
 

  

Abstract—As stated in the no-free-lunch (NFL) theory, there 

is not any optimizer suitable for all problems. This circumstance 

becomes the motivation of introducing a new swarm-based 

metaheuristic called best couple algorithm (BCA). BCA is 

constructed as a swarm-based metaheuristic where the swarm is 

split into two sub-swarms. There are two types of splitting. The 

first split is dividing the swarm into the first half and second half 

of swarms. The second split is dividing the swarm into the odd 

indexed swarm members and even indexed swarm members. 

There is a sub swarm leader representing the highest quality 

swarm member in every sub swarm. There are two sequential 

searches for every split: the motion toward the middle between 

two sub swarm leaders and the motion relative to the middle 

between two randomly picked sub swarm members. In the 

benchmark assessment, BCA is compared with total interaction 

algorithm (TIA), coati optimization algorithm (COA), language 

education algorithm (LEO), osprey optimization algorithm 

(OOA), and walrus optimization algorithm (WaOA). The result 

shows that BCA is superior to these five contenders as it is better 

than TIA, COA, LEO, OOA, and WaOA in 18, 18, 16, 18, and 

18 functions respectively out of 23 functions. 

 

Index Terms—swarm intelligence, metaheuristic, stochastic 

process, random motion. 

 

I. INTRODUCTION 

METAHEURISTIC can be found in many studies 

focusing on optimization. Particle swarm optimization 

(PSO) has been utilized to optimize the fresh product 

distribution [1]. PSO also has been utilized to improve the 

accuracy for medical image retrieval [2]. Northern goshawk 

optimization (NGO) has been utilized in power systems with 

distributed generators [3]. Ant colony optimization has been 

combined with independent component analysis to reduce the 

noise in the night vision image [4]. Grey wolf optimization 

(GWO) has been utilized in DC-DC converters design to 

minimize the operational losses [5], travelling salesman 

problem [6], smart grid [7], and so on. A variant of ant colony 

optimization (ACO) named max-min ant system (MMAS) 

has been utilized to solve the capacitated vehicle routing 

problem (CVRP) where its objective is minimizing the total 

operational cost [8]. The multi objective artificial bee colony 

(MOABC) and multi objective particle swarm optimization 

(MOPSO) have been utilized to develop the optimal design 

of low noise amplifier (LNA) [9]. Genetic algorithm (GA) 

has been utilized to determine the shortest path i.e., best 

 
 

packet route in the computer network [10]. GA was also used 

to recognize the Arabic name entity on the social media [11]. 

In the cloud system, GA has been combined with 

heterogeneous integrated load balancing (HILB) algorithm to 

optimize the task scheduling with the objective is to minimize 

the make-span [12]. 

Nowadays, there are a lot of metaheuristics already exist. 

Most of them are swarm-based metaheuristics. Many of them 

use metaphors, especially the animal behaviors like Komodo 

mlipir algorithm (KMA) [13], stochastic Komodo algorithm 

[14], coati optimization algorithm (COA) [15], zebra 

optimization algorithm (ZOA) [16], osprey optimization 

algorithm (OOA) [17], walrus optimization algorithm 

(WaOA) [18], whale optimization algorithm (WOA) [19], 

golden jackal optimization (GJO) [20], marine predator 

algorithm (MPA) [21], clouded leopard optimization (CLO) 

[22], Siberian tiger optimization (STO) [23], pelican 

optimization algorithm (POA) [24], northern goshawk 

optimization (NGO) [25], reptile search algorithm (RSA) 

[26], chimp optimization algorithm (ChOA) [27], squirrel 

search optimization (SSO) [28], green anaconda optimization 

(GAO) [29], and so on. Some metaheuristics are inspired by 

the human or social behavior, such as modified social forces 

algorithm (MSFA) [30], human conception optimization 

(HCO) [31], migration algorithm (MA) [32], language 

education optimization (LEO) [33], chef-based optimization 

algorithm (CBOA[34]), election-based optimization 

algorithm (EBOA) [35], drawer algorithm (DA) [36], mother 

optimization algorithm (MOA) [37], and so on. Some 

metaheuristics do not use metaphors, such as Nizar 

optimization algorithm (NOA) [38], total interaction 

algorithm (TIA) [39], average and subtraction-based 

optimization (ASBO) [40], golden search optimization 

(GSO) [41], attack leave optimization (ALO) [42], fully 

informed search algorithm (FISA) [43], and so on. 

