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Abstract—A totally antimagic total labeling (TAT) is a
bijective mapping from V (G) ∪ E(G) to {1, 2, ..., |V (G)| +
|E(G)|} where all vertex and edge weights are distinct. Sim-
ilarly to TAT, perfectly antimagic total labeling (PAT) uses
distinctive weights for each vertex and edge. An instance of
a PAT is “Strongly vertex perfectly antimagic total labeling”
(SVPAT), where the weights of the vertices are larger than those
of the edges.

“Not every tree admits SVPAT.” This is the result of an
investigation into whether or not SVPAT labeling is present in
specific graph families. The outcome proves that SVPAT cannot
be achieved by joining any two graphs together; it must be
a path graph. Ultimately, this manuscript illustrates the real-
world significance of SVPAT labeling.

Index Terms—Antimagic, Vertex antimagic, Edge antimagic,
Totally antimagic, Perfectly antimagic.

I. INTRODUCTION

This paper employs only finite, simple, and undirected
graphs. Consider a graph denoted as G, comprised of p ver-
tices and q edges. Labeling is the process of assigning a set of
positive integers to the elements of a graph. A total labeling
for graph G is defined as µ : V (G)∪E(G)→ {1, 2, . . . , p+
q}. The weight of a vertex, wtµ(v), and an edge, wtµ(uv),
are calculated as follows: wtµ(v) = µ(v) +

∑
w∈N(v)

µ(vw)

and, wtµ(uv) = µ(u) + µ(v) + µ(uv) respectively. Here,
N(v) represents the set of neighbors for vertex v. If all edge
and vertex weights are distinct, the labeling is considered an
edge-antimagic total (EAT) or vertex-antimagic total (VAT)
labeling, abbreviated as EAT (VAT) [3]. An EAT (VAT) graph
is a graph that can be labeled using the EAT (VAT) labeling
method [1]. Hartsfield and Ringel [6] first proposed the idea
of an antimagic graph. In edge labeling, as described by
[6], vertex weights must be distinct and pairwise non-equal;
this labeling is referred to as antimagic labeling. Further
information about graph labeling can be found in [4], [5],
[7], [8]. A labeling that exhibits both vertex-antimagic and
edge-antimagic properties is known as a totally antimagic
total (TAT) labeling. A graph is considered a TAT graph if it
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is capable of TAT labeling. The concept of TAT graphs was
first introduced by Bača et al. [2].

The study unveiled the complete absence of magic in
wheels, stars, double stars, and cycles as total graphs. To-
tal graphs are deemed perfect if they have distinct vertex
and edge weights, as outlined by P. Swathi et al.[9]. The
term “Perfectly antimagic total graphs” pertains to a graph
possessing PAT labeling. This research specifically focuses
on the strongly vertex perfectly antimagic total (SVPAT)
graph, wherein all vertex weights are strictly greater than
all edge weights. An SVPAT labeling is a PAT labeling with
these conditions met. An SVPAT graph, in turn, possesses
an SVPAT label. The sections that follow will present the
results of the investigation into whether or not these graphs
have SVPAT labeling.

Definition 1.1: The friendship graph Fn is a set of n
triangles having a common center vertex.

Definition 1.2: The Prism Dn, n ≥ 3 is a cubic graph
representing a cartesian product of a path on two vertices
with a cycle on n. Let V (Dn) = {ui, vi; 1 ≤ i ≤ n} be the
vertex set and E(Dn) = {uiui+1, vivi+1, uivi; 1 ≤ i ≤ n}
where the indices are taken modulo n be the edge set of the
prism Dn. The prism has 2n vertices and 3n edges.

Definition 1.3: A spider graph is a tree having at least one
vertex of degree 3 and all others of degree 2 or less.

Definition 1.4: If G has order n, the graph is formed by
taking one copy of G and n copies of H and joining the i

th

vertex of G with an edge to every vertex in the i
th

copy of
H is known as the corona of G with a graph H , or G�H .

Definition 1.5: For n ≥ 3 and 1 ≤ k ≤ b(n − 1)/2c, the
generalized Petersen graph GP (n, k) is a linked cubic graph
made up of an outer regular polygon {n} (cycle graph Cn)
and an inner star polygon {n, k}, with matching vertices in
both polygons connected by edges.

