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Abstract—An adjacent vertex strongly distinguishing total-
coloring of a graph G is a proper total-coloring such that no
two adjacent vertices meet the same color set, where the color
set of a vertex consists of all colors assigned on the vertex and
its incident edges and neighbors. The minimum number of the
required colors is called adjacent vertex strongly distinguishing
total chromatic number, denoted by χast(G). In this paper, we
first prove that χast(U) ≤ ∆(U) + 2 for a unicyclic graph U
with ∆(U) ≥ 3. Then we completely determine the adjacent
vertex strongly distinguishing total chromatic number of the
unicyclic graph U with ∆(U) = 3, which further shows that
the upper bound of χast(U) ≤ ∆(U) + 2 is sharp.

Index Terms—adjacent vertex strongly distinguishing total-
coloring, adjacent vertex strongly distinguishing total chromatic
number, unicyclic graph.

I. INTRODUCTION

THROUGHOUT this paper, let G = (V,E) be a finite,
simple and undirected graph with vertex set V and

edge set E, and |V | = ν. Moreover, suppose G contains
no isolated edge. For a vertex v ∈ V (G), if w is a neighbor
of v, we denote by v ∼ w, and all the neighbors of v in G
are written as NG(v) = {w|wv ∈ E(G)}. We use dG(v) (for
short, d(v)) to denote the degree of vertex v in G. Clearly,
d(v) = |NG(v)|. Denote by ∆(G) = max{d(x)|x ∈ V (G)}
the maximum degree of G, and u∆ the vertex u with
degree ∆. For two sets A and B, we denote by A ⊕ B =
(A∪B) \ (A∩B) the symmetric difference of A and B. A
connected graph in which the number of edges equals to the
number of vertices is called a unicyclic graph and denoted
by U . The terminologies and notations used but undefined
in this paper can be found in [1].

Let Pn, Kn and Cn(n ≥ 3) be the path, the complete
graph and the cycle on n vertices, respectively. For a uncyclic
graph U , let C = y1y2 · · · yny1 be the basic cycle of U . We
denote by L(n, k) the lollipop graph, which is composed of
the basic cycle C by appending a path of length k(≥ 1).

An adjacent vertex distinguishing total-coloring (AVDTC
for short) of a graph G is a proper total-coloring of G
such that no pair of adjacent vertices receive same color
set, where the color set of each vertex consists of the colors
assigned on the vertex and its incident edges. The adjacent
vertex distinguishing total chromatic number of G, denoted
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by χat(G), is the minimum number k for which G admits
a k-AVDTC. In 2005, Zhang et al. [2] first introduced the
concept of AVDTC of graphs, and proposed the following
conjecture:

Conjecture 1 ([11]). Let G be a graph with |V (G)| ≥ 2.
Then χat(G) ≤ ∆ + 3.

After then, scholars have carried out a lot of research on
the conjecture [2–9]. Especially, Chen [10] confirmed that
the conjecture holds for graphs G with ∆(G) = 3. And
Wang [11] completely characterized the adjacent vertex dis-
tinguishing total-coloring of planar graphs G with ∆ ≥ 14.
In 2008, Zhang et al.[12] put forward the concept of adjacent
vertex strongly distinguishing total-coloring of graphs. Here,
we cite the definition as follows.

Definition 1 ([12]). Let G be a connected graphs of order
at least 3, and f be a mapping from V (G) ∪ E(G) to
{1, 2, · · · , k}, where Cf 〈u〉 = {f(u)}∪{f(v)|uv ∈ E(G)}∪
{f(uv)|uv ∈ E(G)}. If f satisfies the following conditions:

1) ∀uv ∈ E(G), f(u) 6= f(v), f(u) 6= f(uv), f(v) 6=
f(uv);

2) ∀uv, uw ∈ E(G), v 6= w, f(uv) 6= f(uw);
3) ∀uv ∈ E(G), Cf 〈u〉 6= Cf 〈v〉.
Then f is called a k-adjacent vertex strongly distinguishing

total-coloring of G (k − AV SDTC for short). The min-
imum number of k is called the adjacent vertex strongly
distinguishing total chromatic number of G and denoted by
χast(G). Clearly, χast(G) = min{k|k−AV SDTC of G}.

Meanwhile, they also obtained the adjacent vertex strong-
ly distinguishing total chromatic numbers of some special
graphs such as cycle, path, complete graph and complete
bipartite graph. Based on these results, they proposed the
following conjecture.

Conjecture 2 ([12]). Let G be a graph with |V (G)| ≥ 3.
Then χast(G) ≤ ∆ + 3.

Aimed at Conjecture 2, this paper mainly considers
the adjacent vertex strongly distinguishing total coloring
of unicyclic graphs. More specifically, we first prove that
χast(U) ≤ ∆(U)+2 for a unicyclic graph U with ∆(U) ≥ 3,
and then completely determine the adjacent vertex strongly
distinguishing total chromatic number of the unicyclic graph
U with ∆(U) = 3.

II. PRELIMINARIES

Lemma 2 ([12], Lemma 2.1). For any connected graph G
with |V (G)| ≥ 3, χast(G) ≥ ∆ + 1. Moreover, if G has
adjacent maximum degree vertices, then χast(G) ≥ ∆ + 2.
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Lemma 3 ([12], Theorem 2.5). Let Cn be a cycle of order
n. Then

χast(Cn) =

{
4, n 6= 4, 10 and n is even;

5, otherwise.

Lemma 4 ([12], Theorem 2.3). Let Pm be a path of order
m(≥ 3). Then

χast(Pm) =

{
4, m ≡ 1(mod2);

5, m ≡ 0(mod2).

For a graph G, let us define two special paths of G: if
there is a path P̃k+1 = uu1u2 · · · uk satisfied d(u) = 3,
d(uk) = 1, and d(ui) = 2 for i = 1, 2, · · · k − 1, then
P̃k+1 is called a I-path of G; if there is a path P̃k+1 =
uu1u2 · · ·uk satisfied d(u) = d(uk) = 3, and d(ui) = 2
for i = 1, 2, · · · k − 1, then P̃k+1 is called a II-path of G.
For convenience, if |A| = k ≥ 1 for a set A, then we call
that A is a k-set. Based on above, we give a lemma in the
following:

Lemma 5. Let f be a 4 − AV SDTC of G, and P =
v1v2 · · · vk be a path contained in G, where d(vi) = 2
for i = 1, 2, · · · , k. Then the 3-set and the 4-set appear
alternately on the vertices of P .

