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Abstract—The commensal symbiosis system with the Allee ef-
fect and single feedback control is proposed and analyzed in this
paper. The stability analysis of all possible equilibrium points
is discussed, and the sufficient conditions for global stability of
the interior equilibrium points are obtained. The occurrence
of transcritical bifurcation and saddle-node bifurcation around
the equilibrium points is investigated. Finally, the main results
of the model are illustrated by numerical simulations.

Index Terms—single feedback control, Allee effect, commen-
salism model, transcritical bifurcation, saddle-node bifurcation

I. INTRODUCTION

B IODIVERSITY is the basis of human survival and de-
velopment, providing a wide range of necessities, a safe

and reliable ecological environment, and a unique landscape
culture. However, in many areas, due to human activities and
the influence of the ecological environment, many species
are extinct or on the verge of extinction, resulting in a severe
decline in biodiversity. We have to face problems such as the
loss of biodiversity and the decline of ecosystem function
and stability. Therefore, we must control the ecosystem,
which is reflected in the biological mathematical model
by adding feedback control variables. We hope to protect
endangered species through appropriate feedback control so
that resources can be rationally developed, thus ensuring the
sustainable development of the ecosystem.

In the natural environment, interaction between popula-
tions is very common. Commensal symbiosis is one of these
interactions in which one group benefits while the other is not
affected. In 1876, the Belgian zoologist Pierre Beneden put
the phenomenon of commensalism in a biological context for
the first time [1]. Although the phenomenon of commensal
symbiosis is often observed in nature, it was not until 2003
that Sun [2] established a mathematical model of commensal
symbiosis. The dynamic behavior of commensal symbiosis
has become an essential topic for biologists and mathemati-
cians. This kind of model has substantial theoretical and
practical exploration value. In recent years, scholars have
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conducted a series of studies on the dynamic behavior of
commensal symbiosis system([3]-[20],[30]-[36]).

In the context of the commensal symbiosis model, work on
the influence of feedback control is relatively rare ([16]-[20]).
Han [16] proposed and studied the following Lotka-Volterra
commensal symbiosis model with feedback controls:

dx

dt
= x(b1 − a11x+ a12y − α1µ),

dy

dt
= y(b2 − a22y − α2ν),

dµ

dt
= −η1µ1 + a1x,

dν

dt
= −η2µ2 + a2y,

(1)

By constructing a suitable Lyapunov function, it is proven
that the positive equilibrium of the system is globally stable.

Xu [18] studied the dynamic behavior of the commensal
symbiosis system with both the Allee effect and feedback
control based on Han:

dx

dt
= x(b1 − a11x− α

x+ γ
) + a12xy − c1xµ,

dy

dt
= y(b2 − a22y)− c2yν,

dµ

dt
= −p1µ+ q1x,

dν

dt
= −p2ν + q2y,

(2)

Research has shown that the Allee effect does not affect
the stability of the equilibrium point of the feedback control
based commensalism system. However, species with the
Allee effect can reach equilibrium only when the population
is large.

As we can see, the above system contains two or more
feedback control variables, which means different control
strategies are adopted for different species. However, strate-
gies applicable to one species in the real world may also
affect other species, meaning such strategies significantly
impact both species. Let’s give a few examples: spraying
pesticides can effectively reduce the number of weeds, but
it can also have a negative impact on the growth of crops
or beneficial organisms [21]. When chemotherapy treatments
are used to treat cancer patients, the number of cancer cells
will rapidly decline, but at the same time, the drugs will
harm healthy cells and the regulatory immune function of
the body [22]. These examples demonstrate that the study of
a single feedback control variable has substantial theoretical
and applied usefulness. However, there is still relatively little
research on population ecosystem dynamics with a single
feedback control [23]-[28]. And most of them only studied
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issues such as permanence, stability, and extinction of the
system.

According to the aforementioned, on the basis of model
(2), we change the feedback variable into a single case:

dx

dt
= x(1− x− m

x+ α
) + axy − bxµ,

dy

dt
= y(1− cy)− dyµ,

dµ

dt
= −µ+ px+ qy,

(3)

where a, b, c, d, p, q, andα are all positive constants.
xandy represent the densities of the two populations at time
t, respectively. µ is a feedback control variable, parameters
b and d respectively describe the degree of influence of
feedback control variables on populations x and y.

m

x+ α
indicates the Allee effect.

