Study on Longitudinal Temperatu
 Cable Tunnel Near Wall 1
 Zhenpeng Bai, Xiaohan Zhao, Hengjie Qin, Huaitao Song, Mabstract
 Abstract
 Abstract
 Abstract
 Abstract
 Abstract
 Abstract
 Abstract
 Abstra **Study on Longitudinal Temperature**
 Cable Tunnel Near Wall Fir
 *zhenpeng Bai, Xiaohan Zhao, Hengjie Qin, Huaitao Song, Haov***
** *Abstract***—This paper evaluates the influence of natural the development of flam

ventilati** IAENG International Journal of Applied Mathematics

Study on Longitudinal Temperature Decay in

Cable Tunnel Near Wall Fire

Zhenpeng Bai, Xiaohan Zhao, Hengjie Qin, Huaitao Song, Haowei Yao

greater [2]. Wall limitations IAENG International Journal of Applied Mathematics

1 Longitudinal Temperature Decay in

Cable Tunnel Near Wall Fire

ppeng Bai, Xiaohan Zhao, Hengjie Qin, Huaitao Song, Haowei Yao

uluates the influence of natural

intern IAENG International Journal of Applied Mathematics

ON Longitudinal Temperature Decay in

Cable Tunnel Near Wall Fire

Zhenpeng Bai, Xiaohan Zhao, Hengjie Qin, Huaitao Song, Haowei Yao

r evaluates the influence of natural

cable Tunnel Near Wall Find Fig. 21 (Cable Tunnel Mear Wall Find Telescopt)
 Cable Tunnel Near Wall Find Song, Haov
 chatitation on the longitude stremation of the development of flam

verifiation on the longitudinal **Cable Tunnel Near Wall Fi**

Zhenpeng Bai, Xiaohan Zhao, Hengjie Qin, Huaitao Song, Hao
 Abstract—This paper evaluates the influence of natural the development of flar

ventilation on the longitudinal temperature attenua **Cable Tunnel Near Wall I**

Zhenpeng Bai, Xiaohan Zhao, Hengjie Qin, Huaitao Song, Jenetal Mostract—This paper evaluates the influence of natural the development of ventilation on the longitudinal temperature attenuation o **Example 1 COLOTS 1 COLOTS 1 COLOTS 1 COLOTS 1 COLOTS 1 COLOTS 1 VOLT 1 VOLT 1 VOLT 1 COLOTS 1 (COLOTS)**
 outhata the contribution on the longitudinal temperature attenuation of

cable tunnel with a cable tunnel with a c Zhenpeng Bai, Xiaohan Zhao, Hengjie Qin, Huaitao Song, Ha
 Abstract—This paper evaluates the influence of natural

yerater [2]. Wall limitation

ventilation on the longitudinal temperature attenuation of the development Zhenpeng Bai, Xiaohan Zhao, Hengjie Qin, Huaitao Song,
 Abstract—This paper evaluates the influence of natural

the development of

ventilation on the longitudinal temperature attenuation of

cable tunnel will first. It Zhenpeng Bai, Xiaohan Zhao, Hengjie Qin, Huaitao Song,
 Abstract—This paper evaluates the influence of natural

ventilation on the longitudinal temperature attenuation of

cable tunnel wall fires. It took into account th *Abstract***—This paper evaluates the influence of natural the development of flament cable tunnel wall fires. It took into account the effects of entrainment, and heat transdifferent fuel quantities, cable types, cable la** *Abstract***—This paper evaluates the influence of natural the development of flame ventilation on the longitudinal temperature attenuation of emtrainment, and heat transf different fuel quantities, cable types, cable laye** *Abstract***—This paper evaluates the influence of natural the development ventilation on the longitudinal temperature attenuation of entrainment, and header their quantities, cable types, cable layers, and the continuent** *Abstract***—This paper evaluates the influence of natural

different the development of

derivation on the longitudinal temperature attenuation of

different fuck into account the effects of

different fuck under natural ventilation** on the longitudinal temperature of natural temperature of the conduction of entimation on the longitudinal temperature attenuation of entimal feedback of the generator different fuel quantities, cable types, **the centrature in the ceiling was proposed to address the effects of the central central feedback of the generative such in a cable tunnel well fires. It took into account the effects of the combustion number of cables pe** Exame the wall ines. It took much account the effects of heat release rate (HRR) and ventilation of a cable tunnel. Results indicated that under natural feedback of the out in a cable tunnel. Results indicated that under n uncern tue quantumes, cause vigos, cause and the system and free that and the mail feedback of the out in a cable tunnel. Results indicated that under natural restriction of air entrainment varies under different condition **previous previous exerch results. Finally, this paper established a**
previous results. The state of the state are served in a cable tunnel. Results indicated that under natural
Previous results index of smoke after hi out in a calculation the calle burns well. The cale total mass loss rate of smoke after hitting
varies under different conditions. Moreover, under natural different due to the diffe
ventilation, cable combustion was affect **Provided** the cable burnts well. The capte but in the capter of the different conditions. Moreover, under natural different inclusion was affected by many factors. Imitations of the different condition was affected by man varies under unferent conditions. More
ventilation, cable combustion was affect
This paper analyzed the effect of na
longitudinal dimensionless temperatur
mathematical model was proposed
dimensionless temperature attenuati Index Terms—Near wall fire, Cable tunnel, Longitudinal
Index Terms

Internatical model was proposed for longitudinal

International content entermation under natural Chen et al. [4]

Intilation cases. In addition, a predic maintenantal model was proposed for integral
dimensionless temperature attenuation under natural Climensionless s. In addition, a predictive model for maximum
temperature rise below the ceiling was proposed to address the
 Fraction,a predictive model for maximum

and diffusion, a predictive model for maximum

and ventilation on cable

experimental results were compared with

results. Finally, this paper established a

n for dimensionless fi

From the fire in cable tunnel is getting serious [1]. It stems

From urban construction and the rapid growth of urban

population. However, the cable layout in cable tunnels is

relatively dense, and the risk of fire in ca I. INTRODUCTION made extensive reserve and the tunnel is getting serious [1]. It stems

Some scholars have

from urban construction and the rapid growth of urban

population. However, the cable layout in cable tunnels is
 I. INTRODUCTION

I. INTRODUCTION

Some scholars have studied the time of

propulation. However, the cable layout in cable tunnels is

relatively dense, and the risk of fire in cable tunnels is

relatively dense, and the ri The fire in cable tunnel is getting serious [1]. It stems
from urban construction and the rapid growth of urban
population. However, the cable layout in cable tunnels is
relatively dense, and the risk of fire in cable tunn The mean construction and the rapid growth of urban

population. However, the cable layout in cable tunnels is

relatively dense, and the risk of fire in cable tunnels is

the degree of air entrainm

Manuscript received Ap **I** from urban construction and the rapid growth of urban
population. However, the cable layout in cable tunnels is
relatively dense, and the risk of fire in cable tunnels is
the degree of air entrain
of smoke after hittin population. However, the cable layout in
relatively dense, and the risk of fire in
relatively dense, and the risk of fire in
Manuscript received April 11, 2023; revised June
was supported by the Key R&D and Promotion Spe
a atively dense, and the risk of fire in cable tunnels is

the degree of air entrain

meanuscript received April 11, 2023; revised June 26, 2024. This work

supported by the Key R&D and Promotion Special Project (Science and The divery verise, and the Tisk of the In eache tunnels is

the degree of air

of smoke after

was supported by the Key R&D and Pronotion Special Project (Science

and Technology Research) in Henan Province (242102240096), of smoke after hittimum
symported by the Key R&D and Promotion Special Project (Science environment of the combused and Technology Research) in Henan Province (242102240096), Doctor cable itself. Air can fit Comparing Scie Manuscript received April 11, 2023; revised June 26, 2024. This work

supported by the Key R&D and Promotion Special Project (Science environment of

1 Technology Research) in Henan Province (242102240096), Doctor

entific was supported by the Key R&D and Promotion Special Project (Science environment of Scientific Research In Henan Province (24210234006), Doctor Colle itself. Air (2021BSJJ048), Henan Province Central Leading Local Science a and Technology Research) in Henan Province (2421
Scientific Research Fund of Zhengzhou University
(2021BSJJ048), Henan Province Central Leading I
Technology Development Fund Project (Z2023181
University of Light Industry S entific Research Fund of Zhengzhou University of Light Industry

21 BSJ0493), Henan Province Central Leading Local Sicince and

thermal radiation ger

incredistry of Light Industry Science and Technology Invovation Team

i

baiyi1056@126.com).
Xiaohan Zhao is a lecturer in the Department of Financial Management, Technology Development Fund Project (Z2

University of Light Industry Science and Tec

Support Program Project (23XNKJTD0305), I

Special Project (231111322200).

Zhenpeng Bai is a lecture in the Depart

Zlaboratory of El Special Project (231111322200).

Zhenpeng Bai is a lecturer in the Departmet

Laboratory of Electric Power Fire Safety, College of

Engineering, Zhengzhou University of Light Indu

baiyi1056@126.com).

Xiaohan Zhao is a le

yaohaowei@zzuli.edu.cn).