Proof: According to Definition 1, |Cf 〈v〉| ≥ d(v) + 1
for any v ∈ V (G). Without loss of generality, we may
suppose that |Cf 〈v1〉| = 3, then |Cf 〈v2〉| = 4 since
otherwise, if |Cf 〈v2〉| = 3, then Cf 〈v1〉 = Cf 〈v2〉 due to
|Cf 〈v1〉 ∩ Cf 〈v2〉| ≥ 3, a contradiction. And we further
get |Cf 〈v3〉| = 3. In this way, one can conclude that
|Cf 〈vi〉| = 3 for i ≡ 1 (mod 2), and |Cf 〈vi〉| = 4 for i ≡ 0
(mod 2). Similarly, if |Cf 〈v1〉| = 4, one can also prove that
|Cf 〈vi〉| = 4 for i ≡ 1 (mod 2), and |Cf 〈vi〉| = 3 for i ≡ 0
(mod 2).

Lemma 6. For a graph G, let x be a vertex of G with
d(x) = d, and y be a neighbor of x. Suppose f is a proper
total-coloring of G. If d(y) ≤ bd−1

2 c or d(y) ≥ 2d+ 1, then
Cf 〈x〉 6= Cf 〈y〉.

Proof: For vertex x ∈ V (G) with d(x) = d, we have
d+ 1 ≤ |Cf 〈x〉| ≤ 2d+ 1. If d(y) ≤ bd−1

2 c, then |Cf 〈y〉| ≤
2d(y)+1 ≤ d < d+1 ≤ |Cf 〈x〉|; similarly, if d(y) ≥ 2d+1,
then |Cf 〈y〉| ≥ 2d + 2 > 2d + 1 ≥ |Cf 〈x〉|. Therefore,
Cf 〈x〉 6= Cf 〈y〉.

Let x be a pendant vertex of G and y the just neighbor of
x. If d(y) ≥ 3, then by Lemma 6 Cf 〈x〉 6= Cf 〈y〉. Therefore,
we can obtain the following corollary.

Corollary 7. Let f be a total-coloring of G, and x a pendant
vertex of G. If y is the neighbor of x with d(y) ≥ 3, then
Cf 〈x〉 6= Cf 〈y〉.

III. MAIN RESULTS

Theorem 8. Let U be a unicyclic graph with ν ≥ 4 vertices
and ∆(U) ≥ 3. Then

χast(U) ≤ ∆(U) + 2.

Proof: We will prove the theorem by induction on ν.
If ν = 4, then U ∼= L(3, 1), it is easy to see that χast(U) =

5.

Denote by C the basic cycle of U , and suppose that the
theorem is true for the unicyclic graphs with fewer than ν
vertices. We distinguish two cases in the following.

Case 1. There exists a pendant vertex of U whose neighbor
is outside C.

Fig. 1. The illustrations

Choosing a pendant vertex v of U such that dU (v,C) =
max{dU (x,C)|x ∈ V (U), dU (x) = 1}, we suppose that w
is the neighbor of v (see Fig. 1(a)). Let NU (w) = {z, v, w1,
w2, · · · , wr : 0 ≤ r ≤ ∆ − 2}, where dU (z) ≥ 2 and
dU (wi) = 1 for i = 1, 2, · · · , r. Suppose U

′
= U−v, then by

assumption, χast(U
′
) ≤ ∆(U

′
) + 2 where ∆(U

′
) ≤ ∆(U).

Let f
′

be a (∆(U
′
) + 2)−AV SDTC of U

′
. Now we will

extend f
′

to be a (∆(U) + 2) − AV SDTC f for U . Set
f(v) = f

′
(zw), we distinct two subcases in the following.

Subcase 1.1. r = 0.
One can see that dU (w) = 2. From Definition 1 we know

that f should first be a proper total coloring of U . Thus,
there are at most 2 forbidden colors for wv since f(wv) 6=
f

′
(w) and f(wv) 6= f

′
(zw). On the other hand, if |Cf ′ 〈z〉|−

|Cf ′ 〈w〉| = 1, then there is at most one color f(wv) ∈
Cf ′ 〈z〉 \ Cf ′ 〈w〉 (In fact, there is just one forbidden color
in Cf ′ 〈z〉 \ Cf ′ 〈w〉) such that Cf 〈z〉 = Cf 〈w〉. In addition,
if f(wv) = f

′
(z), it also leads to Cf 〈w〉 = Cf 〈v〉. Hence,

we have at least (∆(U) + 2)− 4 = ∆(U)− 2 ≥ 1 available
colors for wv.

Subcase 1.2. r ≥ 1.
Clearly, dU (w) ≥ 3. For the edge wv, in order to

ensure f is proper, there are at most ∆ forbidden colors
since f(wv) 6= f

′
(w), f(wv) 6= f

′
(zw) and f(wv) 6=

f
′
(wwi) for 1 ≤ i ≤ r, where r ≤ ∆ − 2. Besides, if
|Cf ′ 〈z〉|−|Cf ′ 〈w〉| = 1, then there is at most one forbidden
color f(wv) ∈ Cf ′ 〈z〉 \ Cf ′ 〈w〉 satisfying Cf 〈z〉 = Cf 〈w〉.
Note that dU (w) ≥ 3. From Corollary 7 we know that
Cf 〈w〉 6= Cf 〈v〉 and Cf 〈w〉 6= Cf 〈wi〉 for 1 ≤ i ≤ r
(In what follows, if similar case occurs, one can prove it
by Corollary 7, so we would not mention it again). Thus,
there at least exists (∆ + 2) − (∆ + 1) = 1 available color
for wv.

For other elements of U , we keep f = f ′, and so, U
admits a desired coloring f .

Case 2. The neighbor of each pendant vertex lies on V (C).
Suppose that w, z1, z2 ∈ V (C) and wz1 ∈ E(C), wz2

∈ E(C) (see Fig. 1(b)). Let NU (w) = {z1, z2, w1, w2, · · · ,
wr : 1 ≤ r ≤ ∆ − 2}, where dU (zi) ≥ 2 for i = 1, 2, and
dU (wi) = 1 for i = 1, 2, · · · , r. Let U

′
= U − wr. Then by

assumption, χast(U
′
) ≤ ∆(U

′
) + 2 where ∆(U

′
) ≤ ∆(U).