It is the first time that a model has considered both the
Allee effect and a single feedback control variable. Is a single
feedback control variable different from multiple feedback
control variables in terms of its effects on the stability of
the system? Does bifurcation occur at the equilibrium point?
The purpose of this paper is to study the dynamic behavior
of system (3). In particular, we will find out the answers to
the above questions.

II. EXISTENCE OF THE EQUILIBRIA

The equilibria of system (3) are the set of non-negative
solutions to the following simultaneous equations.

x(1− x− m

x+ α
) + axy − bxµ = 0,

y(1− cy − dµ) = 0,

−µ+ px+ qy = 0.

(4)

Notably, the system (3) has the boundary equilibrium
point E0(0, 0, 0) for all parameters. As for other equilibrium
points, we will discuss them as follows.

Case 1. When x = 0, then

y =
1

c+ dq
, µ =

q

c+ dq
,

the system (3) has the boundary equilibrium point

E1(0,
1

c+ dq
,

q

c+ dq
).

Case 2. When y = 0, µ = 0, from equation(4), x is
nonnegative root of the equation:

x2 + (α− 1)x+ (m− α) = 0. (5)

Let ∆1 denote the discriminant of equation (5), then

∆1 = (1 + α)2 − 4m,

and

∆1 ≥ 0 ⇔ m ≤ (1 + α)2

4
.

Thereout, let

x10 =
1− α

2
, x11 =

1− α+
√
∆1

2
, x12 =

1− α−
√
∆1

2
.

So, we can get the following results.

(a) If m < α, the system (3) has boundary equilibrium
point E11(x11, 0, 0).

(b) If α < m <
(1 + α)2

4
, and α < 1, the system

(3) has two boundary equilibrium points E11(x11, 0, 0), and
E12(x12, 0, 0).

(c) If m =
(1 + α)2

4
, and α < 1, the system (3) has

boundary equilibrium point E10(x10, 0, 0).
Case 3. When y = 0, from equation(4), x is the nonneg-

ative root of the equation

(1 + bp)x2 + (αbp+ α− 1)x+m− α = 0. (6)

Let

A2 = 1 + bp,B2 = αbp+ α− 1, C2 = m− α,

∆2 denote the discriminant of equation (6), then

∆2 = (α+ αbp+ 1)2 − 4m(1 + bp).

Make ∆2 = 0 , we have

m1 ≡ (αbp+ α+ 1)2

4(1 + bp)

=
α2(bp+ 1)

4
+

1

4(bp+ 1)
+

α

2

≥ α

2
+

α

2
= α.

Thereout, let

x20 =
−B2

2A2
, x21 =

−B2 +
√
∆2

2A2
, x22 =

−B2 −
√
∆2

2A2
.

So, we can get the following results.
(a) If m < α, the system (3) has boundary equilibrium

point E21(x21, 0, px21).

(b) If α < m < m1, and α <
1

1 + bp
, the system

(3) has two boundary equilibrium points E21(x21, 0, px21),
E22(x22, 0, px22).

(c) If m = m1, and α <
1

1 + bp
, the system (3) has

boundary equilibrium point E20(x20, 0, px20).
Case 4. When

y =
1− dµ

c
,

and
µ =

cp

c+ dq
x+

q

c+ dq
.

From equation(4), by simple calculation, x is the nonnegative
root of the equation:

(c+ dq + adp+ bcp)x2

+[(c+ dq)(α− 1) + αp(ad+ bc) + bq − a]x

+[(c+ dq)(m− α) + (bq − a)α] = 0.

(7)

Let

A3 = c+ dq + adp+ bcp,

B3 = (c+ dq)(α− 1) + αp(ad+ bc) + bq − a,

C3 = (c+ dq)(m− α) + (bq − a)α,

∆3 denote the discriminant of equation (7), then

∆3 = B2
3 − 4A3C3.
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Make ∆3 = 0, we have

m2 =
B2

3

4A3(c+ dq)
+

(a− bq)α

c+ dq
+ α

≥ (a− bq)α

c+ dq
+ α ≡ m0.

In addition, B3 > 0 is equivalent to

α >
a+ c+ dq − bq

c+ dq + adp+ bcp
≡ α0.

Thereout, let

x30 =
−B3

2A3
, x31 =

−B3 +
√
∆3

2A3
, x32 =

−B3 −
√
∆3

2A3
.