Temperature Decay in
Vear Wall Fire
e Qin, Huaitao Song, Haowei Yao
greater [2]. Wall limitations are important factors affecting
the development of flame space, smoke plume air
entrainment, and heat transfer. In cable tun Temperature Decay in
Vear Wall Fire
eqin, Huaitao Song, Haowei Yao
greater [2]. Wall limitations are important factors affecting
the development of flame space, smoke plume air
entrainment, and heat transfer. In cable tunn Temperature Decay in

Vear Wall Fire

e Qin, Huaitao Song, Haowei Yao

greater [2]. Wall limitations are important factors affecting

the development of flame space, smoke plume air

entrainment, and heat transfer. In cabl **Temperature Decay in**
 Vear Wall Fire

e Qin, Huaitao Song, Haowei Yao

greater [2]. Wall limitations are important factors affecting

the development of flame space, smoke plume air

entrainment, and heat transfer. In TUITPUTACUTU DUCAY III

Vear Wall Fire

e Qin, Huaitao Song, Haowei Yao

greater [2]. Wall limitations are important factors affecting

the development of flame space, smoke plume air

entrainment, and heat transfer. In ca **Frisch Community:**
 Frisch of air of aim of air development of flame space, smoke plume air entrainment, and heat transfer. In cable tunnel fires, the location of the combustion SCAL VV ALLET THE

e Qin, Huaitao Song, Haowei Yao

greater [2]. Wall limitations are important factors affecting

the development of flame space, smoke plume air

entrainment, and heat transfer. In cable tunnel fires, e Qin, Huaitao Song, Haowei Yao
greater [2]. Wall limitations are important factors affecting
the development of flame space, smoke plume air
entrainment, and heat transfer. In cable tunnel fires, the
location of the combu e Qin, Huaitao Song, Haowei Yao
greater [2]. Wall limitations are important factors affecting
the development of flame space, smoke plume ai
entrainment, and heat transfer. In cable tunnel fires, the
location of the combus Qin, Huaitao Song, Haowei Yao

eater [2]. Wall limitations are important factors affecting

e development of flame space, smoke plume air

trainment, and heat transfer. In cable tunnel fires, the

extinction of the combust greater [2]. Wall limitations are important factors affecting
the development of flame space, smoke plume air
entrainment, and heat transfer. In cable tunnel fires, the
location of the combustion source has randomness. The greater [2]. Wall limitations are important factors affecting
the development of flame space, smoke plume air
entrainment, and heat transfer. In cable tunnel fires, the
location of the combustion source has randomness. The greater [2]. Wall limitations are important factors affecting
the development of flame space, smoke plume air
entrainment, and heat transfer. In cable tunnel fires, the
location of the combustion source has randomness. The

to the fire in cable tunnel is getting serious [1]. It stems the fire in cable in the risults were compared with the context results. Finally, this paper established a lation equation for dimensionless fire source heat rel From Experimental results were compared with thermal control and smoke constrained in the real of the maximum construction and smoke constant results. Finally, this paper provides guidance for the fire prevention of tunnel **Previous research results. Finally, this paper established a

cable duration for dimensionless fire source heat release

cable tunnel. Tao et al. [7] studied the maximum

rate. This paper provides guidance for the fire p** calculation equation for dimensionless fire source heat release

rate. This paper provides guidance for the fire prevention of tunnel. Tao et al. [8] revealed

rediction of smoke rise time can

ventilation tunnels. Wang et mperature decay, Heat release rate

[10] studied the effect of

forced ventilation sing

The fire in cable tunnel is getting serious [1]. It stems

Some scholars have start

pulation. However, the cable layout in cable tun [10] studied the effect forced ventilation s

I. INTRODUCTION made extensive res

from urban construction and the rapid growth of urban

population. However, the cable layout in cable tunnels is

relatively dense, and the the development of flame space, smoke plume air
entrainment, and heat transfer. In cable tunnel fires, the
location of the combustion source has randomness. The
thermal feedback of the generated plume, the degree of
restri entrainment, and heat transfer. In cable tunnel fires, the location of the combustion source has randomness. The thermal feedback of the generated plume, the degree of restriction of air entrainment by the fire plume, and location of the combustion source has randomness. The
thermal feedback of the generated plume, the degree of
restriction of air entrainment by the fire plume, and the flow
of smoke after hitting the ceiling and sidewalls a thermal feedback of the generated plume, the degree of restriction of air entrainment by the fire plume, and the flow of smoke after hitting the ceiling and sidewalls are all different due to the different degrees of solid restriction of air entrainment by the fire plume, and the flow
of smoke after hitting the ceiling and sidewalls are all
different due to the different degrees of solid wall boundary
limitations of the fire source.
Wang et of smoke after hitting the ceiling and sidewalls are all
different due to the different degrees of solid wall boundary
limitations of the fire source.
Wang et al. [3] explored the flame propagation and
extinguishing of hor different due to the different degrees of solid wall boundary
limitations of the fire source.
Wang et al. [3] explored the flame propagation and
extinguishing of horizontal power cables in utility tunnels.
Chen et al. [4] limitations of the fire source.

Wang et al. [3] explored the flame propagation and

extinguishing of horizontal power cables in utility tunnels.

Chen et al. [4] studied the main factors affecting the

ventilation effect Wang et al. [3] explored the flame propagation and
extinguishing of horizontal power cables in utility tunnels.
Chen et al. [4] studied the main factors affecting the
ventilation effect of cable tunnels. Tang et al. [5]
in extinguishing of horizontal power cables in utility tunnels.
Chen et al. [4] studied the main factors affecting the
ventilation effect of cable tunnels. Tang et al. [5]
investigated the effects of cable tray spacing on the Chen et al. [4] studied the main factors affecting the ventilation effect of cable tunnels. Tang et al. [5] investigated the effects of cable tray spacing on the fire characteristics of mining cables. Yu et al. [6] invest ventilation effect of cable tunnels. Tang et al. [5]
investigated the effects of cable tray spacing on the fire
characteristics of mining cables. Yu et al. [6] investigated
thermal control and smoke control strategies in a investigated the effects of cable tray spacing on the fire
characteristics of mining cables. Yu et al. [6] investigated
thermal control and smoke control strategies in a tunnel. Liu
et al. [7] studied the maximum ceiling characteristics of mining cables. Yu et al. [6] investigated thermal control and smoke control strategies in a tunnel. Liu et al. [7] studied the maximum ceiling temperature in a tunnel. Tao et al. [8] revealed a correlati thermal control and smoke control strategies in a tunnel. Liu
et al. [7] studied the maximum ceiling temperature in a
tunnel. Tao et al. [8] revealed a correlation study on the
prediction of smoke rise time caused by fires et al. [7] studied the maximum ceiling temperature in a
tunnel. Tao et al. [8] revealed a correlation study on the
prediction of smoke rise time caused by fires in longitudinal
ventilation tunnels. Wang et al. [9] studied tunnel. Tao et al. [8] revealed a correlation study on the prediction of smoke rise time caused by fires in longitudinal ventrilation tunnels. Wang et al. [9] studied the effects of cable inclination and longitudinal wind prediction of smoke rise time caused by fires in longitudinal
ventilation tunnels. Wang et al. [9] studied the effects of
cable inclination and longitudinal wind on the flame
propagation behavior of cables in utility tunne ventilation tunnels. Wang et al. [9] studied the effects of cable inclination and longitudinal wind on the flame propagation behavior of cables in utility tunnels. Zhao et al. [10] studied the effect of fire location and a cable inclination and longitudinal wind on the flame
propagation behavior of cables in utility tunnels. Zhao et al.
[10] studied the effect of fire location and air volume on the
forced ventilation single end tunnel fires. propagation behavior of cables in utility tunnels. Zhao et al.
[10] studied the effect of fire location and air volume on the
forced ventilation single end tunnel fires. The author has
made extensive research on fire and v [10] studied the effect of fire location and air volume on the forced ventilation single end tunnel fires. The author has made extensive research on fire and ventilation [11-15]. Some scholars have studied the diffusion a forced ventilation single end tunnel fires. The author has
made extensive research on fire and ventilation [11-15].
Some scholars have studied the diffusion and temperature
distribution patterns of flue gas [16-18]. They c environment. me scholars have studied the diffusion and temperature
stribution patterns of flue gas [16-18]. They considered
fferent natural ventilation intensities. The near wall
stance at which cable tunnel fires occur is different, distribution patterns of flue gas [16-18]. They considered different natural ventilation intensities. The near wall distance at which cable tunnel fires occur is different, and the degree of air entrainment by the fire plu different natural ventilation intensities. The near wall distance at which cable tunnel fires occur is different, and the degree of air entrainment by the fire plume and the flow of smoke after hitting the ceiling and side distance at which cable tunnel fires occur is different, and
the degree of air entrainment by the fire plume and the flow
of smoke after hitting the ceiling and sidewalls are also
different. The combustion of cables is onl The fire in cable tunnel is getting serious [1]. It stems

from urban construction and the rapid growth of urban

population. However, the cable layout in cable tunnels is

(2021BSJJ048), Henan Province Central Leading Local Science and uterinan radiation generation (2021BSJJ048), Zhengzhou University of Light Industry Science and Technology Innovation Team

University of Light Industry Scien IVERTRY OF Light Industry Science and Technology Innovation Team

excial Project (231111322200). Previous studies

Criencial Project (23111132200). Previous studies

Criencial Project (23111132200). Previous studies

Crien Support Program Project (23XNKID0305), Henan Province Key R&D

Special Project (23111132200). Previous studies ha

Zhengeng Bai is a lecture in the Department of Zhengzhou Key tunnel fires. However,

Laboratory of Electric Zhenpeng Bai is a lecturer in the Department of Zhengzhou Key

boratory of Electric Power Fire Safety, College of Building Environment

gineering, Zhengzhou University of Light Industry, China (E-mail:

yi1056@126.com).