II. MAIN RESULTS

The following graphic illustrates the presence and absence
of the SVPAT labeling in various graph families. This visual
demonstrates that not all trees are compatible with SVPAT
labeling.

Theorem 2.1: Every cycle graph Cn, n ≥ 3 is SVPAT.
Proof. Define a total labeling µ : V (G) ∪ E(G) →
{1, 2, ..., 2n} such that

µ(vi) = i, ∀i = 1, 2, . . . , n

µ(vivi+1) = 2n+ 1− i, ∀i = 1, 2, . . . , n− 1

µ(vnv1) = n+ 1.

Given the total labeling µ above, the vertex weights are
obtained as follows:

wtµ(v1) = 3n+ 2.

wtµ(vi) = 4n+ 3− i, ∀2 ≤ i ≤ n− 1

wtµ(vn) = 3n+ 3.
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The edge weights are given by

wtµ(v1vn) = 2n+ 2.

wtµ(vivi+1) = 2n+ 2 + i,∀1 ≤ i ≤ n− 1

from all the above discussion, all the vertex weights and all
the edge weights are pairwise distinct.
The maximum edge weight of vjvn ∈ E(G),

wtmaxµ (vjvn) = 2n+ 2 + i

= 3n+ 1.

The minimum vertex weight of v ∈ V (G), wtminµ (v) =
3n+ 2. Hence, wtminµ (vi) > wtmaxµ (e). Since all the vertex
weights are strictly greater than all the edge weights. Thus,
Cn is SVPAT.

Theorem 2.2: Every friendship graph Fn, n ≥ 2 is SV-
PAT.
Proof. Define a total labeling µ : V (G) ∪ E(G) →
{1, 2, ..., 5n+ 1} in the following way.
For each i = 1, 2, . . . , n

µ(v) = 1

µ(vi) = i+ 1

µ(ui) = n+ 1 + i

µ(vvi) = 2n+ 1 + i

µ(vui) = 3n+ 1 + i

µ(viui) = 5n+ 2− i.

Vertex weights under the labeling µ are given by

Fig. 1. Frienship graph F6

wtµ(vi) = µ(vi) + µ(viv) + µ(viui)

= 7n+ 4 + i, ∀ i = 1, 2, ..., n

wtµ(ui) = µ(ui) + µ(uiv) + µ(viui)

= 9n+ 4 + i, ∀ i = 1, 2, ..., n

wtµ(v) = µ(v) +
∑

µ(vvi) +
∑

µ(vui)

= 1 +
n

2
(5n+ 3) +

n

2
(7n+ 3)

= 6n2 + 3n+ 1.

It is simple to confirm that the vertex weights are pairwise
distinct based on the vertex weights listed above.
For 1 ≤ i ≤ n, edge weights under the labeling µ are given
by,

wtµ(vvi) = 2n+ 3 + 2i,

wtµ(vui) = 4n+ 3 + 2i,

wtµ(viui) = 6n+ 4 + i.

The above edge weights show pairwise distinct edge
weights. Since all the vertex weights and all the edge
weights are pairwise distinct, Fn is PAT.

wtmaxµ (e) = 7n+ 4.

wtminµ (v) = 7n+ 5.

Since all the vertex weights are strictly greater than all the
edge weights, Fn is SVPAT.

Theorem 2.3: For every odd positive integer n, n ≥ 3 the
prism Dn is SVPAT.
Proof. Define a total labeling µ : V (G) ∪ E(G) →
{1, 2, ..., p+ q} by

µ(vi) = i ∀ i = 1, 2, ..., n

µ(ui) = n+ i ∀ i = 1, 2, ..., n

µ(uivi) = 3n+ 1− i ∀ i = 1, 2, ..., n

µ(vivi+1) = 5n+ 1− i ∀ i = 1, 2, ..., n− 1

µ(uiui+1) = 4n+ 1− i ∀ i = 1, 2, ..., n− 1

µ(vnv1) = 4n+ 1

µ(unu1) = 3n+ 1.