And

y3i = − 1

c+ dq
(dpx3i − 1), µ3i =

1

c+ dq
(cpx3i + q),

where i = 0, 1, 2.
So, we can get the following results.
(a) If m < m0, the system (3) has a unique positive

equilibrium point E31(x31, y31, µ31).
(b) If m0 < m < m2, and α < α0, the system (3)

has two positive equilibrium points E31(x31, y31, µ31) and
E32(x32, y32, µ32).

(c) If m = m2, and α < α0, the system (3) has a unique
positive equilibrium point E30(x30, y30, µ30).

III. LOCAL STABILITY OF EQUILIBRIA

In section 2, we established the conditions for all equi-
librium points in system (3). Now we will discuss the local
stability of each equilibrium point.

Theorem 3.1 In the presence of the equilibrium point of
the system (3), their local stability is as follows:

(1) E0(0, 0, 0) is unstable.

(2) E1(0,
1

c+ dq
,

q

c+ dq
) is locally stable if m > m0

hold, and is unstable if m < m0 hold .
(3) E1i(x1i, 0, 0)(i = 0, 1, 2) is unstable.

(4) E21(x21, 0, px21) is locally stable if x21 >
1

dp
hold,

and is unstable if x21 <
1

dp
hold .

(5) E22(x22, 0, px22) is unstable.
(6) E3i(x3i, y3i, µ3i)(i = 0, 1, 2) is locally stable when

a < c and m < (x3i + α)2 hold.

Proof. At any equilibrium point E(x, y, µ) , the Jaco-
bian matrix of the system (3) has the following structure.
J(E) =

(1− x− m

x+ α
) + ay

−bµ+ x(−1 +
m

(x+ α)2
) ax −bx

0 1− 2cy − dµ −dy
p q −1

 .

The Jacobian matrix of the system (3) at E0(0, 0, 0) is

J(E0) =

 1− m

α
0 0

0 1 0
p q −1

 .

Obviously, λ01 = 1 − m

α
, λ02 = −1, λ03 = 1. Note that

λ03 > 0 is always true, so E0(0, 0, 0) is unstable.
Now, the Jacobian matrix of the system (3) at

E1(0,
1

c+ dq
,

q

c+ dq
) is

J(E1) =


(1− m

α
) +

a− bq

c+ dq
0 0

0
−c

c+ dq

−d

c+ dq
p q −1

 .

By brief calculation we can get,

λ11 = 1− m

α
+

a− bq

c+ dq
,

λ12 =
−(1 + c

c+dq ) +
√
(1 + c

c+dq )
2 − 4

2
< 0,

λ13 =
−(1 + c

c+dq )−
√
(1 + c

c+dq )
2 − 4

2
< 0.

If m > (1 +
a− bq

c+ dq
)α ≡ m0 hold , then λ11 < 0, E1

is locally stable, if m < m0 hold , then λ11 > 0, E1 is
unstable.

Further, it is possible to simplify the Jacobian matrix of
the system (3) at E1i(x1i, 0, 0)(i = 0, 1, 2) as follows.

J(E1i) =

 x1i(−1 +
m

(x1i + α)2
) ax1i −bx1i

0 1 0
p q −1

 .

The Jacobian matrix J(E1i) have a characteristic value
λ12 = 1 > 0, so E1i(x1i, 0, 0)(i = 0, 1, 2) is unstable.

Next, the Jacobian matrix of the system (3) at
E2i(x2i, 0, px2i) is

J(E2i) =

 x2i(−1 +
m

(x2i + α)2
) ax2i −bx2i

0 1− dµ2i 0
p q −1

 .

Then,

| λE2i −A |

=

∣∣∣∣∣∣∣
λ− x2i(−1 +

m

(x2i + α)2
) −ax2i bx2i

0 λ− 1 + dµ2i 0
−p −q λ+ 1

∣∣∣∣∣∣∣
= [λ2 + (1− x2i(−1 +

m

(x2i + α)2
))λ

+[bpx2i − x2i(−1 +
m

(x2i + α)2
)](λ− 1 + dµ2i)

Since x2i satisfies

1− x2i −
m

x2i + α
− bpx2i = 0,

we have
m

x2i + α
= 1− x2i − bpx2i.
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Let

T1 = 1− x2i(−1 +
m

(x2i + α)2
)

=
1

x2i + α
((2 + bp)x2

2i + αx2i + α) > 0.