X Laboratory of Electric Power Fire Safety, College of Building Environment

Engineering, Zhengzhou University of Light Industry, China (E-mail: tight longitudinal center

Vaiohan Zhao is a lecturer in the Department of Fina Engineering, Zhengzhou University of Light Industry, China (E-mail: the longitudinal center in Xiaohan Zhao is a lecturer in the Department of Financial Management, involved the distributed manili xiaohanzhaol 226@163.com) the degree of air entrainment by the fire plume and the flow
of smoke after hitting the ceiling and sidewalls are also
different. The combustion of cables is only affected by the
environment of the cable tunnel and the par of smoke after hitting the ceiling and sidewalls are also
different. The combustion of cables is only affected by the
environment of the cable tunnel and the parameters of the
cable itself. Air can freely entrain from arou different. The combustion of cables is only affected by the environment of the cable tunnel and the parameters of the cable itself. Air can freely entrain from around itself, and the thermal radiation generated by combusti environment of the cable tunnel and the parameters of the cable itself. Air can freely entrain from around itself, and the thermal radiation generated by combustion is fed back to the outside of itself, partially acting on cable itself. Air can freely entrain from around itself, and the thermal radiation generated by combustion is fed back to the outside of itself, partially acting on the surrounding environment.
Previous studies have been c thermal radiation generated by combustion is fed back to the outside of itself, partially acting on the surrounding environment.
Previous studies have been conducted on closed cable tunnel fires. However, previous studies outside of itself, partially acting on the surrounding
environment.
Previous studies have been conducted on closed cable
tunnel fires. However, previous studies have shown that the
ignition point of cable tunnel fires is g environment.

Previous studies have been conducted on closed cable

tunnel fires. However, previous studies have shown that the

ignition point of cable tunnel fires is generally located on

the longitudinal centerline. Th Previous studies have been conducted on closed cable
tunnel fires. However, previous studies have shown that the
ignition point of cable tunnel fires is generally located on
the longitudinal centerline. The author's earlie tunnel fires. However, previous studies have shown that the ignition point of cable tunnel fires is generally located on the longitudinal centerline. The author's earlier research has involved the distribution characterist

IAENG International Journal of Applied Mathema
to supplement previous research gaps. This article The cable tunnel was 6.0
establishes a physical model of the fire characteristics of high. As shown in Fig. 1, it is
cable t **IAENG International Journal of Applied Mathematics**
to supplement previous research gaps. This article The cable tunnel was 6.0 m 1
establishes a physical model of the fire characteristics of high. As shown in Fig. 1, it **IAENG International Journal of Applied Mathema**
to supplement previous research gaps. This article The cable tunnel was 6.0
establishes a physical model of the fire characteristics of high. As shown in Fig. 1, it is
cable **IAENG International Journal of Applied Mathen**
to supplement previous research gaps. This article The cable tunnel was 6
establishes a physical model of the fire characteristics of high. As shown in Fig. 1,
cable tunnels IAENG International Journal of Applied Math
to supplement previous research gaps. This article The cable tunnel we
establishes a physical model of the fire characteristics of high. As shown in Fig.
cable tunnels and conduc IAENG International Journal of Applied Mathematics
to supplement previous research gaps. This article
tablishes a physical model of the fire characteristics of high. As shown in Fig. 1, it is the
cable tunnels and conducts **IAENG International Journal of Applied Math**
to supplement previous research gaps. This article The cable tunnel wa
establishes a physical model of the fire characteristics of high. As shown in Fig.
cable tunnels and cond **IAENG International Journal of Applied Mathemation**
to supplement previous research gaps. This article The cable tunnel was 6.0 m
establishes a physical model of the fire characteristics of high. As shown in Fig. 1, it i **IAENG International Journal of Applied Mathemati**
to supplement previous research gaps. This article The cable tunnel was 6.0 n
establishes a physical model of the fire characteristics of high. As shown in Fig. 1, it is
c **EXENT INTERT STATE INTERT AT ANCE INTERTATION CONTROL THE CONDEM CONDENSISES A physical model of the fire characteristics of high. As shown in Fig. 1, it is the cable tunnels and conducts research through model in Table 1** to supplement previous research gaps. This article The cable tunnel was 6.

establishes a physical model of the fire characteristics of high. As shown in Fig. 1, it

cable tunnels and conducts research through model in Tab to supplement previous research gaps. This article The cable tunnel was establishes a physical model of the fire characteristics of high. As shown in Fig. 1, cable tunnels and conducts research through model in Table 1, it model of the fire characteristics of high

in The combustion time and temperature such

de combustion time and temperature such

during the combustion process of cabi

ingitudinal temperature distribution the

da maximum t experiments. This paper organized and an experimental data on the combustion time and temperaturibution of cables during the combustion process cable tunnels, a longitudinal temperature distribution model and a maximum tem

	T ADLE T			CASES OF VENTILATION WITH FINE IN CABLE TUNNEL	ັັ
Case	Fuel quantity (ml)	Oil pool $/cm \times$ cm)	Cable type	Number of cables per layer	The tunnel,
$\mathbf{1}$	10	13×13	ZRYJV	1	This
\overline{c}	20	13×13	ZRYJV	$\mathfrak{2}$	in cab
$\overline{\mathbf{3}}$	20	13×13	ZRYJV	$\overline{4}$	layer-b
$\overline{4}$	10	9.2×9.2	RVVR	$\mathbf{1}$	total ca
5	20	9.2×9.2	RVVR	2	was no
6	40	9.2×9.2	RVVR	4	layer.
τ	10	13×13	RVVR	$\mathfrak{2}$	under
$\,$ 8 $\,$	40	13×13	RVVR	1	in cabl
9	10	18.3×18.3	RVVR	4	by mul
10	20	18.3×18.3	RVVR	$\mathbf{1}$	observ
11	40	18.3×18.3	RVVR	4	in som
12	10	4×21	ZRYJV	1	others,
13	20	4×21	ZRYJV	4	
14	10	4×21	ZRYJV	2	Theref
15	10	9.2×9.2	ZRYJV	$\overline{2}$	differe
16	10	13×13	ZRYJV	$\mathfrak{2}$	cable t
17	20	2×42	ZRYJV	$\mathfrak{2}$	The
18	20	4×42	ZRYJV	$\overline{2}$	g/s , an
19	20	18.3×18.3	ZRYJV	\overline{c}	1.65 g/
20	20	4×21	RVVR	2	3.10 g
21	20	9.2×9.2	RVVR	$\mathfrak{2}$	$14 - 19$
22	20	2×42	RVVR	$\mathfrak{2}$	2.45 g
23	20	13×13	RVVR	2	0.83 g
24	20	4×42	RVVR	\overline{c}	$g/s.$ To
25	20	18.3×18.3	RVVR	$\mathfrak{2}$	0.34 g/

of Applied Mathematics
The cable tunnel was 6.0 m long, 0.4 m wide and 0.5 m
gh. As shown in Fig. 1, it is the physical model. As shown
Table 1, it is the experimental tests in cable tunnel fire.
This article conducted 25 **al of Applied Mathematics**
The cable tunnel was 6.0 m long, 0.4 m wide and 0.5 m
high. As shown in Fig. 1, it is the physical model. As shown
in Table 1, it is the experimental tests in cable tunnel fire.
This article con

and Solution 1)
The cable tunnel was 6.0 m long, 0.4 m wide and 0.5 m
high. As shown in Fig. 1, it is the physical model. As shown
in Table 1, it is the experimental tests in cable tunnel fire.
This article conducted 25 of Applied Mathematics
The cable tunnel was 6.0 m long, 0.4 m wide and 0.5 m
gh. As shown in Fig. 1, it is the physical model. As shown
Table 1, it is the experimental tests in cable tunnel fire.
This article conducted 25 **Such as fuel meant as follow and the matrice of the cable tunnel was 6.0 m long, 0.4 m wide and 0.5 m high. As shown in Table 1, it is the experimental tests in cable tunnel fire. This article conducted 25 cases. The impa al of Applied Mathematics**
The cable tunnel was 6.0 m long, 0.4 m wide and 0.5 m
high. As shown in Fig. 1, it is the physical model. As shown
in Table 1, it is the experimental tests in cable tunnel fire.
This article con **and of Applied Mathematics**

The cable tunnel was 6.0 m long, 0.4 m wide and 0.5 m

high. As shown in Fig. 1, it is the physical model. As shown

in Table 1, it is the experimental tests in cable tunnel fire.