The vertex weights under the labeling µ are

Fig. 2. Prism graph D5
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wtµ(v1) = 12n+ 2.

wtµ(vi) = 13n+ 4− 2i.

wtµ(vn) = 11n+ 4.

wtµ(u1) = 11n+ 2

wtµ(ui) = 12n+ 4− 2i.

wtµ(un) = 10n+ 4

Based on the above vertex weights, it can be easily concluded
that the vertex weights are pairwise distinct. Edge weights
under the total labeling µ are given by

wtµ(v1vn) = 5n+ 2,

wtµ(vivi+1) = 5n+ 2 + i.

wtµ(uiui+1) = 6n+ 2 + i,∀1 ≤ i ≤ n− 1

wtµ(u1un) = 6n+ 2

wtµ(uivi) = 4n+ 1 + i,∀1 ≤ i ≤ n

From the above equations wtµ(uivi) < wtµ(v1vn) <
wtµ(vivi+1) < wtµ(u1un) < wtµ(uiui+1).
i.e.) All edge-weights are pairwise distinct.

wtmaxµ (e) = 7n+ 1.

wtminµ (v) = 10n+ 4.

Thus, all the vertex weights are strictly greater than all edge
weights.

Corollary 2.4: The generalized peterson graph GP (n, 1)
is SVPAT, for all odd n ≥ 3.

Theorem 2.5: For every positive integer n ≥ 3, the com-
plete graph Kn is SVPAT.
Proof: From theorem 2.1, it is obvious that Kn is SVPAT
for n = 3. For n ≥ 4, at every vertex in Kn, assign a label
1, 2, ..., n. Under the vertex labeling established above, we
now obtain the weight of all edges as w(ei) ≤ w(ej), for
1 ≤ i < j ≤ n(n−1)

2 . At this point, we assign s to ei and
t to ej , given that n + 1 ≤ s < t ≤ n(n−1)

2 . All complete
graphs are SVPAT under this label.

Theorem 2.6: Let G be SVPAT, then there is no vertex of
G having degree one.
Proof. Given that G is SVPAT, then all vertex weights are
greater than all edge weights. Let us assume that there is a
pendant vertex v ∈ V (G). wtµ(v) = µ(v) + µ(vu) where u
is a neighbourhood of v and thus wtµ(vu) = µ(v)+µ(vu)+
µ(u).
i.e, wtµ(vu) > wtµ(v), which is contradiction to that G is
SVPAT.

Corollary 2.7: Let G be any graph, then G� nK1 is not
SVPAT, ∀n ≥ 1.

Lemma 2.8: Every tree is not SVPAT.
Proof. The proof presented in the theorem 2.6 makes this
very obvious.

Corollary 2.9: For every path graph Pn, ∀n ≥ 1, is not
SVPAT.

Corollary 2.10: For every n ≥ 1, the star graph Sn is not
SVPAT.

Corollary 2.11: Every bistar graph B(n,m) as well as
every regular bistar graph B(n,n) is not SVPAT, ∀n,m ≥ 1.

Corollary 2.12: SVPAT does not apply to the spider
graph.

Theorem 2.13: If G is a 2−regular SVPAT, then the sum
of all the vertex labels is less than the sum of all edge labels.
Proof. Let G be a 2−regular graph. Define a SVPAT
labeling µ : V (G) ∪ E(G) → {1, 2, ..., p + q}, then all the
vertex weights are strictly greater than all the edge weights.

p∑
i=1

wtµ(vi) >

q∑
j=1

wtµ(ej)

p∑
i=1

µ(vi) + 2

q∑
j=1

µ(ej) >

q∑
j=1

µ(ej) + 2

p∑
i=1

µ(vi)

i.e,

q∑
j=1

µ(ej) >

p∑
i=1

µ(vi)

Therefore, the sum of all the vertex labels is less than the
sum of all the edge labels.

III. DISJOINT UNION OF CARTESIAN FAMILIES OF
GRAPHS

Throughout this section, we show that the disjoint union
of cycle graphs and prism graphs is both SVPAT. However,
we show that the disjoint union of any graph with path is
not SVPAT.