Let f
′

be a (∆(U
′
) + 2)−AV SDTC of U

′
. Now we will

extend f
′

to be desired coloring f of U .
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Based on f ′, in order to ensure f is proper, there are at
most ∆ forbidden colors for wwr since f(wwr) 6= f

′
(w),

f(wwr) 6= f
′
(z1w), f(wwr) 6= f

′
(z2w) and f(wwr) 6=

f
′
(wwi) for 1 ≤ i ≤ r − 1, where r ≤ ∆ − 2. Set

f(wr) = f
′
(z1w) (if necessary, one can recolor it). Next,

we will consider whether the color set of vertex w and its
adjacent vertices is the same, and distinct two cases in the
following.

(1) When Cf ′ 〈z1〉 = Cf ′ 〈z2〉 and |Cf ′ 〈z1〉|− |Cf ′ 〈w〉| =
1, there is at most one forbidden color such that
Cf 〈z1〉 = Cf 〈w〉 = Cf 〈z2〉 (if f(wwr) is just the
color of Cf ′ 〈z1〉 \ Cf ′ 〈w〉).

(2) When Cf ′ 〈z1〉 6= Cf ′ 〈z2〉, there are two subcases to
consider.

i) |Cf ′ 〈z1〉| 6= |Cf ′ 〈z2〉|.
a) If |Cf ′ 〈z1〉| − |Cf ′ 〈w〉| = 1, there is at

most one forbidden color such that Cf 〈z1〉 =
Cf 〈w〉.

b) If |Cf ′ 〈z2〉| − |Cf ′ 〈w〉| = 1, there is at
most one forbidden color such that Cf 〈z2〉 =
Cf 〈w〉.

ii) |Cf ′ 〈z1〉| = |Cf ′ 〈z2〉|.
a) If |Cf ′ 〈z1〉| − |Cf ′ 〈w〉| = 1 and Cf ′ 〈w〉 *

Cf ′ 〈z2〉, there is at most one forbidden color
such that Cf 〈z1〉 = Cf 〈w〉.

b) If |Cf ′ 〈z2〉| − |Cf ′ 〈w〉| = 1 and Cf ′ 〈w〉 *
Cf ′ 〈z1〉, there is at most one forbidden color
such that Cf 〈z2〉 = Cf 〈w〉.
item [c)]If |Cf ′ 〈z1〉| − |Cf ′ 〈w〉| = 1,
Cf ′ 〈w〉 $ Cf ′ 〈z1〉 and Cf ′ 〈w〉 $ Cf ′ 〈z2〉,
then we will recolor the vertex wr. It is easy
to see that Cf ′ 〈w〉 = Cf ′ 〈z1〉 ∩ Cf ′ 〈z2〉 and
|Cf ′ 〈z1〉 ⊕ Cf ′ 〈z2〉| = 2. Therefore, for f
there exist two colors in Cf ′ 〈z1〉 ⊕ Cf ′ 〈z2〉
to assign wr and wwr, such that Cf 〈z1〉 6=
Cf 〈w〉 and Cf 〈z2〉 6= Cf 〈w〉.

Hence, there at most exists one forbidden color in cases
(1) and (2), except for the two cases, it just ensures that
f(wwr) is a proper coloring in U .

Consequently, there at least exists (∆ + 2)− (∆ + 1) ≥ 1
available color for wwr to extend f ′ to f , such that Cf 〈z1〉 6=
Cf 〈w〉 and Cf 〈w〉 6= Cf 〈z2〉. So we get a desired coloring
f of U , and thus χast(U) ≤ ∆(U) + 2.

The proof is completed.

Theorem 9. Let U be a unicyclic graph with ∆(U) = 3 on
ν(≥ 4) vertices, and C = y1y2 · · · yny1 the basic cycle of
U . If U satisfies the following conditions:

(1) there exists two maximum degree adjacent vertices u∆

and v∆ in U ;
(2) no two maximum degree vertices u∆ and v∆ are

adjacent in U , but
(a) n = 4, 10 or n is odd;
(b) n ≥ 6 (n 6= 10) is even and U has a I− even

path or a II− odd path;
then χast(U) = 5; otherwise χast(U) = 4.

Proof: Let U be a unicyclic graph with ∆(U) = 3
on ν ≥ 4 vertices. For convenience, we denote by C =

y1y2 · · · yny1 the basic cycle of U . Now, we distinguish two
cases in the following.

Case 1. There exists two maximum degree vertices
u∆, v∆ ∈ V (U) such that u∆ ∼ v∆.

In this case, ν ≥ 5 since ν = 4 is impossible. From
Lemma 2 we know that χast(U) ≥ 5. Then we prove the
conclusion by induction on ν.

If ν = 5, then we have n = 3, it is obvious that
χast(U) = 5. Now, we assume that the conclusion is true
for the unicyclic graphs with fewer than ν vertices.

Choosing a pendant vertex v of U such that dU (v,C) =
max{dU (x,C)|x ∈ V (U) and dU (x) = 1}, suppose that w
is the neighbor of v. Let NU (w) = {v, z} if dU (w) = 2, or
NU (w) = {v, z, u} if dU (w) = 3, where 2 ≤ dU (z) ≤ 3
and dU (u) = 1. Suppose U

′
= U − v, then by assumption,

U
′

has a 5−AV SDTC f
′
.

Since ∀x ∈ V (U ′), |Cf ′ 〈x〉| ≥ 3, we have 3 ≤
|Cf ′ 〈w〉| ≤ 5 and 3 ≤ |Cf ′ 〈z〉| ≤ 5.

In what following, if dU ′ (w) = a, dU ′ (z) = b, |Cf ′ 〈w〉| =
c and |Cf ′ 〈z〉| = d, then we can abbreviate this ordered
sequence as “abcd ” for short. Now, we distinct two cases
for dU ′ (w) below.

(1) When dU ′ (w) = 1, we have |Cf ′ 〈w〉| = 3, and further
get 4 ≤ |Cf ′ 〈z〉| ≤ 5. Thus, dU ′ (w), dU ′ (z), |Cf ′ 〈w〉|
and |Cf ′ 〈z〉| have 4 combinations: 1234, 1235, 1334
and 1335.