This articl **and of Applied Mathematics**
The cable tunnel was 6.0 m long, 0.4 m wide and 0.5 m
high. As shown in Fig. 1, it is the physical model. As shown
in Table 1, it is the experimental tests in cable tunnel fire.
This article co **al of Applied Mathematics**
The cable tunnel was 6.0 m long, 0.4 m wide and 0.5 m
high. As shown in Fig. 1, it is the physical model. As shown
in Table 1, it is the experimental tests in cable tunnel fire.
This article con The cable tunnel was 6.0 m long, 0.4 m wide and 0.5 m
high. As shown in Fig. 1, it is the physical model. As shown
in Table 1, it is the experimental tests in cable tunnel fire.
This article conducted 25 cases. The impact The cable tunnel was 6.0 m long, 0.4 m wide and 0.5 m
high. As shown in Fig. 1, it is the physical model. As shown
in Table 1, it is the experimental tests in cable tunnel fire.
This article conducted 25 cases. The impact The cable tunnel was 6.0 m long, 0.4 m wide and 0.5 m
high. As shown in Fig. 1, it is the physical model. As shown
in Table 1, it is the experimental tests in cable tunnel fire.
This article conducted 25 cases. The impact The cable tunnel was 6.0 m long, 0.4 m wide and 0.5 i
high. As shown in Fig. 1, it is the physical model. As show
in Table 1, it is the experimental tests in cable tunnel fire.
This article conducted 25 cases. The impact o *B. Theoretical Analysis*
 B. Theoretical Analysis
 B. Theoretical Analysis
 *B. This article conducted 25 cases. The impact of 1

such as fuel quantity, pool type, cable type, and num

cables per layer were considered* This article conducted 25 cases. The impact of factors

chas fuel quantity, pool type, cable type, and number of

bles per layer were considered. This article mainly studied

e characteristics of longitudinal temperature such as fuel quantity, pool type, cable type, and number of
cables per layer were considered. This article mainly studied
the characteristics of longitudinal temperature attenuation,
maximum temperature rise, and dimensio re rise, and dimensionless fire source
ls. Different types of oil pools could
iition source. The fuel was n-heptane.
me retardant bridged polyethylene-clad
s ZRYJV and RVVR. The ventilation
ventilation.
ventilation.
izis

follows:

$$
15.6 \times [\dot{Q}_{peak}^*]^{2/5} = \Theta_1 + \Theta_2 \cdot Fr^{2/3}
$$
 (1)

where, Θ_1 and Θ_2 are parameter. Fr is Froude

this paper studied lo

natural ventilation

proposed a predicti

distribution of smo

ventilation effect. F

model of ceiling max

with natural ventilati

Number of

A. Combustion of c

Number of

The burning char:

tunnel were flame retardant bridged polyethylene-clad

ed cables ZRYJV and RVVR. The ventilation

natural ventilation.

cal Analysis

predicted the cable HRR. Heat release rate was

ing experimental tests could be calculated as
 exthed used natural ventilation.

Theoretical Analysis

This paper predicted the cable HRR. Heat release rate was

tained during experimental tests could be calculated as

llows:
 $15.6 \times [\dot{Q}_{peak}]^{2/5} = \Theta_1 + \Theta_2 \cdot Fr^{2/3}$ (1 B. Theoretical Analysis

This paper predicted the cable HRR. Heat release rate was

obtained during experimental tests could be calculated as

follows:
 $15.6 \times [\dot{Q}_{peak}^{\dagger}]^{2/5} = \Theta_1 + \Theta_2 \cdot Fr^{2/3}$ (1)

where, Θ_1 and B. Theoretical Analysis

This paper predicted the cable HRR. Heat release rate was

obtained during experimental tests could be calculated as

follows:
 $15.6 \times [\hat{Q}^*_{peak}]^{2/5} = \Theta_1 + \Theta_2 \cdot Fr^{2/3}$ (1)

where, Θ_1 and Θ This paper predicted the cable HRR. Heat release rate was
obtained during experimental tests could be calculated as
follows:
 $15.6 \times [\dot{Q}_{peak}^{\dagger}]^{2/5} = \Theta_1 + \Theta_2 \cdot Fr^{2/3}$ (1)
where, Θ_1 and Θ_2 are parameter. Fr is Fr obtained during experimental tests could be calculated as
follows:
 $15.6 \times [\dot{Q}_{peak}^{\dagger}]^{2/5} = \Theta_1 + \Theta_2 \cdot Fr^{2/3}$ (1)
where, Θ_1 and Θ_2 are parameter. Fr is Froude numbers.
III. RESULTS AND DISCUSSIONS
First, this pap follows:
 $15.6 \times [\dot{Q}_{peak}^*]^{2/5} = \Theta_1 + \Theta_2 \cdot Fr^{2/3}$ (1)

where, Θ_1 and Θ_2 are parameter. Fr is Froude numbers.

III. RESULTS AND DISCUSSIONS

First, this paper investigated cable combustion time in

cable tunnels 15.6×[\dot{Q}_{peak}^*]^{2/5} = $\Theta_1 + \Theta_2 \cdot Fr^{2/3}$ (1)
where, Θ_1 and Θ_2 are parameter. Fr is Froude numbers.
III. RESULTS AND DISCUSSIONS
First, this paper investigated cable combustion time in
cable tunnels under the where, Θ_1 and Θ_2 are parameter. Fr is Froude numbers.

III. RESULTS AND DISCUSSIONS

First, this paper investigated cable combustion time in

cable tunnels under the natural ventilation effect. Secondly,

this pap Where, Θ_1 and Θ_2 are parameter. Fr is Froude numbers.

III. RESULTS AND DISCUSSIONS

First, this paper investigated cable combustion time in

cable tunnels under the natural ventilation effect. Secondly,

this pap III. RESULTS AND DISCUSSIONS

First, this paper investigated cable combustion time in

cable tunnels under the natural ventilation effect. Secondly,

this paper studied longitudinal temperature distribution with

natural v III. RESULTS AND DISCUSSIONS
First, this paper investigated cable combustion time in
ble tunnels under the natural ventilation effect. Secondly,
s paper studied longitudinal temperature distribution with
tural ventilation First, this paper investigated cable combustion time in
cable tunnels under the natural ventilation effect. Secondly,
this paper studied longitudinal temperature distribution with
natural ventilation in cable tunnels. Thir From the tunnels under the natural ventilation effect. Secondly, s paper studied longitudinal temperature distribution with tural ventilation in cable tunnels. Third, this paper pposed a prediction model of longitudinal te this paper studied longitudinal temperature distribution with
natural ventilation in cable tunnels. Third, this paper
proposed a prediction model of longitudinal temperature
distribution of smoke in cable tunnels with the

in cable tunnels, the duration of combustion in each case, layer-by-layer cable mass loss, total cable mass loss, and total cable weight loss rate. Under the same conditions, there matural ventilation in cable tunnels. Third, this paper
proposed a prediction in cable tunnels. Third, this paper
proposed a prediction model of longitudinal temperature
distribution of smoke in cable tunnels with the natu proposed a prediction model of longitudinal temperature
distribution of smoke in cable tunnels with the natural
ventilation effect. Fourth, this paper proposed a prediction
model of ceiling maximum temperature rise in cabl distribution of smoke in cable tunnels with the natural
ventilation effect. Fourth, this paper proposed a prediction
model of ceiling maximum temperature rise in cable tunnels
with natural ventilation effect.
A. Combustion ventilation effect. Fourth, this paper proposed a prediction
model of ceiling maximum temperature rise in cable tunnels
with natural ventilation effect.
A. Combustion of cables in cable tunnel under ventilation
The burning model of ceiling maximum temperature rise in cable tunnels
with natural ventilation effect.
A. Combustion of cables in cable tunnel under ventilation
The burning characteristics of cables is displayed in the
tunnel, as sho with natural ventilation effect.

A. Combustion of cables in cable tunnel under ventilation

The burning characteristics of cables is displayed in the

tunnel, as shown in Table 2.

This article provided the combustion con A. Combustion of cables in cable tunnel under ventilation
The burning characteristics of cables is displayed in the
tunnel, as shown in Table 2.
This article provided the combustion conditions of cables
in cable tunnels, t A. Combustion of cables in cable tunnel under ventilation
The burning characteristics of cables is displayed in the
tunnel, as shown in Table 2.
This article provided the combustion conditions of cables
in cable tunnels, t The burning characteristics of cables is displayed in the tunnel, as shown in Table 2.

This article provided the combustion conditions of cables

in cable tunnels, the duration of combustion in each case,

layer-by-layer tunnel, as shown in Table 2.

This article provided the combustion conditions of cables

in cable tunnels, the duration of combustion in each case,

layer-by-layer cable mass loss, total cable mass loss, and

total cable w This article provided the combustion conditions of cables
in cable tunnels, the duration of combustion in each case,
layer-by-layer cable mass loss, total cable mass loss, and
total cable weight loss rate. Under the same in cable tunnels, the duration of combustion in each case,
layer-by-layer cable mass loss, total cable mass loss, and
total cable weight loss rate. Under the same conditions, there
was no significant difference in the mas layer-by-layer cable mass loss, total cable mass
total cable weight loss rate. Under the same conditi
was no significant difference in the mass loss of e
layer. However, the total mass loss rate varied sig
under different al cable weight loss rate. Under the same conditions, there
is no significant difference in the mass loss of each cable
ver. However, the total mass loss rate varied significantly
der different conditions, indicating that was no significant difference in the mass loss of each cable
layer. However, the total mass loss rate varied significantly
under different conditions, indicating that cable combustion
in cable tunnels under ventilation co layer. However, the total mass loss rate varied significantly
under different conditions, indicating that cable combustion
in cable tunnels under ventilation conditions was influenced
by multiple factors. This article sel under different conditions, indicating that cable combustion
in cable tunnels under ventilation conditions was influenced
by multiple factors. This article selected several examples to
observe what happens when cables bur

3.10 g/s, and 3.76 g/s. Total cable mass loss rate in cases 14~19 is 0.79 g/s, 1.45 g/s, 3.52 g/s, 0.39 g/s, 0.77 g/s, and 2.45 g/s. The total cable mass loss rate in cases $20\neg 25$ is 0.83 g/s , 1.87 g/s , and 1.10 g/s , 3.38 g/s , 1.71 g/s , and 5.80 in cable tunnels under ventilation conditions was influenced
by multiple factors. This article selected several examples to
observe what happens when cables burn. It can be seen that
in some cases, the cable was completel by multiple factors. This article selected several examples to observe what happens when cables burn. It can be seen that in some cases, the cable was completely burned, while in others, it was not severely burned, as sho observe what happens when cables burn. It can be seen that
in some cases, the cable was completely burned, while in
others, it was not severely burned, as shown in cases 2 and 3.
Therefore, it is necessary to analyze and in some cases, the cable was completely burned, while in others, it was not severely burned, as shown in cases 2 and 3. Therefore, it is necessary to analyze and study the effects of different factors under natural ventil others, it was not severely burned, as shown
Therefore, it is necessary to analyze and still
different factors under natural ventilatio
cable tunnel fires.
The total cable mass loss rate in cases 1-
g/s, and 6.41 g/s. Tot