T2 = bpx2i − x2i(−1 +
m

(x2i + α)2
)

=
1

x2i + α
(2(1 + bp)x2

2i + (αbp+ α− 1)x2i

=
x2i

x2i + α
(2A2x2i +B2),

where A2 = 1 + bp,B2 = αbp + α − 1. When x2i = x20,
we have T2 = 0, so

λ21 = 0, λ22 = −T1 < 0,

the system may bifurcate at E20.
When x2i = x21, where T2 > 0, so

λ21 =
−T1 +

√
T 2
1 − 4T2

2
< 0,

λ22 =
−T1 −

√
T 2
1 − 4T2

2
< 0.

If dpx21 > 1 is true, then we have λ23 < 0. Therefore, if
and only if the following condition is true, E21 is locally
asymptotically stable:

dpx21 > 1 (8)

When x2i = x22,where T2 < 0,

λ21 =
−T1 +

√
T 2
1 − 4T2

2
> 0,

so E22 is unstable.
Finally, the Jacobian matrix of the system (3) at

E3i(x3i, y3i, µ3i)(i = 0, 1, 2) can be simplified as follows:

J(E3i) =

 x3i(−1 +
m

(x3i + α)2
) ax3i −bx3i

0 −cy3i −dy3i
p q −1


= (hjk)(j, k = 1, 2, 3).

The characteristic equation associated with J(E3i) is given
by

λ3 + h1λ
2 + h2λ+ h3 = 0, (9)

where

h1 = −(h11 + h22 + h33),

h2 = h11h22 + h11h33 + h22h33 − h13h31 − h23h32,

h3 = −h11(h22h33 − h23h32)− h31(h12h23 − h13h22).

According to the Routh-Hurwitz criterion, when H1 >
0,H2 > 0, and H3 > 0, equation(9) has three roots
with negative real parts. The straightforward calculation of

H1,H2,H3 is as follows.

H1 = h1

= −(h11 + h22 + h33)

= x3i −
mx3i

(x3i + α)2
+ cy3i + 1

=
1

x3i + α
[x3i(2x3i + bµ3i + α+ (c− a)y3i)

+(cy3i + 1)α],

H2 = h1h2 − h3 = h11D1 +D2,

where,

D1 = h13h31 − 2h22h33 − h2
22 − h2

33 < 0,

D2 = −h2
11h22 − h2

11h33 − h2
22h33 + h22h23h32

−h22h
2
33 + h13h31h33 + h23h32h33 + h12h23h31

> 0.

H3 = h3H2.

When a < c, we have H1 > 0. When h11 < 0, that is
m < (x3i + α)2, we have H2 > 0 ,and h3 > 0, so H3 > 0.

Based on the above analysis, according to the Hurwitz
criterion, when a < c and m < (x3i + α)2 holds, E3i(i =
0, 1, 2) is locally asymptotically stable.

IV. GLOBAL STABILITY OF EQUILIBRIA

In this section, we discuss the global stability of the
interior equilibrium point E3i(x3i, y3i, µ3i)(i = 0, 1, 2), by
constructing the appropriate Lyapunov function.
Theorem 4.1 If the interior equilibrium E∗(x∗, y∗, z∗)
exists, assume that

m < (1− a2dp

4bcq
)α2 (10)

hold, then E3i(x3i, y3i, µ3i)(i = 0, 1, 2) is globally
asymptotically stable.

Proof. Let’s consider the Lyapunov function

V (t) = δ1(x− x∗ − x∗ln
x

x∗ ) + δ2(y − y∗ − y∗ln
y

y∗
)

+δ3(µ− µ∗)2.

We calculate the derivative of V (t) along the positive solu-
tion E3i of system (3),we have

dV

dt
= δ1(x− x∗)(1− x− m

x+ α
+ ay − bµ)

+δ2(y − y∗)(1− cy − du)

+2δ3(µ− µ∗)(−µ+ px+ qy)

= δ1(x− x∗)(−(x− x∗) +
m(x− x∗)

(x+ α)(x∗ + α)

+a(y − y∗)− b(µ− µ∗))

−δ2(y − y∗)(c(y − y∗) + d(µ− µ∗))

+2δ3(µ− µ∗)(−(µ− µ∗)
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+p(x− x∗) + q(y − y∗))

= −(1− m

(x+ α)(x∗ + α)
)δ1(x− x∗)2

+aδ1(x− x∗)(y − y∗)− cδ2(y − y∗)2

+(2pδ3 − bδ1)(x− x∗)(µ− µ∗)