(2) When dU ′ (w) = 2, we have 3 ≤ |Cf ′ 〈w〉| ≤ 5,
however, |Cf ′ 〈w〉| = 3 implies that Cf ′ 〈w〉 = Cf ′ 〈u〉
because of |Cf ′ 〈w〉 ∩Cf ′ 〈u〉| ≥ 3, and thus, we have
4 ≤ |Cf ′ 〈w〉| ≤ 5. Here dU ′ (w), dU ′ (z), |Cf ′ 〈w〉|
and |Cf ′ 〈z〉| have 8 combinations: 2243, 2244, 2245,
2253, 2254, 2344, 2354 and 2345, except for 2255,
2355, 2343 and 2353 since if 2255 and 2355 occur,
then |Cf ′ 〈w〉| = |Cf ′ 〈z〉| = 5, which leads to
Cf ′ 〈w〉 = Cf ′ 〈z〉 in U

′
, a contradiction, and if 2343

and 2353 occur, then dU ′ (z) = 3, one can further get
|Cf ′ 〈z〉| ≥ 4, clearly, they are also impossible.

If 1234 and 1334 occur, set

f(x) =


f

′
(wz), x = v;

t, x = wv, and t ∈ {1, 2, 3, 4, 5} \ Cf ′ 〈z〉;
f

′
(x), otherwise.

Then it follows from |Cf ′ 〈w〉| = 3, |Cf ′ 〈z〉| = 4
and f(wv) ∈ {1, 2, 3, 4, 5} \ Cf ′ 〈z〉 that |Cf 〈w〉| = 4
and Cf 〈w〉 6= Cf ′ 〈z〉. Since Cf ′ 〈z〉 = Cf 〈z〉 we have
Cf 〈w〉 6= Cf 〈z〉. In addition, one can get Cf 〈w〉 6= Cf 〈v〉
due to |Cf 〈v〉| = 3.

If 2243, 2245, 2253, 2254, 2345 and 2354 occur, set

f(x) =


f

′
(wz), x = v;

t, x = wv, and t ∈ Cf ′ 〈w〉\
{f ′

(w), f
′
(wz), f

′
(wu)};

f
′
(x), otherwise.

Then one can get Cf 〈w〉 = Cf ′ 〈w〉 since f(wv) ∈
Cf ′ 〈w〉 \ {f ′

(w), f
′
(wz), f

′
(wu)}, and thus Cf 〈w〉 6=

Cf 〈z〉. Furthermore, by Corollary 7 we have that Cf 〈w〉 6=
Cf 〈v〉 and Cf 〈w〉 6= Cf 〈u〉.
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If 1235, 1335, 2244 and 2344 occur, set
′
(wz), x ;

=

f
′
(x), otherwise.

Then we have ||Cf 〈w〉|−|Cf 〈z〉|| = 1 due to ||Cf ′ 〈w〉|−
|Cf ′ 〈z〉|| = 0, or 2 and f(wv) ∈ {1, 2, 3, 4, 5}\Cf ′ 〈w〉, and
so, Cf 〈w〉 6= Cf 〈z〉. Meanwhile, by Corollary 7 it follows
that Cf 〈w〉 6= Cf 〈v〉 and Cf 〈w〉 6= Cf 〈u〉.

Therefore, U admits a 5−AV SDTC.
Case 2. No two maximum degree vertices u∆ and v∆ are

adjacent in U .
Subcase 2.1. U has only one maximum degree vertex,

namely U ∼= L(n, k).
According to Lemma 2 we know that χast(U) ≥ 4. Let

p̃k+1 = uu1u2 · · ·uk be a I-path, where d(uk) = 1. Without
loss of generality, suppose u = y1, clearly d(y1) = 3.
Assume by contradiction that, U has a 4 − AV SDTC
f : V (U) ∪ E(U)→ {1, 2, 3, 4}.

Subcase 2.1.1. When n = 4, U ∼= L(4, ν − 4).
Without loss of generality, let f(y1) = 1, f(y2) = 2,

f(y1y2) = 3. According to d(y1) = 3 we have |Cf 〈y1〉| = 4,
which leads to |Cf 〈y2〉| = |Cf 〈y4〉| = 3, then we only get
f(y2y3) = 1, f(y3) = 3. By Lemma 5 we have |Cf 〈y3〉| =
4, which implies that f(y3y4) = 4 or f(y4) = 4.
• If f(y3y4) = 4, then f(y4) = 2, and we further have
|Cf 〈y4〉| = 4, hence, it results in Cf 〈y4〉 = Cf 〈y1〉, a
contradiction;

• If f(y4) = 4, then f(y3y4) = 2, so we get |Cf 〈y4〉| =
4, it also a contradiction.

Subcase 2.1.2. When n = 10, U ∼= L(10, ν − 10).
Since d(y1) = 3 and χast(U) = 4, we have |Cf 〈yi〉| =

4, i ≡ 1 (mod 2); |Cf 〈yi〉| = 3, i ≡ 0 (mod 2) by Lemma
5. Without loss of generality, let f(y1) = 1, f(y2) = 2,
f(y1y2) = 3. According to |Cf 〈y2〉| = 3 we have Cf 〈y2〉 =
{1, 2, 3, }, then f(y2y3) = 1, f(y3) = 3. Now, we distinct
three steps to deduce a contradiction.

Step 1: since U has a 4−AV SDTC f and |Cf 〈y3〉| = 4
we have f(y3y4) = 4 or f(y4) = 4, but 4 6∈ Cf 〈y2〉, thus
Cf 〈y2〉 6= Cf 〈y4〉.

Step 2: we suppose, by a contradiction that Cf 〈y6〉 =
Cf 〈y2〉 = {1, 2, 3}. From |Cf 〈y5〉| = 4 we have f(y4y5) =
4 or f(y4) = 4, which leads to f(y3y4) = f(y4y5), or
f(y3y4) = f(y4), or f(y4y5) = f(y4), a contradiction. Let
f(y4) = 4. From |Cf 〈y4〉| = 3 we know f(y3y4) = 2,
f(y4y5) = 3, f(y5) = 2, Cf 〈y4〉 = {2, 3, 4}. Cf 〈y6〉 =
{1, 2, 3} implies that f(y5y6) = 1, f(y6) = 3, f(y6y7) = 2,
f(y7) = 1. Since |Cf 〈y8〉| = 3, f(y8y9) = 1. And
because |Cf 〈y10〉| = 3, f(y9y10) = 1, a contradiction. So
Cf 〈y2〉 6= Cf 〈y6〉.