20 523 114.4 108.9 106.4 105.4 106.9 106.4 105.4 106.9 106.4 104.9 108.4 105.4 107.9 104.4 104. 20 22 1144 105.4 1044 1044 0.7

22 384 106.4 105.4 1044 1044 0.7

23 137 108.9 109.4 108.9 108.4 ≤ 0.6

25 74 108.4 107.4 106.9 106.9 0.4

25 74 108.4 107.4 106.9 106.9 0.4

25 74 108.4 107.4 106.9 106.9 0.4

25 74 10 22 384 106.4 105.4 1044 1044 1044 1044 1044 1044 1045 0.6

23 137 108.9 109.4 108.9 108.4 24 247 107.9 104.4 104.9 105.4 23 0.5

25 74 108.4 107.4 106.9 106.9 0.4

25 74 108.4 107.4 106.9 106.9 0.4

25 74 108.4 107.4 106. 23 137 108.9 109.4 108.9 108.9 108.4 25 74 108.9 109.4 108.9 108.9 108.4 25 74 108.4 107.4 106.9 106.9 0.5 108.4 25 74 108.4 107.4 106.9 106.9 0.3 25 74 108.4 107.4 106.9 106.9 0.3 25 74 108.4 107.4 106.9 0.5 1.9 0.1 2.1 24 247 107.9 104.4 104.9 105.4 \overline{z} 0.5

25 74 108.4 107.4 106.9 106.9 0.4

25 74 108.4 107.4 106.9 106.9 0.4

 B. Longitudinal temperature distribution of smoke with 0.2
 natural ventilation

To better study lon

IAENG International Journal of Applied Mathems
of various factors in cable tunnel fire under natural et al. [19][20]. Results sho
ventilation was analyzed. The dimensionless temperature of catches fire near the was
the fir **IAENG International Journal of Applied Mathematics**
of various factors in cable tunnel fire under natural et al. [19][20]. Results showed
ventilation was analyzed. The dimensionless temperature of catches fire near the wa **IAENG International Journal of Applied Ma**
of various factors in cable tunnel fire under natural et al. [19][20]. Resu
ventilation was analyzed. The dimensionless temperature of catches fire near t
the fire source was the **IAENG International Journal of Applied Mathem**
of various factors in cable tunnel fire under natural et al. [19][20]. Results sh
ventilation was analyzed. The dimensionless temperature of catches fire near the w
the fire IAENG International Journal of Applied Mathem
of various factors in cable tunnel fire under natural et al. [19][20]. Results show
entilation was analyzed. The dimensionless temperature of catches fire near the was
the fire **IAENG International Journal of Applied Mathematic**
of various factors in cable tunnel fire under natural et al. [19][20]. Results showed
ventilation was analyzed. The dimensionless temperature of the ceiling the
temperatu **IAENG International Journal of Applied Mathematic**
of various factors in cable tunnel fire under natural et al. [19][20]. Results showed
ventilation was analyzed. The dimensionless temperature of eaches fire near the wal **IAENG International Journal of Applied Mathemation**

of various factors in cable tunnel fire under natural et al. [19][20]. Results shower

ventilation was analyzed. The dimensionless temperature of caches fire near the **IAENG International Journal of Applied Math**
of various factors in cable tunnel fire under natural et al. [19][20]. Result
ventilation was analyzed. The dimensionless temperature of catches fire near the
the fire source **EXERT INCRET INCRET SURFER THE UNIT OF APPIPED MATHEM**

of various factors in cable tunnel fire under natural et al. [19][20]. Results sh

ventilation was analyzed. The dimensionless temperature of catches fire near the of various factors in cable tunnel fire under
ventilation was analyzed. The dimensionless tempera
the fire source was the maximum. The dimens
temperature of the cable tunnel decreased with the ir
in distance from the fire various factors in cable tunnel fire under natural et al. [19][20]. Results showed
trilation was analyzed. The dimensionless temperature of catches fire near the wall, $\frac{1}{2}$. Fire source was the maximum. The dimension of various factors in cable tunnel fire under natural et al. [19][20]. Results showed
ventilation was analyzed. The dimensionless temperature of catches fire near the wall, the fire source was the maximum. The dimensionle ventilation was analyzed. The dimensionless temperature of catches fire near the wall,
the fire source was the maximum. The dimensionless combustion of the cable in the
temperature of the cable tunnel decreased with the i

tunnels.

Example 19 or desired manimum temperature is $\frac{0}{0.0}$ or $\frac{0.0}{0.5}$ i.o. $\frac{0.0$ As shown in Fig. 8, under
 $\begin{array}{c|c|c|c|c|c} \hline 0 & 0.5 & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 \\ \hline 1 & 0 & 0.5 & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 \\ \hline \end{array}$ As shown in Fig. 8, under

Fig. 6. Formula fitting of dimensionless temperature longitudina 0. 1
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$

Fig. 6. Formula fitting of dimensionless temperature longitudinal of a fire cable tunnel

distribution under natural ventilation in the middle of cable tunnel

distribution under nat Example 1. So Formula fitting of dimensionless temperature longitudinal of a fire cable tunnel near the tribution under natural ventilation in the middle of cable tunnel

The smoke temperature rise is ΔT_0 . To obtain t distribution under natural ventilation in the middle of cable tunnel

and the cases was proposed, as sh

The smoke temperature rise is ΔT_o . To obtain the

dimensionless temperature rise, it divides the temperature

ris The smoke temperature rise is ΔT_o . To obtain the $\frac{\Delta T_m(H)}{T_\infty} = 0.674 + 0.593$
dimensionless temperature rise, it divides the temperature
rise at each position measured in the experiment by the
temperature rise at the

$$
\frac{\Delta T_x}{\Delta T_0} = 1.205 e^{-(x-x_0)/2.934} - 0.216
$$
 (2)

First exactly point and the experiment by the experiment by the experiment of the experiment by the draw the distance from the reference point. It uses this value to draw the distance from the reference point $x-x_0$. The $rac{\Delta I_x}{\Delta T_0}$ = 1.205 $e^{-(x-x_0)/2.934}$ - 0.216 (2)

The fitting results of the smoke temperature rise and

atecnuation coefficient of the cable tunnel were obtained.

According to fitting correlation, the force index fit The fitting results of the smoke temperature rise and
attenuation coefficient of the cable tunnel were obtained.
According to fitting correlation, the force index fitting
method is very close to the experimental data, wit The intimg results of the shoke temperature in attenuation coefficient of the cable tunnel were of According to fitting correlation, the force index method is very close to the experimental data, wit greater than 0.97. The

Freedom is a transportant of the experimental data, with an R² experimental is also very close to the predicted value of the prediction model.

The longitudinal temperature distribution below the ceiling in cable tunnel The fitted attenuation coefficient is also

areaser than 0.97. The fitted attenuation coefficient is also

very close to the predicted value of the prediction model.

The longitudinal temperature distribution below the

e

al of Applied Mathematics
et al. [19][20]. Results showed that when the cable tunnel
catches fire near the wall, the heat generated by the
combustion of the cable in the storage pool is not included
in the temperature ri **and of Applied Mathematics**
et al. [19][20]. Results showed that when the cable tunnel
catches fire near the wall, the heat generated by the
combustion of the cable in the storage pool is not included
in the temperature r **al of Applied Mathematics**
et al. [19][20]. Results showed that when the cable tunnel
catches fire near the wall, the heat generated by the
combustion of the cable in the storage pool is not included
in the temperature ri **al of Applied Mathematics**
et al. [19][20]. Results showed that when the cable tunnel
catches fire near the wall, the heat generated by the
combustion of the cable in the storage pool is not included
in the temperature ri **al of Applied Mathematics**
et al. [19][20]. Results showed that when the cable tunnel
catches fire near the wall, the heat generated by the
combustion of the cable in the storage pool is not included
in the temperature ri **al of Applied Mathematics**

et al. [19][20]. Results showed that when the cable tunnel

catches fire near the wall, the heat generated by the

combustion of the cable in the storage pool is not included

in the temperatur **and of Applied Mathematics**

et al. [19][20]. Results showed that when the cable tunnel

catches fire near the wall, the heat generated by the

combustion of the cable in the storage pool is not included

in the temperatu **and of Applied Mathematics**

et al. [19][20]. Results showed that when the cable tunnel

catches fire near the wall, the heat generated by the

combustion of the cable in the storage pool is not included

in the temperatu

⁴⁰⁰

³⁵⁰

²⁶

²⁶

²⁶

²⁶

²⁶
 Experimental Value

²⁶

²⁶
 Experimental Value

²⁶
 Fig. 7. Influence of natural ventilation on the maximum temperature rise

of cable tunnel with HRR and comparison 350
 $\frac{1}{2}$
 $\frac{2.5 \times 10^{-11} \text{ N}}{4 \text{ K}}$

Fig. 7. Influence of natural ventilation on the maximum temperature rise

of cable tunnel with HRR and comparison with Li model.

