frictional damping.

I. INTRODUCTION

T he exploration of non-increasing functions and their
integral characteristics forms the cornerstone of this

comprehensive analysis, titled ”Bounds, Decay, and Integrals
of Non-Increasing Functions.” In this scientific investigation,
we delve into the intricate behaviors of such functions,
aiming to unravel their underlying patterns and implications.
Our inquiry commences by scrutinizing the integral repre-

sentation
∞∫
0

h(s)ds = 1 − l > 0, shedding light on its

significance and offering insights into the nature of these
functions.

Additionally, our study investigates the function h(t) =∫∞
t

Eα+1(s)ds in relation to E(t) and a constant T > 0,
establishing a fundamental relationship

∫∞
t

Eα+1(s)ds ≤
TEα(0)E(t). This inequality not only highlights the influ-
ence of E(t) on h(t) but also reveals a power-law decay for
t ≥ T in Eα+1(t).

Furthermore, this paper aims to delineate the requisite
conditions for the function h(t) to ensure the uniform ex-
ponential decay of the function E. In simpler terms, our
objective is to identify specific constants C > 1 such that
the following inequality holds for all t ≥ 0:

E(t)

E(0)
≤ F

(
CeζΛ(t), T, α

)
.

In the course of our analysis, we derive three key lemmas
that provide crucial insights into the behavior and properties
of non-increasing functions. These lemmas serve as founda-
tional building blocks for our subsequent investigations.

Additionally, we establish two significant theorems that
contribute to our understanding of the bounds, decay charac-
teristics, and integral properties of non-increasing functions.
These theorems provide formal statements of our findings
and their implications, further solidifying our understanding
of these functions.

Manuscript received Sep 19, 2023; revised July 29, 2024.
Bahloul Tarek is a Senior Lecturer in the Department of Mathematics,

University of 8 Mai 1945 Guelma, Algeria, e-mail: bahloul.tarek@univ-
guelma.dz .

Through rigorous analysis, our investigation unveils a
series of inequalities that provide deeper insights into the in-
terrelations between non-increasing functions, their bounds,
decay characteristics, and integral properties. These findings
hold promise for a broad spectrum of applications, including
but not limited to control theory, differential equations, and
dynamical systems.

The field of viscoelasticity has garnered substantial atten-
tion (see [1],[13]). Initial inquiries revolved around kernels
expressed in the form of h(t) = exp(−βt), where β > 0.
Subsequent investigations explored kernels that satisfied the
inequalities −λ1h(t) ≤ h′(t) ≤ −λ2h(t) for all t ≥ 0,
with λ1 and λ2 denoting positive constants, accompanied
by additional conditions concerning the second derivative.

Over time, some researchers relaxed these constraints,
considering only h′(t) ≤ −λ2h(t) or h′(t) ≤ −λ2h

ς(t)
for all t ≥ 0, where λ > 0. Eventually, these conditions
evolved further to h′(t) ≤ −θ(t)h(t), where θ(t) is a positive
function. This expansion allowed for the derivation of decay
rates extending beyond exponential or polynomial forms.

It is pertinent to mention that other studies have achieved
exponential decay results under the conditions of h′(t) ≤ 0
and exp(αt)h(t) ∈ L1(0,∞) for some α > 0.

The structure of this paper is as follows: we commence by
introducing several pivotal lemmas that underpin our analyt-
ical framework. Subsequently, we incorporate these lemmas
into the proofs of various theorems, collectively contributing
to the establishment of our primary result concerning the
decay phenomenon.

Finally, we conclude our analysis by synthesizing our
findings and discussing their implications for future research
directions. This comprehensive exploration contributes to the
broader understanding of non-increasing functions and their
role in various mathematical and scientific contexts.

Remark 1: For exp(αt)h(t) to be in L1(0,∞), it is essen-
tial that α > 0 This condition ensures that the exponential
growth of exp(αt) compensates for the behavior of | h(t) |,
making their product Lebesgue integrable over the positive
real line.

II. BOUNDS ON THE FUNCTION h(t) UNDER SPECIFIC
CONDITIONS

This section explores the function h(t) within the con-
straints γ > γ′ + b and γ′ > 2a, γ > γ′ +2b, t > 0, aiming
to determine its range under these conditions. By delving into
its behavior within this defined domain, we seek to uncover
insights applicable across disciplines.

Lemma 1: If a C1−function h(t) > 0 satisfies for t ≥ 0,

h(t) ≤ ae−γ′t + b

∫ t

0

e−γ(t−s)h(s)ds, (1)
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TABLE I
DIFFERENT EXAMPLES OF γ′ , a, γ , b.