Step 3: From |Cf 〈y3〉| = 4 we have either f(y3y4) = 4
or f(y4) = 4.
• If f(y3y4) = 4, by |Cf 〈y4〉| = 3 we have Cf 〈y4〉 =
{1, 3, 4} or {2, 3, 4} and f(y4y5) = 3, f(y5) = 4. No
matter what f(y4) = 1 or f(y4) = 2, it will lead to
Cf 〈y4〉 6= Cf 〈y6〉.

• If f(y4) = 4, from |Cf 〈y4〉| = 3 we know f(y3y4) =
2, f(y4y5) = 3, f(y5) = 2, Cf 〈y4〉 = {2, 3, 4}.
And because |Cf 〈y5〉| = 4 we have f(y5y6) = 1 or
f(y6) = 1. So Cf 〈y4〉 6= Cf 〈y6〉.

In the same way, we can obtain that the five color set
f 〈y2〉, Cf 〈y4〉, Cf 〈 6〉, Cf 〈y8〉 and Cf 〈y10〉 are different

3
4 = 4 < 5, a contradiction.

Subcase 2.1.3. nf(x) =


t

f

, x

= v

wv and t ∈ {1, 2, 3, 4, 5} \ Cf ′ 〈w〉;

C
from each other. But

≥

y
C

3 is odd.
Note that d(y1) = 3. By Lemma 5 one can see that

|Cf 〈yi〉| = 3, i ≡ 0 (mod 2) and |Cf 〈yi〉| = 4, i ≡ 1
(mod 2). However, |Cf 〈yn〉| = |Cf 〈y1〉| = 4, a contradic-
tion.

Subcase 2.1.4. n ≥ 6 (n 6= 10) is even and U has a I-even
path p̃k+1.

Since d(y1) = 3, |Cf 〈y1〉| = 4. By Lemma 5, we have
|Cf 〈ui〉| = 3, i ≡ 1 (mod 2); |Cf 〈ui〉| = 4, i ≡ 0 (mod 2).
However, k − 1 is odd, it therefore leads to a contradiction
since |Cf 〈uk−1〉| = |Cf 〈uk〉| = 3.

From above all, we have χast(U) ≥ 5.
We next prove χast(U) = 5 by considering the length

of I-path P̃k+1. For k = 1, P̃k+1 = y1u1, d(y1) = 3. By
Lemma 3, χast(Cn) = 5 if n = 4, 10, or n is odd. Suppose
g : V (C) ∪ E(C) → {1, 2, 3, 4, 5}. For each vertex of C,
3 ≤ |Cg〈yi〉| ≤ 5 since d(yi) = 2, i = 1, 2 and n. Then we
color the y1u1 and u1.

In the following, if |Cg〈y1〉| = a, |Cg〈y2〉| = b and
|Cg〈yn〉| = c, then we can abbreviate this ordered sequence
as “abc” for short. We will distinct three cases for |Cg〈y1〉|
below.

(1) When |Cg〈y1〉| = 3, by Lemma 5, |Cg〈yi〉| ≥ 4 for
i = 2, n. Thus, |Cg〈y1〉|, |Cg〈y2〉| and |Cg〈yn〉| have
4 combinations: 344, 345, 354 and 355.

(2) When |Cg〈y1〉| = 4, |Cg〈y1〉|, |Cg〈y2〉| and |Cg〈yn〉|
have 9 combinations: 433, 434, 435, 443, 444, 445,
453, 454 and 455.

(3) When |Cg〈y1〉| = 5, |Cg〈y1〉|, |Cg〈y2〉| and |Cg〈yn〉|
have 4 combinations: 533, 534, 543 and 544 since if
535 and 545 occur, then Cg〈y1〉 = Cg〈yn〉, and if 553,
554 and 555 occur, then Cg〈y1〉 = Cg〈y2〉, all those
are impossible.

If 344 occurs, then |{1, 2, 3, 4, 5} \ Cg〈y1〉| = 2. Thus,
there exist two colors to assign y1u1 and u1, which leads
to |Cf 〈y1〉| = 5, and so Cf 〈y1〉 6= Cf 〈y2〉 and Cf 〈y1〉 6=
Cf 〈yn〉. Moreover, it follows from Corollary 7 that Cf 〈y1〉 6=
Cf 〈u1〉.

If 345 occurs, set

f(x) =


g(y1y2), x = u1;

t, x = y1u1, and t ∈ Cg〈yn〉 \ Cg〈y2〉;
g(x), otherwise.

From f(y1u1) ∈ Cg〈yn〉 \ Cg〈y2〉 we have |Cf 〈y1〉| = 4
and Cf 〈y1〉 6= Cf 〈y2〉. In addition, we can get Cf 〈y1〉 6=
Cf 〈yn〉 as |Cf 〈yn〉| = 5. Moreover, by Corollary 7 we have
Cf 〈y1〉 6= Cf 〈u1〉. Similarly, the conclusion is also true
whence 354 occurs.

If 355, 433, 434, 443 and 444 occur, set

f(x) =



g(y1y2), x = u1

t, x 1

g

u1  
and t ∈ {1, 2, 3, 4, 5}\Cg〈y1〉;

x) otherwise


( ,

= y

;

.

Then we get ||Cf 〈y1〉| − |Cf 〈yi〉||= 1 or 2 since
||Cg〈y1〉|−|Cg〈yi〉|| = 0, 1, 2 and f(y1u1) ∈ {1, 2, 3, 4, 5}\
Cg〈y1〉 for i = 2, n. Thus, Cf 〈y1〉 6= Cf 〈y2〉 and Cf 〈y1〉 6=
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Cf 〈yn〉. Identically, by Corollary 7 we have Cf 〈y1〉 6=
Cf 〈u1〉.