As shown in Fig. 8, under natural ventilatio *p Aluence of natural ventilation on the maximum temperature rise*
 pel with HRR and comparison with Li model.
 p *temperature rise prediction model formula below

<i>g* of cable tunnel fits well. Therefore, a predict

$$
\frac{\Delta T_m(H)}{T_\infty} = 0.674 + 0.593 \dot{Q}_H^{*2/3} \cdot H^{-1}
$$
\n
$$
\text{where, } \dot{Q}_H^* = \dot{Q} / (\rho_\infty T_\infty c_p \sqrt{g} H^{5/2}), \text{ R}^2 \text{ is 0.99.}
$$
\n(3)

IAENG International Journal of Applied Mathematic
tunnel fire model test near the wall of the cable tunnel, the data analyses on the dimension
fire smoke first moved vertically upward and affected the tunnels. It can be co **IAENG International Journal of Applied Mathematic**
tunnel fire model test near the wall of the cable tunnel, the data analyses on the dimension
fire smoke first moved vertically upward and affected the tunnels. It can be **IAENG International Journal of Applied Math**
tunnel fire model test near the wall of the cable tunnel, the data analyses on the di
fire smoke first moved vertically upward and affected the tunnels. It can be co
ceiling. T **IAENG International Journal of Applied Mathemat**
tunnel fire model test near the wall of the cable tunnel, the data analyses on the dimensio
fire smoke first moved vertically upward and affected the tunnels. It can be con **IAENG International Journal of Applied**
tunnel fire model test near the wall of the cable tunnel, the data analyses on
fire smoke first moved vertically upward and affected the tunnels. It can
ceiling. Then, a portion of IAENG International Journal of Applied Mathemational

inel fire model test near the wall of the cable tunnel, the data analyses on the dimension

e smoke first moved vertically upward and affected the tunnels. It can be co

IAENG International Journal of Applied Mathematics

tunnel fire model test near the wall of the cable tunnel, the

data analyses on the dimensionle

fire smoke first moved vertically upward and affected the tunnels. It c **IAENG International Journal of Applied Mathematic**
tunnel fire model test near the wall of the cable tunnel, the data analyses on the dimension
fire smoke first moved vertically upward and affected the tunnels. It can be **IAENG International Journal of Applied Mathemat**

tunnel fire model test near the wall of the cable tunnel, the

data analyses on the dimensio

fire smoke first moved vertically upward and affected the

tunnels. It can be **EXENG INTERTATIONAL JOUTHAT OF Applied MATHEMATION**

tunnel fire model test near the wall of the cable tunnel, the

tata analyses on the dimension

fire smoke first moved vertically upward and affected the

tunnels. It ca tunnel fire model test near the wall of the cable tunnel, the

fire smoke first moved vertically upward and affected the

tunnels. It can be concluded

ceiling. Then, a portion of the smoke moved horizontally

relationship combustion. *D. Dimensionless fire source heat release rate*
 D. D. Dimensionless fire source that maximum values of 7.31 kW, 10.90 kW, and 313.32 kW. After 240 s, 115 s, 55 s, 215 s, 220 s, and 30 and 10 and 13.32 kW. After 240 s, Fig. Then, a portion of the smoke moved horizontally

iling. Then, a portion of the smoke moved horizontally

elationship between the dimension externine and entered the cable tunnel vertically.

An experimental study was 2.31 For the cable tunnel, while another portion diffused along Fr. It also verified the previous

the centerline and entered the cable tunnel vertically.

An experimental study was conducted on the total

combustion time the centerline and entered the cable tunnel vertically.

An experimental study was conducted on the total

combustion time of cable tunnel fires. As shown in Table 2,

the combustion time of cable tunnel fires can indicate

An experimental study was conducted on the total

combustion time of cable tunnel fires. As shown in Table 2,

the combustion time of cable tunnel fires can indicate the

cable combustion status. ZRYJV cables burned more
 combustion time of cable tunnel fires. As shown in Table 2,
the combustion time of cable tunnel fires an indicate the
combustion status. ZRYJV cables burned more
tunnels under natural ventilaties
throroughly than RVVR cab **EXECUTE:**
 EXEC This article alms to study

and cases cable combustion status. ZRYJV cables burned more

thoroughly than RVVR cables. While the cable model was

The results indicated that the

ZRYJV, the larger the cable layer, the more c thoroughly than RVVR cables. While the cable model was

ZRYJV, the larger the cable layer, the more complete the longitudinal
 A. Dimensionless fire source heat release rate

Afte 65 s, 100 s, and 785 s, the heat releas

Fraces14-19 Fitting line $\frac{\text{cases 14}}{2}$ (asses1²-19 Fitting line $\frac{\text{cases 23}}{2}$ (asses1²) B itting line $\frac{\text{cases 24}}{2}$ (asses1²) B itting line $\frac{\text{35}}{2}$ (asses1²) B itting line $\frac{\text{36}}{2}$ (asses1²) B i Fig. 9. Formula fitting of heat telease are increased in the effects of metall-scale
 $\frac{20}{6}$ asses 11 Pitting line (asses 11 Pitting line) and to consider the effects of metall boundar

Fig. 9. Formula fitting of heat Fig. 9. Formula fitting of heat release 20–25 Fitting line and postess of the effects of the consider the effects of Fr^{2/3} work, the influence of Frag. 9. Formula fitting of heat release rate prediction model of cable d **Example 19** and 0.00 0.05 0.10 0.15 0.29 0.25 Pitting line and the effects of me

Fig. 9. Formula fitting of heat release rate prediction model of cable

Fig. 9. Formula fitting of heat release rate prediction model of c $\frac{1}{2}$ of the control of the solution of the solution of the solution of the solution of $\frac{1}{2}$. Firem and time in the more dimensionless power and attenuation law of cable tunnel fire under natural ventilation

The fitting equations in cases 1~3, cases 4~11, and cases 14~19 Fig. 9. Formula fitting of heat release rate prediction model of cable ditenuation law of cable tunnel fire under natural ventilation

intensional heat release rate increases with the

increase of Fr. There is difference line. Subility is that there may be measurement errors in the

section of ecording actual fires in the experiment. The

ting equations in cases 1~3, cases 4~11, and cases 14~19

the experiment of methanic over horize

the shown

$$
15.6 \times [\dot{Q}_{peak}^*]^{2/5} = 10.22 + 9.71 \cdot Fr^{2/3}
$$
 (4) [5] Z. Tang, K.

$$
15.6 \times [\dot{Q}_{peak}^*]^{2/5} = 6.72 + 25.92 \cdot Fr^{2/3}
$$
 (5) no. 6, pp. 20

$$
15.6 \times [\dot{Q}_{peak}^*]^{2/5} = 4.91 + 40.60 \cdot Fr^{2/3}
$$
 (6) thermal and
urban traffic

$$
15.6 \times [\dot{Q}_{peak}^*]^{2/5} = 4.66 + 34.88 \cdot Fr^{2/3}
$$
 (7) Technology,
15.6 × [\dot{Q}_{peak}^*] (7) (7) C. Liu, M.

and Solution School Mathematics
data analyses on the dimensionless fire source HRR of cable
tunnels. It can be concluded that there is a functional
relationship between the dimensionless fire source HRR and
Fr. It also v **and State of Applied Mathematics**
data analyses on the dimensionless fire source HRR of cable
tunnels. It can be concluded that there is a functional
relationship between the dimensionless fire source HRR and
Fr. It also **and Subset of Applied Mathematics**
data analyses on the dimensionless fire source HRR of cable
tunnels. It can be concluded that there is a functional
relationship between the dimensionless fire source HRR and
Fr. It also **and Solution Mathematics**
Example 3 data analyses on the dimensionless fire source HRR of cable
tunnels. It can be concluded that there is a functional
relationship between the dimensionless fire source HRR and
Fr. It a IV. CONCLUSIONS

Solution Solution Solution Conton Set is a study of Cable
then analyses on the dimensionless fire source HRR of cable
nels. It can be concluded that there is a functional
ationship between the dimensionless fire source H **and of Applied Mathematics**

data analyses on the dimensionless fire source HRR of cable

tunnels. It can be concluded that there is a functional

relationship between the dimensionless fire source HRR and

Fr. It also ve The results indicated that there is a functional
data analyses on the dimensionless fire source HRR of cable
tunnels. It can be concluded that there is a functional
relationship between the dimensionless fire source HRR an data analyses on the dimensionless fire source HRR of cable
tunnels. It can be concluded that there is a functional
relationship between the dimensionless fire source HRR and
Fr. It also verified the previous theoretical E data analyses on the dimensionless fire source HRR of cable
tunnels. It can be concluded that there is a functional
relationship between the dimensionless fire source HRR and
Fr. It also verified the previous theoretical E data analyses on the dimensionless tire source HKK of cable
tunnels. It can be concluded that there is a functional
relationship between the dimensionless fire source HRR and
Fr. It also verified the previous theoretical E tunnels. It can be concluded that there is a functional
relationship between the dimensionless fire source HRR and
Fr. It also verified the previous theoretical Equation (1).
IV. CONCLUSIONS
This article aims to study the relationship between the dimensionless fire source HKK
Fr. It also verified the previous theoretical Equation (1).
IV. CONCLUSIONS
This article aims to study the fire characteristics of ca
tunnels under natural ventilation It also verified the previous theoretical Equation (1).