+(2qδ3 − dδ2)(y − y∗)(µ− µ∗)− 2δ3(µ− µ∗)2

≤ −[(1− m

α2
)δ1(x− x∗)2 − aδ1(x− x∗)(y − y∗)

−(2pδ3 − bδ1)(x− x∗)(µ− µ∗) + cδ2(y − y∗)2

−(2qδ3 − dδ2)(y − y∗)(µ− µ∗) + 2δ3(µ− µ∗)2]

= −(x− x∗, y − y∗, µ− µ∗) ·
(1− m

α2
)δ1 −a

2
δ1

b

2
δ1 − pδ3

−a

2
δ1 cδ2

d

2
δ2 − qδ3

b

2
δ1 − pδ3

d

2
δ2 − qδ3 2δ3

 ·


x− x∗

y − y∗

µ− µ∗


Let

| B |

=

∣∣∣∣∣∣∣∣∣∣∣

(1− m

α2
)δ1 −a

2
δ1

b

2
δ1 − pδ3

−a

2
δ1 cδ2

d

2
δ2 − qδ3

b

2
δ1 − pδ3

d

2
δ2 − qδ3 2δ3

∣∣∣∣∣∣∣∣∣∣∣
= 2c(1− m

α2
)δ1δ2δ3 −

a2

2
δ21δ3

−cδ2(
b

2
δ1 − pδ3)

2

−(1− m

α2
)δ1(

d

2
δ2 − qδ3)

2

−aδ1(
d

2
δ2 − qδ3)(

b

2
δ1 − pδ3).

We select

δ1 =
2p

b
, δ2 =

2q

d
, δ3 = 1,

then

| B |= [2c(1− m

α2
)δ2 −

a2

2
δ1]δ1δ3.

When

m < (1− a2dp

4bcq
)α2,

we have | B |> 0, then B is positive definite, so
dV

dt
≤ 0.

dV

dt
= 0 if and only if x = x∗, y = y∗, µ = µ∗.

Therefore, when

m < (1− a2dp

4bcq
)α2

holds, as long as the equilibrium point E3i(x3i, y3i, z3i) (i =
0, 1, 2) exists, it is globally asymptotically stable.

This completes the proof of Theorem 4.1.

V. BIFURCATION ANALYSIS

Now, we discuss the existence of bifurcation around the
equilibriums by taking the parameter m as the bifurcation
parameter and keeping other parameters fixed. In this sec-
tion, we use Sotomayor’s bifurcation theorem to study the
occurrence of bifurcation and specify the type of bifurcation.
Theorem 5.1 If m ̸= α2(1 + bp) holds, the system (3) ex-
periences a transcritical bifurcation at the trivial equilibrium
E0(0, 0, 0) as the parameter m passes through the bifurcation
value m ≡ m∗ = α.

Proof. Note that when m = m∗, it is possible to write the
Jacobian matrix of system (3) at E0 as

J(E0,m
∗) =

 0 0 0
0 1 0
p q −1

 .

Obviously, λ01 = 0, λ02 = −1, λ03 = 1.
Let

V1 = (v1, v2, v3)
T ,

and
W1 = (w1, w2, w3)

T ,

be the eigenvectors of J(E0,m
∗) and JT (E0,m

∗) that
correspond to the eigenvalue λ01 = 0, respectively. By
simple calculation, we get

V1 = (v1, 0, pv1)
T ,W1 = (w1, 0, 0)

T ,

where v1, w1 represents any nonzero real number.
Let

F = (F1, F2, F3)
T ,

where

F1 = x(1− x− m

x+ α
) + axy − bxµ,

F2 = y(1− cy),

F3 = −µ+ βx.

Then
Fm =

∂F

∂m
= (− x

x+ α
, 0, 0)T ,

we can obtain that Fm(E0,m
∗) = (0, 0, 0)T . So, we have

WT
1 [Fm(E0,m

∗)] = 0. (11)

Moreover,

DFm(E0,m
∗) =

 − α

(x+ α)2
0 0

0 0 0
0 0 0


(0,0,0)

=

 − 1

α
0 0

0 0 0
0 0 0

 ,

we have

WT
1 [DFm(E0,m

∗)V1] = −w1v1
α

̸= 0. (12)
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Let

γ1 = V TD2F1(E0)V

= (v1, 0, pv1)

 −2 +
2m

α2
a −b

a 0 0
−b 0 0


 v1

0
pv1


= −2(1− m

α2
+ bp)v21 ,

similarly, we can obtain

γ2 = V TD2F2(E0)V = 0,

γ3 = V TD2F3(E0)V = 0.