Theorem 3.1: Let n ≥ 3 and m ≥ 1 be positive integers,
and a cycle Cn is SVPAT, then m copy of cycle Cn is SVPAT.
Proof. Assume Cn is SVPAT with the total labeling µ shown
in theorem 2.1. For each vertex v ∈ G, we denote by symbol
vi the corresponding vertex in the j

th
copy of Cn in mCn,

∀1 ≤ i ≤ n and 1 ≤ j ≤ m.
Let uivi be the edge corresponding to the edge uv in the

j
th

copy of Cn in mCn. For m ≥ 1, define the total labeling
g of mCn as follows.

g(vi) = µ(vi) + n(j − 1)

g(uivi) = µ(uv) + n(2m− 1− j)

for each i = 1, 2, ..., n and j = 1, 2, ...,m.
Vertex weights under the labeling g,

wtg(vi) = g(vi)

+
∑

u∈N(v
i
)

g(uvi),∀i = 1, 2, ..., n

= µ(vi) + n(j − 1)

+
∑

u∈N(v
i
)

[
µ(uvi) + n(2m− 1− j)

]
wtg(vi) = wtµ(vi) + n(j − 1)

+2n(2m− 1− j)

∀i = 1, 2, ..., n and j = 1, 2, ...,m.
The vertex weights under the labeling g are the following,
for j = 1, then wtg(vi) = wtµ(vi) + n(4m− 4)
for j = 2, then wtg(vi) = wtµ(vi) + n(4m− 5)
for j = 3, then wtg(vi) = wtµ(vi) + n(4m− 6)
...

...
...

for j = m, then wtg(vi) = wtµ(vi) + n(3m− 3).
By theorem 2.1, all the vertex weights of vi, i = 1, 2, ..., n
under the labeling µ are distinct. The set of weights of
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vertices vi, i = 1, 2, ..., n under the labeling g have the
following ordering:
wtg(vi)(for j = 1) > wtg(vi)(for j = 2) > wtg(vi)(for

j = m), for all i = 1, 2, ..., n.
Thus the set of all vertex weights in mCn are distinct.
Edge weights under the labeling g,

wtg(vivi+1) = g(vi) + g(vi+1) + g(vivi+1)

= wtµ(vivi+1) + n[2m− 3 + j]

∀i = 1, 2, ..., n− 1 and j = 1, 2, ...,m

wtg(v1vn) = g(v1) + g(vn) + g(v1vn)

= wtµ(v1vn) + n[2m− 3 + j],

for j = 1, 2, ...,m.
By theorem 2.1, all the edge weights under the labeling µ
are distinct. The set of weights of edges under the labeling
g have the following ordering:
wtg(vivi+1)(for j = 1) < wtg(vivi+1)(for j = 2)

< wtg(vivi+1)(for j = m), for all i = 1, 2, ...n. Thus all
the edge weights are distinct.

wtmaxg (e) = 3n+ 1 + n[3m− 3] = 3nm+ 1.

wtming (v) = 3n+ 2 + n[3m− 3] = 3nm+ 2.

mCn is SVPAT due to the fact that every vertex weight is
strictly greater than every edge weight.

Theorem 3.2: If for every odd positive integer n, n ≥ 3,
the prism Dn is SVPAT, then mDn, m ≥ 1, is SVPAT.
Proof. Let Dn be SVPAT with the total labeling µ presented
in theorem 2.3. for m ≥ 1, define the total labeling g of
mDn as follows:
For i = 1, 2, ..., n & j = 1, 2, ...,m

g(vi) = µ(vi) + n(j − 1),

g(ui) = µ(ui) + n(m+ j − 2),

g(uivi) = µ(uivi) + n(3m− 2− j),

for i = 1, 2, ..., n− 1 & j = 1, 2, ...,m

g(vivi+1) = µ(vivi+1) + n(5m− 4− j),
g(uiui+1) = µ(uiui+1) + n(4m− 3− j),

for j = 1, 2, ...,m

g(v1vn) = µ(v1vn) + n(5m− 4− j),
g(u1un) = µ(u1un) + n(4m− 3− j),

Vertex weights under the labeling g,

wtg(vi) = g(vi) +
∑

vk∈N(v
i
)

g(vkvi), ∀i = 1, 2, ..., n

= wtµ(vi) + n(13m− 2j − 11),

wtg(ui) = g(ui) +
∑

vk∈N(u
i
)

g(vkui) ∀i = 1, 2, ..., n

= wtµ(ui) + n(12m− 2j − 10)

The vertex weights are pairwise distinct based on the weights
mentioned above. Edge weights under the labeling g,

wtg(vivi+1) = g(vi) + g(vivi+1) + g(vivi+1)

= n(5m− 1 + j) + 2 + i,

for i = 1, 2, ..., n− 1 and j = 1, 2, ...,m,

wtg(v1vn) = g(v1) + g(vn) + g(v1vn)