Example γ′ a γ b
1 3.8104 0.5864 6.9486 0.8172
2 7.5582 3.3627 9.6528 0.8127
3 7.8606 1.3123 9.9073 0.8480

0.2 0.4 0.6 0.8

0.2

0.4

0.6

γ′ = 3.8104

γ′ = 7.8606

γ′ = 7.5582

· · · · · · γ′ = 7.8606
· · · · · · γ′ = 7.5582

——- γ′ = 3.8104

Fig. 1. Function f(t) = a
(

γ−γ′

γ−γ′−b

)
e−γ′t for different γ′ values

with a, b, γ, γ′ > 0, for γ > γ′ + b, t > 0,

∫ t

0

eγ(s)h(s)ds ≤ a

(γ − γ′ − b)
e(γ−γ′)t.

then
h(t) ≤ a

(
γ − γ′

γ − γ′ − b

)
e−γ′t. (2)

and
h′(t) ≤ −γ′h(t), h′(t) ≤ −θ(t)h(t) (3)

where
θ(t) = γ′e−γ′t,

0 <
θ′(t)

θ(t)
< β.

Remark 2: Under the conditions γ > γ′ + b and t > 0,
the function h(t) is bounded above by a positive value.
Consequently, the integral of | h(t) | over the positive real
line is finite, indicating that h(t) lies in the space L1(0,∞).

Proof:
We begin by defining the function:

r(t) =

∫ t

0

eγ(s)h(s)ds,

and deduce from Equation (1) that:

r′(t) = eγth(t) ≤ ae(γ−γ′)t + b

∫ t

0

eγ(s)h(s)ds.

This implies

r′(t) ≤ b · r(t) + ae(γ−γ′)t.

Next, we rewrite this as:

r′(t) ≤ β(t) · r(t) + φ(t).

where β(t) = b, and φ(t) = ae(γ−γ′)t

r(t) ≤ r(0)e
∫ t
0
β(s)ds +

∫ t

0

e
∫ t
s
β(τ)dτφ(s)ds.

Using Gronwall’s lemma and the initial condition
r(0) = 0, we obtain :

r(t) ≤
∫ t

0

e
∫ t
s
β(τ)dτφ(s)ds.

Further simplification leads to:

r(t) ≤ a

∫ t

0

eb
∫ t
s
dτe(γ−γ′)sds.

Which can be expressed as:

r(t) ≤ a

∫ t

0

eb(t−s)e(γ−γ′)sds.

This inequality implies:

r(t) ≤ aebt
∫ t

0

e(γ−γ′−b)sds.

Next, we arrive at:

r(t) ≤ a

(γ − γ′ − b)
ebt

(
e(γ−γ′−b)t − 1

)
.

Hence:

r(t) ≤ a

(γ − γ′ − b)

(
e(γ−γ′)t − ebt

)
.

then
r(t) ≤ a

(γ − γ′ − b)
e(γ−γ′)t.

Now, considering r′(t) = eγth(t) , we obtain:

r′(t) = eγth(t) ≤ ae(γ−γ′)t + b
a

(γ − γ′ − b)
e(γ−γ′)t.

Further simplifying:

h(t) ≤ ae−γ′t + b
a

(γ − γ′ − b)
e−γ′t.

next

h(t) ≤ a

[
1 +

b

(γ − γ′ − b)

]
e−γ′t.

This yields:

h(t) ≤ a

[
γ − γ′

(γ − γ′ − b)

]
e−γ′t

≤ a

[
γ − γ′

(γ − γ′ − b)

]
= η.

Therefore:

h′(t) ≤ −aγ′
[

γ − γ′

(γ − γ′ − b)

]
e−γ′t,

and

γ′h(t) ≤ aγ′
[

γ − γ′

(γ − γ′ − b)

]
e−γ′t.
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Leading to:

h′(t) + γ′h(t) ≤ 0.

However:

h′(t) ≤ −γ′ηe−γ′t, and γ′e−γ′th(t) ≤ γ′ηe−γ′t.

Resulting in:

h′(t) ≤ −γ′ηe−γ′t = −ηθ(t),

where:

θ(t)h(t) = γ′e−γ′th(t) ≤ γ′ηe−γ′t = ηθ(t).

Hence:

h′(t) + θ(t)h(t) ≤ 0.

Remark 3: The inequality

h′(t) + γ′h(t) ≤ 0

signifies that the rate of change of h(t) decreases at least as
fast as exponential decay with a decay constant γ′.

Lemma 2: If γ′ > 2a > 0 and γ > γ′ + 2b > 0 then

1−
∞∫
0

h(s)ds = l > 0.