So we have

WT
1 [D2F (E0,m

∗)(V1, V1)]

= (w1, 0, 0)

 γ1
γ2
γ3


= −2(1− m

α2
+ bp)v21w1

̸= 0.

(13)

Combining equations (11), (12), and (13), according to
Sotomayor’s theorem [29], when m = α, the transcritical b-
ifurcation occurs at E0. This concludes the proof of Theorem
5.1.
Theorem 5.2 If

m ̸= (1 +
p(ad+ bc)

c+ dq
)α2

holds, system (3) experiences a transcritical bifurcation at

E1(0,
1

c+ dq
,

q

c+ dq
) as the parameter m passes through

the bifurcation value m ≡ m = m0.
Proof. The Jacobian matrix at E1 with m = m is

J(E1,m) =

 0 0 0

0 − c

c+ dq
− d

c+ dq
p q −1

 .

Obviously, λ11 = 0, λ12 = −1, λ13 = −1.
By straightforward computation, we get the corresponding

eigenvector

V2 = (v1,−
dp

c+ dq
v1,

cp

c+ dq
v1)

T ,

to the eigenvector of J(E1,m) , and the corresponding eigen-
vector W2 = (w1, 0, 0)

T to the eigenvector of JT (E1,m),
that corresponds to the eigenvalue λ11 = 0. Where v1, and
w1 represent any nonzero real number.

After a simple calculation, we obtain

Fm(E1,m) = (0, 0, 0)T ,WT
2 [Fm(E1,m)] = 0.

Moreover,

WT
2 [DFm(E1,m)V2] = −v1w1

α
̸= 0,

WT
2 [D2F (E1,m)(V2, V2)]

= −2(1− m

α2
+

p(ad+ bc)

c+ dq
)v21w1 ̸= 0.

By Sotomayor’s theorem, when m = m0, the transcritical
bifurcation occurs at E1.

This completes the proof of Theorem 5.2.
Theorem 5.3 If m = m1, system (3) undergoes a saddle-
node bifurcation at E20(x20, 0, px20).

Proof. Note that when m ≡ m̃ = m1, E20 exist. In this
connection, λ21 = 0. Then it is possible to write the Jacobian
matrix of system (3) at E20 as

J(E20, m̃) =

 −x20 +
m̃x20

(x20 + α)2
ax20 −bx20

0 1− dpx20 0
p q −1

 .

By straightforward computation, we get the corresponding
eigenvector

V3 = (ṽ1, 0, pṽ1),

to the eigenvector of J(E20, m̃), and the corresponding
eigenvector

W3 = (w̃1,
(a− bq)x20

dpx20 − 1
w̃1,−bx20w̃1)

T ,

to the eigenvector of JT (E20, m̃), that corresponds to the
eigenvalue λ21 = 0. where ṽ1, and w̃1 represent any nonzero
real number.

By simple calculation, we can obtain that

Fm(E20,m) = (− x20

x20 + α
, 0, 0)T ,

WT
3 [Fm(E20, m̃)] = − x20

x20 + α
w̃1 ̸= 0,

WT
3 [DFm(E20, m̃)V3] = − α

(x20 + α)2
ṽ1w̃1 ̸= 0,

WT
3 [D2F (E20, m̃)(V3, V3)] =

−2(1− m

(x20 + α)2
+

mx20

(x20 + α)3
+ bp)ṽ21w̃1 ̸= 0.

According to Sotomayor’s theorem, when m = m1, the
saddle-node bifurcation occurs at E20.

This completes the proof of Theorem 5.3.

VI. THE INFLUENCE OF THE ALLEE EFFECT AND
FEEDBACK CONTROL

The key question in this section is how the Allee effects
and feedback control variables affect the dynamic behavior of
populations. The following discussion provides the answer.

It can be seen from equation (3) that the value of parameter
m reflects the strength of the Allee effect, while parameters
b and d represent the influence of feedback control variables
on population x and y, respectively.

We will first discuss the influence of the Allee effect on
the positive equilibra.