= n(5m− 1 + j) + 2,

for j = 1, 2, ...,m.

wtg(uiui+1) = g(ui) + g(ui+1) + g(uiui+1)

= n(6m− 1 + j) + 2 + i,

for all i = 1, 2, ..., n− 1 & j = 1, 2, ...,m.

wtg(u1un) = g(u1) + g(un) + g(u1un)

= n(6m− 1 + j) + 2,

for all j = 1, 2, ...,m.

wtg(uivi) = g(ui) + g(vi) + g(uivi)

= n(4m− 1 + j) + 1 + i,

for all i = 1, 2, ..., n & j = 1, 2, ...,m.
It is evident from the above weights that the edge weights
are pairwise distinct.
Maximum edge weight of e ∈ E(G),

wtmaxg (e) = n(6m− 1 + j) + 2 + i = 7nm+ 1.

Minimum vertex weight of v ∈ V (G),

wtming (v) = wtµ(u) + n(12m− 2j − 10) = 10mn+ 4.

Hence, mDn is SVPAT.
Theorem 3.3: If G is any graph, then G ∪ nK1 is not

SVPAT.
Proof. Let G be any (p, q)−graph. Assume that G∪nK1 is
SVPAT, ∀n ≥ 1 with the total labeling µ : V (G ∪ nK1) ∪
E(G ∪ nK1)→ {1, 2, . . . , p+ q + n} defined by

wtµ(ui) = µ(ui) = p+ q + i, for 1 ≤ i ≤ n

Let u ∈ iK1, for 1 ≤ i ≤ n. Without loss of generality, let
µ(u) = p+ q + 1.
If the label p+q is labeled with any of the vertex v ∈ V (G),
then there exists an edge vw ∈ E(G) such that

wtµ(vw) = µ(v) + µ(vw) + µ(w)

= µ(v) + p+ q + µ(w)

> p+ q + 1,

which contradicts the fact that G is SVPAT.
If p+ q is labeled with any of the edge xy ∈ E(G), then

wtµ(xy) = µ(x) + µ(xy) + µ(y)

= µ(x) + p+ q + µ(y)

> p+ q + 1,

which is a contradiction.
Hence, G ∪ nK1, ∀n ≥ 1, is not SVPAT.

Theorem 3.4: If G is any graph, then G ∪ nK2 is not
SVPAT.
Proof. It follows from theorem 2.6 that if G has a vertex of
degree one, it is not SVPAT.

Theorem 3.5: The disjoint union of any graph G with a
path graph Pn is not SVPAT. i.e, G ∪ Pn is not SVPAT,
∀n ≥ 1.
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IV. APPLICATION

Many software industry projects are undertaken by in-
dividuals possessing diverse soft capabilities. It is these
capabilities that serve as the vertices, while the workers
themselves represent the edges. The label at the vertex
indicates the number of individuals working as project heads,
while the label at the edge signifies the number of people
sharing work between two projects.

The weight assigned to the edges reflects the number
of individuals possessing a specific soft capability who are
employed by both projects that require it. Conversely, the
vertex weight predicts the number of individuals with project
lead responsibilities and their associated workers. Companies
anticipate that projects will be completed successfully, with
employees with soft skills contributing autonomously. The
SVPAT concept facilitates determining the maximum and
minimum number of workers employed by different projects,
as well as their diverse capabilities. Ultimately, the SVPAT
ideas will be transformed into software, with additional
necessary characteristics for methods becoming available in
the future.

V. CONCLUSION

Throught out this paper, we look into whether strongly
vertex perfectly antimagic total (SVPAT) labeling exists
or not in some graph families. ”Every tree doesn’t admit
SVPAT” and ”the disjoint union of any graph and a path
graph is not SVPAT” are both shown.

We also conclude by listing a few unsolved issues in the
Strongly vertex perfectly antimagic total (SVPAT) graph.
Open Problem:1
Determine the fan graph F1,n is SVPAT, for all n.
Open Problem:2
Determine the Prism graph Dn is SVPAT, for every even
positive integer n, n ≥ 4.
Open Problem:3
Let n ≥ 2 and m ≥ 1 be positive integers, and a frienship
graph Fn is SVPAT, then determine m copy of Fn is SVPAT.
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