Proof: We have established that:

h(t) ≤ a

(
γ − γ′

γ − γ′ − b

)
e−γ′t. (4)

Now, we can integrate this inequality from 0 to infinity:
∞∫
0

h(s)ds ≤ a

γ′

(
γ − γ′

γ − γ′ − b

)
. (5)

Given:
γ′ > 2a > 0

and
γ > γ′ + 2b > 0

We need to prove: ∫ ∞

0

h(s) ds < 1

Since γ′ > 2a > 0, we have:

γ′ − a

a
> 1

This implies:
ba

γ′ − a
< b

Also, because:

γ > γ′ + 2b > γ′ + b+
ba

γ′ − a

We get:

γ − γ′ − b >
ba

γ′ − a

TABLE II
EXAMPLES OF

∫∞
0 h(s) ds < 1

Example Integral γ′ a γ b
1 0.2081 3.8104 0.5864 6.9486 0.8172
2 0.7270 7.5582 3.3627 9.6528 0.8127
3 0.2851 7.8606 1.3123 9.9073 0.8480

0.2 0.4 0.6 0.8

−0.2

−0.15

−0.1

−5 · 10−2 γ′ = 3.8104
γ′ = 7.8606

γ′ = 7.5582

· · · · · · γ′ = 7.8606

· · · · · · γ′ = 7.5582

——- γ′ = 3.8104

Fig. 2. Function g(t) = − a
γ′

(
γ−γ′

γ−γ′−b

)
e−γ′t for different γ′ values

Then:
1

γ − γ′ − b
<

γ′ − a

ba

Hence:
a

γ′
b

γ − γ′ − b
<

a

γ′
γ′ − a

a

This leads to:
a

γ′
b

γ − γ′ − b
<

γ′ − a

γ′

Then:
a

γ′ +
a

γ′
b

γ − γ′ − b
< 1

Finally:
a

γ′

(
1 +

b

γ − γ′ − b

)
< 1

Which simplifies to:

a

γ′

(
γ − γ′ − b+ b

γ − γ′ − b

)
< 1

Thus: ∫ ∞

0

h(s) ds < 1

This concludes the proof. In conclusion, we have shown
that the integral of h(t) over the entire range from 0 to
infinity is less than or equal to 1.

III. PROOFS OF PROPERTIES FOR NON-INCREASING
FUNCTIONS

In this section, we offer concise proofs validating key
properties of non-increasing functions. These properties en-
compass inequalities dictating the behavior of the function
under various conditions. Through rigorous demonstrations,
we elucidate the relationships and constraints governing non-
increasing functions, advancing our comprehension of their
fundamental characteristics.
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Lemma 3: Let E: R+ → R+ be a non-increasing func-
tion.
Then

E(t)

E(0)
≤ Ce

−2
γ′ θ(t). (6)

Proof: By applying Lemma 1, we derive the following
expression:

(h2E)′ = 2hh′E + h2E′. (7)

This leads to:

≤ −2θ(t)h2E + h2E′.

Further simplifying:

≤ (−2θ(t)E + E′)h2 ≤ 0.

And subsequently:

−2θ(t)E + E′ ≤ 0. (8)

Then:

E′ ≤ 2θ(t)E. (9)

Finally:
which yields the desired result:

E(t)

E(0)
≤ Ce

−2
γ′ θ(t). (10)

Theorem 1: Let E: R+ → R+ be a non-increasing
function.
If

h(t) = e
t
T

∫ ∞

t

E(s)ds, t ∈ R+, T > 0. (11)

then ∫ ∞

t

E(s)ds ≤ T

γ′T + 1
E(t). (12)

and
E(t) ≤ E(0)e1−

t
T , t ≥ T. (13)

Proof: We begin by noting that h is locally absolutely
continuous and non-increasing, as established in Lemma 1:

h′(t) =
1

T
h(t)− e

t
T E(t), t ∈ R+, T > 0.

This implies:

h′(t) + γ′h(t) =

(
γ′ +

1

T

)
h(t)− e

t
T E(t)

≤ 0, t ∈ R+, T > 0.

then

(
γ′ +

1

T

)
h(t) ≤ e

t
T E(t), t ∈ R+, T > 0.

Hence ∫ ∞

t

E(s)ds ≤ T

γ′T + 1
E(t).

This inequality is almost everywhere in R+. Using equa-
tion (11) again, we find:

h(t) ≤ h(0) =

∫ ∞

0

E(s)ds ≤ T

γ′T + 1
E(0), t ∈ R+.

In other words:∫ ∞

t

E(s)ds ≤ T

γ′T + 1
E(0)e

−t
T , t ∈ R+. (14)

Since E is nonnegative and non-increasing, we can deduce:∫ ∞

t

E(s)ds ≥
∫ t+T

t

E(s)ds ≥ TE(t+ T ).