Denote that

F1(x
∗, y∗, µ∗, b, d, q) = 1− x∗ − m

x∗ + α

+ay∗ − bµ∗,

F2(x
∗, y∗, µ∗, b, d, q) = 1− cy∗ − dµ∗,

F3(x
∗, y∗, µ∗, b, d, q) = −µ∗ + px∗ + qy∗.
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Then x∗, y∗, and µ∗ satisfy the following equations:

F1(x
∗, y∗, µ∗, b, d, q) = 0,

F2(x
∗, y∗, µ∗, b, d, q) = 0,

F3(x
∗, y∗, µ∗, b, d, q) = 0.

(14)

We have

J =
D(F1, F2, F3)

D(x∗, y∗, u∗)

=

∣∣∣∣∣∣
F1x∗ F1y∗ F1u∗

F2x∗ F2y∗ F2u∗

F3x∗ F3y∗ F3u∗

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
−1 +

m

(x∗ + α)2
a −b

0 −c −d
p q −1

∣∣∣∣∣∣∣
= (c+ dq)(

m

(x∗ + α)2
− 1)− (ad+ bc)p.

(15)

If we treat b, d, and q as variables, then x∗, y∗, and u∗ can
be expressed as functions of b, d, and q by equation (14):
x∗ = x∗(b, d, q), y∗ = y∗(b, d, q), u∗ = u∗(b, d, q).
By calculating , we obtain

∂x∗

∂m
= − 1

J

D(F1, F2, F3)

D(m, y∗, u∗)
= −

−(c+ dq)
1

x∗ + α
J

,

∂y∗

∂m
= − 1

J

D(F1, F2, F3)

D(x∗,m, u∗)
= −

dp
1

x∗ + α
J

,

∂u∗

∂m
= − 1

J

D(F1, F2, F3)

D(x∗, y∗,m)
= −

−cp
1

x∗ + α
J

.

From equation (15), it can be concluded that when

m < (1 +
(ad+ bc)p

c+ dq
)(x∗ + α)2 ≡ m∗,

we have J < 0, and when m > m∗, we have J > 0.
Furthermore, we can obtain, when m < m∗, we have

∂x∗

∂m
< 0,

∂y∗

∂m
> 0,

∂u∗

∂m
< 0,

and when m > m∗, we have

∂x∗

∂m
> 0,

∂y∗

∂m
< 0,

∂u∗

∂m
> 0.

This means that the Allee effect’s influence parameter
m on the system has a threshold value of m∗. When
m < m∗, as m increases, the equilibrium point positions
of population x and feedback control variable u decrease,
and the equilibrium point positions of population y increase.
However, when m > m∗, as m increases, the equilibrium
point positions of population x and feedback control variable
u increase, and the equilibrium point positions of population
y decrease. In other words, the effect of parameter m on the
equilibrium point of the system is that with the increase of
m, x∗ and u∗ first decrease and then increase, and y∗ first
increase and then decrease.

We then discuss the influence of the feedback control on
the positive equilibrium.

By calculation, we can conclude,

∂x∗

∂b
= −−(c+ dq)u∗

J
,

∂y∗

∂b
= −dpu∗

J
,

∂u∗

∂b
= −−cpu∗

J
,

∂x∗

∂d
= −−(bq − a)u∗

J
,

∂y∗

∂d
= −

−u∗(bp+ 1− m

(x∗ + α)2
)

J
,

∂u∗

∂d
= −

−apu∗ − qu∗(1− m

(x∗ + α)2
)

J
.

Therefore, when m < m∗, J < 0, we have

∂x∗

∂b
< 0,

∂y∗

∂b
> 0,

∂u∗

∂b
< 0,

and when m > m∗, J > 0, we have

∂x∗

∂b
> 0,

∂y∗

∂b
< 0,

∂u∗

∂b
> 0.

Similar to the influence of the Allee effect on the equi-
librium point, the feedback control of population x affects
parameter b. The influence on the equilibrium point of the
system is also that with the increase of b, x∗ and u∗ first
decrease and then increase, and y∗ first increase and then
decrease.

The symbols of ∂x∗

∂d ,∂y
∗

∂d , and ∂u∗

∂d are more complicated,
and we cannot find a uniform threshold for m that makes the
symbols of them determinate. In other words, the feedback
control of population y affects the parameter d, which has a
more complex impact on the system equilibrium point.

From the above discussion, it can be seen that both
the Allee effect and feedback control variables significantly
influence the system’s equilibrium point.

VII. NUMERIC SIMULATIONS

In this section, we conducted numerical simulations on the
global dynamics of system (3). By changing the value of m,
we verified the influence of parameter m on the system. Now
let’s consider the following example.