IV. CONCLUSIONS

This article aims to study the fire characteristics of cable

nnels under natural ventilation cases through experiments.

e results indicated that t IV. CONCLUSIONS
This article aims to study the fire characteristics of cable
tunnels under natural ventilation cases through experiments.
The results indicated that the theoretical equation applied to
the longitudinal temp IV. CONCLUSIONS
This article aims to study the fire characteristics of cable
tunnels under natural ventilation cases through experiments.
The results indicated that the theoretical equation applied to
the longitudinal temp IV. CONCLUSIONS
This article aims to study the fire characteristics of cable
tunnels under natural ventilation cases through experiments.
The results indicated that the theoretical equation applied to
the longitudinal temp This article aims to study the fire characteristics of cable
tunnels under natural ventilation cases through experiments.
The results indicated that the theoretical equation applied to
the longitudinal temperature attenuat nels under natural ventilation cases through experiments.

e results indicated that the theoretical equation applied to

bout construct the non-dimension of cable tunnels. At

e same time, a prediction model was proposed f The results indicated that the theoretical equation applied to
the longitudinal temperature attenuation of cable tunnels. At
the same time, a prediction model was proposed for the
maximum temperature rise below the ceiling

the longitudinal temperature attenuation of cable tunnels. At
the same time, a prediction model was proposed for the
maximum temperature rise below the ceiling of near-wall
fire cable tunnels with natural ventilation. The the same time, a prediction model was proposed for the maximum temperature rise below the ceiling of near-wall
fire cable tunnels with natural ventilation. The main
conclusions are as follows:
(1) Various factors such as c maximum temperature rise below the ceiling of near-wall
fire cable tunnels with natural ventilation. The main
conclusions are as follows:
(1) Various factors such as cable type, cable layout, and
cable quantity have a sign fire cable tunnels with natural ventilation.

conclusions are as follows:

(1) Various factors such as cable type, cable 1

cable quantity have a significant impacts on the c

characteristics of cables in cable tunnels. Th nclusions are as follows:
(1) Various factors such as cable type, cable layout, and
ble quantity have a significant impacts on the combustion
aracteristics of cables in cable tunnels. This affects the
ality loss and combus (1) Various factors such as cable type, cable layout, and
cable quantity have a significant impacts on the combustion
characteristics of cables in cable tunnels. This affects the
quality loss and combustion time of the ca

cable quantity have a significant impacts on the combustion
characteristics of cables in cable tunnels. This affects the
quality loss and combustion time of the cables. It further
impacts the quality loss rate of cables in characteristics of cables in cable tunnels. This affects the
quality loss and combustion time of the cables. It further
impacts the quality loss rate of cables in cable tunnel fires.
(2) The non-dimensional longitudinal te quality loss and combustion time of the cables. It further impacts the quality loss rate of cables in cable tunnel fires.

(2) The non-dimensional longitudinal temperature attenuation was influenced by the fuel consumption impacts the quality loss rate of cables in cable tunnel fires.

(2) The non-dimensional longitudinal temperature

attenuation was influenced by the fuel consumption of the

oil pool and cable tunnel, the type and quantity (2) The non-dimensional longitudinal temperature
attenuation was influenced by the fuel consumption of the
oil pool and cable tunnel, the type and quantity of cables in
each layer. This article established a longitudinal
 attenuation was influenced by the fuel consumption of the
oil pool and cable tunnel, the type and quantity of cables in
each layer. This article established a longitudinal
dimensionless temperature decay model under natura oil pool and cable tunnel, the type and quantity of cables in
each layer. This article established a longitudinal
dimensionless temperature decay model under natural
ventilation conditions.
(3) To study the effects of HRR each layer. This article established a longitudinal
dimensionless temperature decay model under natural
ventilation conditions.
(3) To study the effects of HRR and natural ventilation on
cable tunnel fires, a predictive mo dimensionless temperature decay model under natural
ventilation conditions.
(3) To study the effects of HRR and natural ventilation on
cable tunnel fires, a predictive model for the maximum
temperature rise below the ceili ventilation conditions.

(3) To study the effects of HRR and natural ventilation on

cable tunnel fires, a predictive model for the maximum

temperature rise below the ceiling was proposed. Moreover,

this article establis (3) To study the effects of HRR and natural ventilation on cable tunnel fires, a predictive model for the maximum temperature rise below the ceiling was proposed. Moreover, this article established a relationship between cable tunnel fires, a predictive model for the maximum
temperature rise below the ceiling was proposed. Moreover,
this article established a relationship between fire source
HRR and Fr, which was verified through experimen Example 19 and 10 and the vertical position of fire sources in cable tunnels. In future work, the influence of mechanical ventilation on the dimensionless pow rever, some initial boundary conditions in this article did
consider the effects of mechanical ventilation and the
cal position of fire sources in cable tunnels. In future
k, the influence of mechanical ventilation on the
 consider the effects of mechanical ventilation and the
cal position of fire sources in cable tunnels. In future
c, the influence of mechanical ventilation on the
ensionless power and temperature longitudinal
uation law of vertical position of fire sources in cable tunnels. In future
work, the influence of mechanical ventilation on the
dimensionless power and temperature longitudinal
attenuation law of cable tunnel fires should be considered early position of the solution of mechanical ventilation on the ensionless power and temperature longitudinal unation law of cable tunnel fires should be considered.
 Figure 1.0 REFERENCES

Y. Wu, and M. Bakar. "Control

REFERENCES

-
-
- (a) the influence of mechanical vections)

the interaction control of scheme and temperature

nuation law of cable tunnel fires should

REFERENCES

T. Wu, and M. Bakar. "Control of smoke flow

longitudinal ventilation syst dimensionless power and temperature longitudinal
attenuation law of cable tunnel fires should be considered.

REFERENCES

[1] Y. Wu, and M. Bakar. "Control of smoke flow in tunnel fires using

longitudinal ventilation sy incombay and M. Analytical power cables under the same simple incomposition of smoke flow in tunnel fires using longitudinal ventilation systems—a study of the critical velocity". *Fire* Safety Journal, vol. 35, no. 4, pp. **EXECT:**
 E REFERENCES
 Solution
 REFERENCES
 Property Control of smoke flow in ture longitudinal ventilation systems-a study of the critical
 Safety Journal, vol. 35, no. 4, pp. 363-390, 2000.

L. Cheng, T. Ueng, and C. Liu **EXERENCES**

[1] Y. Wu, and M. Bakar. "Control of smoke flow in tunnel fires using

longitudinal ventilation systems-a study of the critical velocity". *Fire*
 Safety Journal, vol. 35, no. 4, pp. 363-390, 2000.

[2] L. **Show The Matter CES**
 REFERENCES
 **REFOREM SONT UNE CONTEX CONTEX CONTEX CONTEX SAFETY JOURNAL, vol. 35, no. 4, pp. 363-390, 2000.

L. Cheng, T. Ueng, and C. Liu. "Simulation of ventilation and fire in

the underground** *Applied Mechanics and Materials*, and *A. Bakar.* "Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity". *Fire Safety Journal*, vol. 35, no. 4, pp. 363-390, 2000.
 [1] Y. Wu, and M. Bakar. "Control of smoke flow in tunnel fires using
longitudinal venlicition systems - a study of the critical velocity". *Fire*
Safety Journal, vol. 35, no. 4, pp. 363-390, 2000.
[2] L. Cheng, T. Ueng longitudinal ventilation systems-a study of the critical velocity". *Fire* Safety Journal, vol. 35, no. 4, pp. 363-390, 2000.

L. Cheng, T. Ueng, and C. Liu. "Simulation of ventilation and fire in L. Cheng, T. Ueng, and C. Safety Journal, vol. 35, no. 4, pp. 363-390, 2000.

L. Cheng, T. Ueng, and C. Liu. "Simulation of ventila

the underground facilities". *Fire Safety Journal*, vol.

597-619, 2001.

T. Wang, and W. An. "Experimental study o
-
-
- [2] L. Cheng, T. Ueng, and C. Luu. "Simulation of ventilation and fire in the underground facilities". *Fire Safety Journal*, vol. 36, no. 6, pp. 597-619, 2001.

T. Wang, and W. An. "Experimental study on flame spread and the underground facilities". *Fire Safety Journal*, vol. 36, no. 6, pp.
597-619, 2001.
T. Wang, and W. An. "Experimental study on flame spread and
extinction over horizontal power cables under longitudinal ventilation
in 597-619, 2001.
T. Wang, and W. An. "Experimental study on flame spread and extrinction over horizontal power cables under longitudinal ventilation in a utility tunnel". *Thermal Science and Engineering Progress*, vol.
39, T. Wang, and W. An. "Experimental study on flame spread and extinction over horizontal power cables under longitudinal ventilation in a utility tunnel". *Thermal Science and Engineering Progress*, vol. 39, pp. 101752, 2023 extinction over horizontal power cables under longitudinal ventilation

in a utility tunnel". *Thermal Science and Engineering Progress*, vol.

39, pp. 101752, 2023.

[4] J. Chen, S. Liu, Y. Fang, and H. Mo. "Computational in a utility tunnel". *Thermal Science and Engineering Progress*, vol.
39, pp. 101752, 2023.
1. Chen, S. Liu, Y. Fang, and H. Mo. "Computational fluid dynamics I. Chen, S. Liu, Y. Fang, and H. Mo. "Computational fluid dyna
-

- **IAENG International Journal of Applied Mathe**
tunnel under natural ventilation". *Applied Thermal Engineering*, vol.
110, pp. 382-389, 2017.
H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Luan, and C. Gong. "A
simple correlati **IAENG Internation**
tunnel under natural ventilation". *Applied Thermal Engl*
110, pp. 382-389, 2017.
H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Luan, and is
simple correlation for predicting the rise time of fire-in-
flow **IAENG International Journal of Applied Mather**

tunnel under natural ventilation". *Applied Thermal Engineering*, vol.

110, pp. 382-389, 2017.