If 435, 445, 453, 454, 455, 533, 534, 543 and 544 occur,
set

f(x) =


g(y1y2), x = u1;

t, x = y1u1, and t ∈ Cg〈y1〉\
{g(y1), g(y1y2), g(y1yn)};

g(x), otherwise.

Then Cf 〈y1〉 = Cg〈y1〉 due to f(y1u1) ∈ Cg〈y1〉 \
{g(y1), g(y1y2), g(y1yn)}, and thus, Cf 〈y1〉 6= Cf 〈y2〉 and
Cf 〈y1〉 6= Cf 〈yn〉. Moreover, it follows from Corollary 7
that Cf 〈y1〉 6= Cf 〈u1〉. Thus, χast(U) = 5.

For k = 2, P̃k+1 = y1u1u2. Base on k = 1 above, d(y1) =
3 and d(u1) = 1, so we get 4 ≤ |Cg〈y1〉| ≤ 5, |Cg〈u1〉| = 3.
We then color u1u2 and u2. Now, |Cg〈y1〉| and |Cg〈u1〉| have
2 combinations: 43 (i.e., |Cg〈y1〉| = 4 and |Cg〈u1〉| = 3) and
53.

If 43 occurs, then

f(x) =


g(y1u1), x = u2;

t, x = u1u2, and t ∈ {1, 2, 3, 4, 5}\
Cg〈y1〉;

g(x), otherwise.

Thus, Cf 〈y1〉 6= Cf 〈u1〉 and |Cf 〈u1〉| = 4 due to
f(u1u2) ∈ {1, 2, 3, 4, 5} \ Cg〈y1〉. Note that |Cf 〈u2〉| = 3,
so we have Cf 〈u1〉 6= Cf 〈u2〉.

If 53 occurs, set

f(x) =


g(y1u1), x = u2;

t, x = u1u2, and t ∈ {1, 2, 3, 4, 5}\
Cg〈u1〉;

g(x), otherwise.

Then, it follows from f(u1u2) ∈ {1, 2, 3, 4, 5} \ Cg〈u1〉
that |Cf 〈u1〉| = 4. Besides, |Cf 〈y1〉| = 5 and |Cf 〈u2〉| =
3. Thus, Cf 〈y1〉 6= Cf 〈u1〉 and Cf 〈u1〉 6= Cf 〈u2〉. Hence
χast(U) = 5.

For k ≥ 3, we prove the conclusion by induction on ν ≥ 6.
If ν = 6, then we have n = 3, it is obvious that χast(U) = 5.
Assume that the conclusion is true for the unicyclic graphs
with fewer than ν vertices. Choosing a pendant vertex v of U
such that dU (v,C) = max{dU (x,C)|x ∈ V (U), dU (x) =
1} and v ∼ w ∼ z ∼ s. Suppose U

′
= U − {v, w}, then by

assumption, U
′

has a 5 − AV SDTC f
′
. Let f

′
: V (U) ∪

E(U)→ {1, 2, 3, 4, 5}. Then we set

′
(s), x

f
′
(sz), x = ;

=

f
′
(zw), x = v;

f
′
(x), otherwise.

Because f(zw) = f
′
(s) and f(w) = f

′
(sz) we have

Cf ′ 〈z〉 = Cf 〈z〉 and |Cf 〈z〉| = 3, and further get Cf 〈s〉 6=
Cf 〈z〉. In addition, from f(wv) ∈ {1, 2, 3, 4, 5}\Cf ′ 〈z〉 and
f(v) = f

′
(zw) we know that |Cf 〈w〉| = 4 and Cf 〈z〉 6=

Cf 〈w〉. Note that |Cf 〈v〉| = 3. So we have Cf 〈w〉 6= Cf 〈v〉.
Thus, χast(U) = 5.

Subcase 2.2. U has at least two non-adjacent vertices with
maximum degree. From Lemma 2 we know that χast(U) ≥
4. For convenience, we denote by C = y1y2 · · · yny1 the
basic cycle of U , p̃k+1 = uu1u2 · · ·uk is a I-path or II-
path, where d(u) = 3. Assume by contradiction that, U has
a 4−AV SDTC f : V (U) ∪ E(U)→ {1, 2, 3, 4}.

Subcase 2.2.1. n = 4.
Without loss of generality, we assume that d(y1) =

d(y3) = 3, f(y1) = 1, f(y2) = 2, f(y1y2) = 3. According
to d(y1) = d(y3) = 3 we have |Cf 〈y1〉| = |Cf 〈y3〉| = 4.
By Lemma 5, |Cf 〈y2〉| = |Cf 〈y4〉| = 3. Thus f(y2y3) = 1,
f(y3) = 3. If Cf 〈y4〉 = Cf 〈y2〉 = {1, 2, 3}, then f(y4) = 2,
f(y1y4) = 3, further we know f(y1y4) = f(y1y2) = 3, a
contradiction. So Cf 〈y2〉 6= Cf 〈y4〉, it means that f(y3y4) =
4, or f(y4) = 4, or f(y1y4) = 4.
• If f(y3y4) = 4, then f(y1y4) = 2, we further get
|Cf 〈y4〉| = 4, thus, it is a contradiction because
Cf 〈y4〉 = Cf 〈y3〉.

• If f(y4) = 4, then f(y3y4) = 2, which leads to
|Cf 〈y4〉| = 4, a contradiction.

• If f(y1y4) = 4, then f(y4) = 2, so |Cf 〈y4〉| = 4, it
also a contradiction.

Subcase 2.2.2. n = 10.
We assume that U has only two maximum degree ver-

tices. Without loss of generality, let d(y1) = d(y3) = 3,
f(y1) = 1, f(y2) = 2, f(y1y2) = 3. By Lemma 5, we
have |Cf 〈yi〉| = 3, i ≡ 0 (mod 2); |Cf 〈yi〉| = 4, i ≡ 1
(mod 2). From |Cf 〈y2〉| = 3 we know Cf 〈y2〉 = {1, 2, 3},
then f(y2y3) = 1, f(y3) = 3. We distinct two steps to
deduce a contradiction.