Substituting this into equation (14), we obtain:

E(t+ T ) ≤ E(0)

γ′T + 1
e

−t
T , t ∈ R+.

setting t := t+T and γ′ = 1
T , we conclude equation (13):

E(t) ≤ E(0)

γ′T + 1
e1−

t
T =

E(0)

2
e1−

t
T ≤ E(0)e1−

t
T , t ≥ T.

Theorem 2: Let E : R+ → R+ be a non-increasing
function and assume that there is a constant α > 0.
If

h(t) =

∫ ∞

t

Eα+1(s)ds, t ∈ R+, (15)

then∫ ∞

t

Eα+1(s)ds ≤ TEα(0)E(t), t ∈ R+, T > 0.

(16)
and

Eα+1(t) ≤
(

T + αt

T + αT

)−1
α

, T ≤ t.

Proof: We first establish that h is non-increasing and
locally absolutely continuous. By differentiating and using
Lemma (1), we find that:

h′(t) + γ′h(t) (17)

= −Eα+1(t) + γ′
∫ ∞

t

Eα+1(s)ds, t ∈ R+, T > 0.

This leads to

γ′
∫ ∞

t

Eα+1(s)ds ≤ Eα+1(t), t ∈ R+, T > 0. (18)

Next, we have:∫ ∞

t

Eα+1(s)ds ≤ TEα(t)E(t), (19)

t ∈ R+, T =
1

γ′ > 0.

Hence: ∫ ∞

t

Eα+1(s)ds ≤ TEα(0)E(t), (20)

t ∈ R+, T =
1

γ′ > 0.

By differentiating again and using (20), we may assume that
E(0) = 1, and we find:

−h′(t) = Eα+1(t) ≥
(
T−1h(t)

)α+1
, t ∈ R+, (21)
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then
−h′(t) ≥ T−α−1hα+1(t), t ∈ R+, (22)

This further leads to the following:

−αh′(t)h−α−1(t) ≥ αT−α−1, t ∈ R+, (23)

then (
h−α(t)

)′ ≥ αT−α−1, (24)

t ∈ (0, B), B = sup{t : E(t) > 0}.

Integrating in [0, s], we obtain:

h−α(s)− h−α(0) ≥ αT−α−1s, s ∈ [0, B), (25)

Which further leads to the following:

h(s) ≥
(
αT−α−1s+ h−α(0)

)−1
α , s ∈ [0, B), (26)

Since h(s) = 0 if s ≥ B, this inequality holds in fact for
every s ∈ R+ . Since h(0) ≤ TEα+1(0) = T by (20), the
right-hand side of (26) is less than or equal to:

(
αT−α−1s+ T−α

)−1
α =

(
Tα+1

T + αs

) 1
α

(27)

On the other hand, E being nonnegative and non-increasing,
the left-hand side of (26) may be estimated as follows:

h(s) =

∫ ∞

s

Eα+1(t)dt ≥
∫ T+(α+1)s

s

Eα+1(t)dt (28)

≥ (T + αs)Eα+1(T + (α+ 1)s)

Therefore, we deduce from (30) the estimate:

(T + αs)Eα+1(T + (α+ 1)s) ≤
(

Tα+1

T + αs

) 1
α

, (29)

Which further leads to the following:

Eα+1(T + (α+ 1)s) ≤
(

T

T + αs

)1+ 1
α

(30)

≤
(

T

T + αs

) 1
α

,

Choosing T ≤ t ≤ T + (α+ 1)s , we have:

T + αt

T + αT
= 1 +

α

(α+ 1)

(t− T )

T
≤ 1 + α

s

T
,

then (
T + αt

T + αT

)−1
α

≥
(
1 + α

s

T

)−1
α

,

next

Eα+1(t) ≤
(
1 + α

s

T

)−1
α

,

hence

Eα+1(t) ≤
(

T + αt

T + αT

)−1
α

.

IV. CONCLUSION

In this study, we explored the behavior of non-increasing
functions and their integral properties, with a particular
focus on establishing conditions for the uniform exponential
decay of another function. Our goal was to find constants,
denoted as C and Λ, that satisfy the inequality E(t)

E(0) ≤
F
(
CeζΛ(t), T, α

)
for all t ≥ 0. This investigation has broad

implications in the field of viscoelasticity, where understand-
ing decay rates is crucial. Through a series of lemmas and
theorems, we unveiled the intricacies of these functions and
their relationships, offering valuable insights applicable to
control theory, differential equations, and dynamical systems.
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