[8] H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Luan, and C. Gong. "A

simple **IAENG International Journal of Applied Matl**
tunnel under natural ventilation". *Applied Thermal Engineering*, vol.
110, pp. 382-389, 2017.
H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Luan, and C. Gong. "A
simple correlatio **HAENG International Journal of Applied Mathe**
tunnel under natural ventilation". *Applied Thermal Engineering*, vol.
110, pp. 382-389, 2017.
H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Luan, and C. Gong. "A
simple correlati **IAENG International Journal of Applied**
 Under antical ventilation". *Applied Thermal Engineering*, vol.

110, pp. 382-389, 2017.
 H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Luan, and C. Gong. "A

simple correlation fo **IAENG International Journal of Applied Matl**

tunnel under natural ventilation". *Applied Thermal Engineering*, vol.

110, pp. 382-389, 2017.

[8] H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Luan, and C. Gong. "A

simple co **IAENG International Journal of Applied Mathe**
tunnel under natural ventilation". *Applied Thermal Engineering*, vol.
110, pp. 382-389, 2017.
H. Tao, Z. Xu, L. Ed, Q. Liu, J. Zhao, D. Luan, and C. Gong. "A
simple correlati **IAENG International Journal of Applied N**
tunnel under natural ventilation". *Applied Thermal Engineering*, vol.
110, pp. 382-389, 2017.
H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Luan, and C. Gong. "A
simple correlation f tunnel under natural ventilation". *Applied Thermal Engineering*, vol.

110, pp. 382-389, 2017.

[8] H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Luan, and C. Gong. "A

simple correlation for predicting the rise time of firetunnel under natural ventilation". *Applied Thermal Engineering*, vol.
110, pp. 382-389, 2017.
H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Luan, and C. Gong. "A
simple correlation for predicting the rise time of fire-induced tunnel under natural ventilation". *Applied Thermal Engineering,* vol.
110, pp. 382-389, 2017.
H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Luan, and C. Gong. "A
simple correlation for predicting the rise time of fire-induced tunnel under natural ventilation". *Applied Then*
110, pp. 382-389, 2017.
H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Li
simple correlation for predicting the rise time
flow in a tunnel with longitudinal ventilation
Undergr 110, pp. 382-389, 2017.

[8] H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Luan, and C. Gong. "A

simple correlation for predicting the rise time of fire-induced smoke

flow in a tunnel with longitudinal ventilation". *Tunnel*
-
- H. Tao, Z. Xu, L. He, Q. Liu, J. Zhao, D. Luan, and C. Gong. "A
simple correlation for predicting the rise time of fre-induced smokes
flow in a tunnel with longitudinal ventilation". Tunnelling and
Underground Space Techn simple correlation for predicting the rise time of frie-induced sincke

Underground Space Technology, vol. 98, pp. 103324, 2020.

T. Wang, Y. Tang, Z. Wang, W. An, and X. Chen. "Flame spread

over cables in a utility tunne flow in a tunnel with longitudinal ventilation". Tunnelling and Underground Space Technology, vol. 98, pp. 103324, 2020.

[9] T. Wang, Y. Tang, Z. Wang, W. An, and X. Chen. "Flame spread over cables in a utility tunnel: E Underground Space Technology, vol. 98, pp. 103324, 2020.

T. Wang, Y. Tang, Z. Wang, W. An, and X. Chen. "Flame spread

over cables in a utility tunnel: Effect of longitudinal wind and

inclination angle". Tunnelling and T. Wang, Y. Tang, Z. Wang, W. An, and X. Chen. "Flame spread
over cables in a utility tunnel: Effect of longitudinal wind and
oinclination angle". *Tunnelling and Underground Space Technology*,
vol. 131, pp. 104848, 2023.
 over cables in a utility tunnel: Effect of longitudinal wind and
inclinination angle". Tunnelling and Underground Space Technology,
vol. 131, pp. 104848, 2023.
[10] J. Zhao, Z. Wang, Z. Hu, X. Cui, X. Peng, and J. Zhang. inclination angle". Tunnelling and Underground Space Technology,

vol. 131, pp. 104848, 2023.

J. Zhao, Z. Wang, Z. Hu, X. Cui, X. Peng, and J. Zhang. "Effects of

fire location and forced air volume on fire development fo vol. 131, pp. 104848, 2023.
 J. Zhao, Z. Viang, Z. Hu, X. Cui, X. Peng, and J. Zhang. "Effects of

fire location and forced air volume on fire development for

single-ended tunnel fire with forced ventilation". *Fire*, v
-
-
- 2024. fire location and forced air volume on fire development for
single-ended tunnel fire with forced ventilation". Fire, vol. 6, no. 3,
pp. 111, 2023.
[11] Z. Bai, H. Yao, and H. Zhang. "Experimental study on fire
characteris single-ended tunnel fire with forced ventilation". *Fire*, vol. 6, no. 3, pp. 111, 2023.

Z. Bai, H. Yao, and H. Zhang. "Experimental study on fire characteristics of cable compartment in utility tunnel with fire source a pp. 111, 2023.

Z. Bai, H. Yao, and H. Zhang. "Experimental study on fire

characteristics of cable compartment in utility tunnel with fire source

at shaft side". *Engineering Letters*, vol. 30, no. 2, pp. 806-810, 2022.
 [11] Z. Bai, H. Yao, and H. Zhang. "Experimental study on fire

characteristics of cable compartment in utility tunnel with fire source

at shaft side". *Engineering Letters*, vol. 30, no. 2, pp. 806-810, 2022.

[12] Z. B characteristics of cable compartment in utility tunnel with fire source
at shaft side". *Engineering Letters*, vol. 30, no. 2, pp. 806-810, 2022.
 Z. Bai, Y. Yu, K. Lv, H. Qin, H. Yao and C. Yang. "Experimental

study on at shaft side". *Engineering Letters*, vol. 30, no. 2, pp. 806-810, 2022.

[12] Z. Bai, Y. Yu, K. Lv, H. Qin, H. Yao and C. Yang. "Experimental

study on influence of natural ventilation on near wall fire in cable

Tunnel Z. Bai, Y. Yu, K. Lv, H. Qin, H. Yao and C. Yang. "Experimental
study on influence of natural ventilation on near wall fire in cable
Tunnel". *Firgineering Letters*, vol. 31, no. 2, pp. 689-694, 2023.
Z. Bai, Y. Yu, J. Zha study on influence of natural ventilation on no

Tunnel". *Engineering Letters*, vol. 31, no. 2, pp.

Z. Bai, Y. Yu, J. Zhang, H. Hu, M. Xing, and F

characteristics of lithium battery of new energy
 Process Safety and En Tunnel". *Engineering Letters*, vol. 31, no. 2, pp. 689-694, 2023.

[13] Z. Bai, Y. Yu, J. Zhang, H. Hu, M. Xing, and H. Yao. "Study on fire

characteristics of lithium battery of new energy vehicles in a tunnel".
 Proce 2. Bat, Y. Yu, J. Zhang, H. Hu, M. Xing, and H. Yao. "Study on fire
characteristics of lithium battery of new energy vehicles in a tunnel".
Process Safety and Environmental Protection, vol. 186, pp. 728-737,
2024.
Z.
-
-
-
-
- characteristics of lithium battery of new energy vehicles in a tunnel²
Process Safety and Environmental Protection, vol. 186, pp. 728-737
2024.
Z. Bai, H. Yao, and H. Zhang. "Experimental study on fir
characteristics i *Process Safety and Environmental Protection*, vol. 186, pp. 728-737,

2024.

2024.

2024. Bai, H. Yao, and H. Zhang. "Experimental study on fire

characteristics in cable compartment of utility tunnel with natural

venti 2024.

2. Bai, H. Yao, and H. Zhang. "Experimental study on fire

characteristics in cable compartment of utility tunnel with natural

ventilation". *Plos One*, vol. 17, no. 4, pp. e2266773, 2022.

2. Bai. "Burning charac 2. Bai, H. Yao, and H. Zhang. "Experimental study on fire
characteristics in calle compartment of utility tunnel with natural
ventilation". Plos One, vol. 17, no. 4, pp. e0266773, 2022.
Z. Bai. "Burning characteristics of characteristics in cable compartment of utility tunnel with natural
ventilation". *Plos One*, vol. 17, no. 4, pp. e0266773, 2022.
Z. Bai. "Burning characteristics of power cables with cone
calorimeter." *Heliyon*, vol. 10, ventilation". *Plos One*, vol. 17, no. 4, pp. e0266775, 2022.

[15] Z. Bai. "Burning characteristics of power cables with cone

calorimeter." *Heliyon*, vol. 10, no. 3, pp. e25103, 2024.

[16] Z. Yuan, B. Lei, and A. Kash Z. Bai. "Burning characteristics of power cables with cone
calorimeter." *Heliyon*, vol. 10, no. 3, pp. e25103, 2024.
Z. Yuan, B. Lei, and A. Kashef, "Experimential and theoretical study
for tunnel fires with natural venti calorimeter." *Heliyon*, vol. 10, no. 3, pp. e25103, 2024.
 Z. Yuan, B. Lei, and A. Kashef. "Experimental and theoretical study

for tunnel fires with natural ventilation". *Fire Technology*, vol. 51, pp.

691-706, 2015. [16] Z. Yuan, B. Let, and A. Kashef. "Experimental and theoretical study
for tunnel fires with natural ventilation". *Fire Technology*, vol. 51, pp.
691-706, 2015.
[17] A. Kashef, Z. Yuan, and B. Lei. "Ceiling temperature for tunnel fires with natural ventilation". *Fire Technology*, vol. 51, pp. 691-706, 2015.
A. Kashef, Z. Yuan, and B. Lei. "Ceiling temperature distribution and smoke diffusion in tunnel fires with natural ventilation". *F*
-
-