Step 1: suppose Cf 〈y4〉 = Cf 〈y2〉 = {1, 2, 3}, then
f(y3y4) = 2, f(y4) = 1, f(y4y5) = 3, f(y5) = 2. We
have f(y5y6) = 4 or f(y6) = 4 since |Cf 〈y5〉| = 4.
Similar to the proof as Subcase 2.1.2 of Theorem 9 we get
Cf 〈y4〉 6= Cf 〈y6〉. Hence, it suggests that Cf 〈y6〉 = {1, 2, 4}
or {2, 3, 4}.
• If Cf 〈y6〉 = {1, 2, 4}, then f(y6y7) = 2. According

to Subcase 2.1.2 of Theorem 9, we can obtain that
Cf 〈y4〉, Cf 〈y6〉, Cf 〈y8〉 and Cf 〈y10〉 are different
from each other. And from f(y1) = 1 we know
Cf 〈y10〉 = {1, 3, 4}, Cf 〈y8〉 = {2, 3, 4}. Thus,
f(y1y10) = 4, f(y10) = 3, f(y9y10) = 1, f(y9) = 4,
and we further have f(y7y8) = 4. According to
f(y6y7) = 2 and Cf 〈y8〉 = {2, 3, 4} we get f(y8) = 2,
f(y7) = 3, it results Cf 〈y6〉 = {1, 2, 3, 4}, a contra-
diction. Hence, Cf 〈y2〉 6= Cf 〈y4〉.

• If Cf 〈y6〉 = {2, 3, 4}, we can also get Cf 〈y2〉 6=
Cf 〈y4〉.

f 〈y6〉 = Cf 〈y2〉 = {1, 2, 3}, according
f y|Cf 〈y3〉| = C 〈 5〉| = 4, it is easy to see that f(y4) = 4.

|Cf 〈y4〉|wv f(x) =

f
t, x

= z

w

w;

and t ∈ {1, 2, 3, 4, 5} \ Cf ′ 〈z〉;
t
F
o
ro

S

m

tep 2: suppo
|
=

se

3

C

we have f(y3y4) = 2, f(y4y5) = 3,
f(y5) = 2, so Cf 〈y4〉 = {2, 3, 4}. And because Cf 〈y6〉 =
{1, 2, 3} we get f(y5y6) = 1, f(y6) = 3, f(y6y7) = 2,
f(y7) = 1. From |Cf 〈y8〉| = 3 we know f(y8y9) = 1.
However, since |Cf 〈y10〉| = 3 and f(y1) = 1, f(y9y10) =
1, it also a contradiction because f(y8y9) = f(y9y10). So
Cf 〈y2〉 6= Cf 〈y6〉.

In the same way, we can obtain Cf 〈y2〉, Cf 〈y4〉, Cf 〈y6〉,
Cf 〈y8〉 and Cf 〈y10〉 are different from each other. But
C3

4 = 4 < 5, there is at least one pair of vertices with the
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same color set, a contradiction. Analogously, we can prove
that χast(U) ≥ 5 if there are three, four and five maximum
vertices on the basic cycle C.

Subcase 2.2.3. When either n is odd, or n ≥ 6 (n 6= 10)
is even and U has a I− even path, the proof is similar to
Subcases 2.1.3 and 2.1.4, respectively.

Subcase 2.2.4. n ≥ 6 (n 6= 10) is even and U has a II−
odd path.

Let one of such paths be P̃k+1 = uu1u2 · · ·uk, where
d(u) = d(uk) = 3, d(ui) = 2, i = 1, 2, · · · , k − 1, k ≡ 1
(mod 2). Without loss of generality, we assume that u = y1.
Since d(y1) = d(uk) = 3, |Cf 〈y1〉| = |Cf 〈uk〉| = 4. By
Lemma 5, then we obtain |Cf 〈ui〉| = 3, i ≡ 1 (mod 2),
and |Cf 〈ui〉| = 4, i ≡ 0 (mod 2). Hence, |Cf 〈uk−1〉| =
|Cf 〈uk〉| = 4, a contradiction.

From all above, thus χast(U) ≥ 5. Next we prove
χast(U) = 5 by induction on ν ≥ 6.

If ν = 6, then we have n = 4, it is obvious that
χast(U) = 5. Now, we suppose that the conclusion is true
for the unicyclic graphs with fewer than ν vertices.

Choosing a pendant vertex v of U such thatdU (v,C) =
max{dU (x,C)|x ∈ V (U), dU (x) = 1}, we suppose that w
is the neighbor of v. Let NU (w) = {v, z} if dU (w) = 2,
where 2 ≤ dU (z) ≤ 3; or NU (w) = {v, z, u} if dU (w) = 3,
where dU (z) = 2 and dU (u) = 1. Suppose U

′
= U − v,

then by assumption, U
′

has 5−AV SDTC f .
Since ∀x ∈ V (U ′), |Cf ′ 〈x〉| ≥ 3, we have 3 ≤

|Cf ′ 〈w〉| ≤ 5 and 3 ≤ |Cf ′ 〈z〉| ≤ 5.
(1) When dU ′ (w) = 1, we have |Cf ′ 〈w〉| = 3, and further

get 4 ≤ |Cf ′ 〈z〉| ≤ 5. Now, dU ′ (w), dU ′ (z), |Cf ′ 〈w〉|
and |Cf ′ 〈z〉| have 4 combinations: 1234, 1235, 1334
and 1335.

(2) When dU ′ (w) = 2, we have 4 ≤ |Cf ′ 〈w〉| ≤ 5,
and further get dU ′ (z) = 2 since no two maximum
degree vertices are adjacent. Thus, dU ′ (w), dU ′ (z),
|Cf ′ 〈w〉| and |Cf ′ 〈z〉| have 5 combinations: 2243,
2244, 2245, 2253 and 2254 but 2255. If 2255 occur,
then |Cf ′ 〈w〉| = |Cf ′ 〈z〉| = 5, which results in
Cf ′ 〈w〉 = Cf ′ 〈z〉 in U

′
, a contradiction.

If 1234 and 1334 occur, set
′
(wz), x ;

=

f
′
(x), otherwise.

From |Cf ′ 〈w〉| = 3, |Cf ′ 〈z〉| = 4 and f(wv) ∈
{1, 2, 3, 4, 5} \ Cf ′ 〈z〉 we know that Cf 〈w〉 6= Cf ′ 〈z〉 and
|Cf 〈w〉| = 4. In addition, by Cf ′ 〈z〉 = Cf 〈z〉 we have
Cf 〈w〉 6= Cf 〈z〉, meanwhile, Cf 〈w〉 6= Cf 〈v〉 due to
|Cf 〈v〉| = 3.