Example 7.1 Consider the following system

dx

dt
= x(1− x− m

x+ 1
) + 0.8xy − 0.5µx,

dy

dt
= y(1− 0.6y)− 0.2µy,

dµ

dt
= −µ+ 0.1x+ 0.3y,

(16)

In this system, we take the following set of hypothetical
parameter values:

a = 0.8, b = 0.5, c = 0.6, d = 0.2, p = 0.1, q = 0.3, α = 1.

Then we have m0 = 1.9848, m1 = 1.0006, m2 = 2.180582,
and α0 = 1.8555.

For m = 0.9,

m < 0.964 = (1− a2dp

4bcq
)α2,

and m < m0 hold, then it follows from Theorem 4 that
E31(1.5219, 1.4690.0.5929) is globally asymptotically sta-
ble.
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Fig. 1. Dynamic behaviors of system(16) with the initial condition
(x(0), y(0), µ(0)) = (0.5, 0.5, 0.5), (0.9, 1.7, 0.3), (1.8, 1.5, 0.7) ,(0.4, 0.9, 1)
and (1.2, 1.2, 1.2) respectively.

As we know, the Allee effect becomes stronger from weak
with the increase of m. Next, let us understand the impact of
changing the system parameter m and confirm our analysis
results. We keep the other parameters in Example 6.1 and
their initial values unchanged, changing only the value of
the parameter m.

(1) For m = 0.9, we have m < m0. The
system (16) has a unique positive equilibrium point
E31(1.5219, 1.4690.0.5929), it is globally asymptotically
stable. See Figure 2.

(2) For m = 2.12, we have m0 < m <
m2, and α < α0. The system (16) has two pos-
itive equilibrium points E31(0.6657, 1.4950, 0.5151) and
E32(0.1898, 1.5094, 0.4718). See Figure 3.

(3) For m = 2.180582, we have m = m2, and α <
α0. The system (16) has a unique positive equilibrium point
E30(0.4277, 1.5022, 0.4934). At the same time, system (24)
exist stable boundary equilibrium E1(0, 1.5152, 0.4545). See
Figure 4.

(4) For m = 2.2, we have m > m2. The system (16)
has no interior equilibrium point, and boundary equilibrium
E1(0, 1.5152, 0.4545) is globally asymptotically stable. See
Figure 5.

VIII. CONCLUSION

In this paper, a commensal symbiosis system with the
Allee effect and single feedback control is proposed and
analyzed for the first time. The analysis of system (3)
reveals that it has at most eight equilibrium points. This
is quite different from the system containing two feedback

control variables ([16], [18], [20]), which has a unique
positive globally asymptotically stable equilibrium, and no
bifurcation analysis was performed.

This paper aims to analyze the dynamic behavior of
system (3) comprehensively. The complexity of the system‘s
dynamic behavior rises with the number of equilibrium
points; transcritical bifurcation and saddle-node bifurcation
occur at different equilibrium points. This article establishes
stability conditions for all possible equilibrium points and
studies the global dynamics of interior equilibrium points
using appropriate Lyapunov functions. The Sotomayor’s bi-
furcation theorem is used to investigate the occurrence and
specify the type of bifurcation.

By comparing different values of m, as shown in Figure
2-5, system (16) is very sensitive to the change in parameter
value m. The parameter m, which reflects the strength of the
Allee effect, plays a crucial role in changing the dynamic
behavior of the system. As the value of m increases, the
number of system equilibrium points first increases and
then decreases. When m is large enough, it will cause the
extinction of species x. This is similar to, but significantly
different from, the commensal symbiosis system (2), which
is affected by the Allee effect and two feedback controls.
In addition, we also analyze the effects of the Allee effect
and feedback control variables on the system. Whether it is
the intensity of the Allee effect (m) or the influence degree
(b and d) of the feedback control variables, it will have an
important influence on the position of the equilibrium point.

It should be pointed out that the conditions for Theorem
4.1 are sufficient. During data simulation, it was found that
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Fig. 2. Dynamic behaviors of system(16) when m = 0.9.
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Fig. 3. Dynamic behaviors of system(16) when m = 2.12.

when m > (1 − a2dp

4bcq
)α2, the equilibrium point may also

be globally asymptotically stable, which indicates that there
is still room for improvement in the conditions of Theorem
4.1.
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