If 2243, 2245, 2253 and 2254 occur, set


′
(wz), x ;

=
f(x) =


f

t, x

= v

wv, and t ∈ Cf ′ 〈w〉\
{f ′

(w), f
′
(wz), f

′
(wu)};

f
′
(x), otherwise.

Then we get Cf 〈w〉 = Cf ′ 〈w〉 because f(wv) ∈ Cf ′ 〈w〉\
′ ′ ′

these, we also have Cf 〈w〉 6= Cf 〈v〉 and Cf 〈w〉 6= Cf 〈u〉
by Corollary 7

{f (w), f (wz), f (wu)}, and so Cf 〈w〉 6= Cf 〈z〉. Besides

.

If 1235, 1335 and 2244 occur, set
′
(wz), x ;

=f(x) =


f

t, x

= v

wv and t ∈ {1, 2, 3, 4, 5} \ Cf ′ 〈w〉;
f

′
(x), otherwise.

Hence, we have ||Cf 〈w〉|−|Cf 〈z〉|| = 1 since ||Cf ′ 〈w〉|−
|Cf ′ 〈z〉|| = 0, 2 and f(wv) ∈ {1, 2, 3, 4, 5} \ Cf ′ 〈w〉, and
so, Cf 〈w〉 6= Cf 〈z〉. Also by Corollary 7, one can get
Cf 〈w〉 6= Cf 〈v〉 and Cf 〈w〉 6= Cf 〈u〉. Thus, U admits a
5−AV SDTC.

Subcase 2.3. n ≥ 6 (n 6= 10) is even and U doesn’t
contain both I-even paths and II-odd paths.

From Lemma 2 we know that χast(U) ≥ 4. We
next prove χast(U) = 4 by considering dU (v,C) =
max{dU (x,C)|x ∈ V (U), dU (x) = 1}.

When dU (v,C) = 1, we have d(yi) = 3 for some i,
we denote by yiui the pendant edges of yi. By Lemma 3
χast(C) = 4 if n ≥ 6 (n 6= 10) is even. For convenience,
we may suppose g : V (C) ∪ E(C) → {1, 2, 3, 4}. Base on
the coloring of C, we then color all pendant edges of U . Let

f(x) =


g(yiyi+1), x = ui;

t, x = yiui, and t ∈ Cg〈yi〉\
{g(yi), g(yiyi+1), g(yi−1yi)};

g(x), otherwise

where the subscripts are taken modulo n.
Now, we have Cf 〈yi〉 = Cg〈yi〉 due to f(ui) = g(yiyi+1)

and f(yiui) ∈ Cg〈yi〉 \ {g(yi), g(yiyi+1), g(yi−1yi)}, and
thus, Cf 〈yi〉 6= Cf 〈yi+1〉. Furthermore, by Corollary 7 it
deduces that Cf 〈yi〉 6= Cf 〈ui〉. So we get χast(U) = 4.

Clearly, dU (v,C) = 2 is impossible since G has no
adjacent vertices with maximum degree, which will lead to
a I-even paths in G, a contradiction.

When dU (v,C) ≥ 3, we prove the conclusion by induction
on ν ≥ 7. For ν = 7, we have n = 6, it is obvious that
χast(U) = 4. Assume that the conclusion is true for the uni-
cyclic graphs with fewer than ν vertices. We select a pendant
vertex v of U such that dU (v,C) = max{dU (x,C)|x ∈
V (U), dU (x) = 1} and v ∼ w ∼ z ∼ s, and then distinct

NU (w) = {v, z}
where dU (z U

′
U − { , then

by assumption,
′

has a 4
t  

ing
(1) If dU (w) = 2, e

.

f(x) =


f

, x

= v

wv and t ∈ {1, 2, 3, 4, 5} \ Cf ′ 〈z〉;

two cases in the follow

) = 2
U

w
. Suppose

denote by

−
=
AV SDTC f

v,w}
′

. Let
f

′
: V (U) ∪ E(U)→ {1, 2, 3, 4}. Then we set

′
(s), x zw

f
′
(sz), x = ;

=

f

w  f(x) =

f
t, x

=

w

v

;

and t ∈ {1, 2, 3, 4}\Cf ′ 〈z〉;
′
(zw), x = v;

f
′
(x), otherwise.

(Since f


zw) = f

′
(s) and f(w) = f

′
(sz) we have

Cf ′ 〈z〉 = Cf 〈z〉 and |Cf 〈z〉| = 3, and further get
Cf 〈s〉 6= Cf 〈z〉. In addition, it follows from f(wv) ∈
{1, 2, 3, 4}\ f ′ 〈z〉 and f(v) = f

′
(zw) that |Cf 〈w〉| =

4 and Cf 〈z
C
〉 6= Cf 〈w〉. We notice that |Cf 〈v〉| = 3,

and so Cf 〈w〉 6= Cf 〈v〉.
(2) If dU (w) = 3, we denote by NU (w) = {v, z, u} where

dU (z) = 2 and dU (u) = 1. Suppose U
′

= U − v,
then by assumption, U

′
has a 4 − AV SDTC f

′
.
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|Cf ′ 〈z〉| have just one combination 2243 because

Since dU (w) = 3, dU ′ (w) = 2. Then we have 

|Cf ′ 〈w〉| = 4. Thus, dU ′ (w), dU ′ (z), |Cf ′ 〈w〉| and
2244

results in Cf ′ 〈z〉 = Cf ′ 〈w〉 in U
′
. Hence, for the case

of 2243, we set

f(x) =


f

′
(wz), x = v;

t, x = wv, and t ∈ Cf ′ 〈w〉\
{f ′

(w), f
′
(wz), f

′
(wu)};

f
′
(x), otherwise.

Then Cf 〈w〉 = Cf ′ 〈w〉 due to f(wv) ∈ Cf ′ 〈w〉 \
{f ′

(w), f
′
(wz), f

′
(wu)}, and thus, Cf 〈w〉 6= Cf 〈z〉.

Furthermore, by Corollary 7 it deduces that Cf 〈w〉 6=
Cf 〈v〉 and Cf 〈w〉 6= Cf 〈u〉.

Together with above, U has a 4 − AV SDTC, and thus
the proof follows.
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