Despites the massive development of metaheuristics, 

especially the swarm-based metaheuristics, there are three 

considerations regarding it. First, the existence of no-free-

lunch (NFL) theory becomes the main motivation of the 

development of a lot of metaheuristics. NFL states that there 

are not any generic solutions for all problems. Some 

metaheuristics may be superior to solve some problems but 

inferior in other problems [43]. This theorem also becomes 

the motivation to develop better metaheuristic than the 

previous or existing ones. Moreover, it also becomes the 

motivation to develop a new metaheuristic that can tackle the 

weakness of the previous ones. Second, almost all swarm-

based metaheuristics do not perform swarm split or 

segregation of roles. It means that all agents perform the same 
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search strategy or move in a single flow. Only a few 

metaheuristics like KMA [13] and COA [15] performs the 

swarm splits. In KMA [13], the swarm is split based on the 

quality of the swarm members while in COA [15], the swarm 

is split without considering the quality of the swarm 

members. Third, many swarm-based metaheuristics use the 

best swarm leader as the reference or one of its references. It 

can be seen in many metaheuristics like COA [15], ZOA [16], 

KMA [13], WaOA [18], and so on. Meanwhile, a new 

metaheuristic can be developed by introducing a new 

alternative for reference rather than the best swarm member. 

This work is aimed at introducing a new swarm-based 

called as best-couple algorithm (BCA) to address three 

considerations previously explained. The innovation and 

novelty of this work are mainly on the swarm split 

mechanism and the introduction of new references used in the 

directed search which are the mixture of entities from each 

sub swarm. Moreover, the scientific contributions of this 

paper are as follows. 

- This work introduces two approaches of swarm split 

where the swarm is split into two equal size sub-swarms 

without performing sorting based on the quality of swarm 

members. In both splits, the swarm members’ index 

becomes the inly consideration. 

- This work introduces two novel references for the directed 

search. The first reference is the mixture of sub swarm 

leaders while the second reference is the mixture of two 

randomly selected sub swarm members. 

- There are three assessments to investigate the 

performance of BCA. The benchmark assessment is 

performed to compare the performance of BCA with other 

new metaheuristics. The individual search assessment is 

performed to measure the performance of each search in 

BCA. 

- Both assessments use 23 classic functions representing 

the problems due to the coverage of these functions. 

- The third assessment is conducted by implementing BCA 

to tackle the ELD problem with 13 generating units that 

represent the constrained practical problem. 

The rest of this paper is arranged as follows. The research 

method is explained in section two. It consists of the 

description of the proposed model whether the concept and 

formalization. Then section three consists of the assessment 

result. Section four discusses in-depth analysis regarding the 

result, findings, limitations, and computational complexity. 

In the end, section five summarizes the conclusion and tracks 

for future studies. 

II. MODEL 

The fundamental concept of BCA starts with the swarm 

split strategy. As a swarm-based metaheuristic, BCA is 

constructed as a collection of autonomous agents called 

swarm. It means that these autonomous agents are also called 

swarm members. This swarm is split into two sub-swarms 

where the size of both sub-swarms is equal. In BCA there are 

two types of splits. The swarm member index becomes the 

only consideration in both splits. In the first split, the swarm 

is split based on the index order. The first sub swarm consists 

of the first half of swarm members while the second sub 

swarm consists of the second half of swarm members. In the 

second split, the swarm is split based on the odd member 

index and the even member index. All swarm members 

whose index is odd are included into the first sub swarms. On 

the other hand, all swarm members whose index is even are 

included into the second sub swarms. The illustration of these 

splits is in Fig. 1. 

 

 
(a) 

 
(b) 

Fig. 1. Swarm split: (a) first swarm split and (b) second swarm split. 

 

 
(a) 

 
(b) 

Fig. 2. Searching: (a) motion toward the middle between two sub swarm 

leaders and (b) motion relative to the middle between two randomly selected 

sub swarm members 

 

There are two searches performed by each swarm member 

in every split. The first search is the motion toward the middle 

between two sub-swarm leaders. The sub swarm leader is the 

sub swarm member whose quality is the highest among the 

related sub swarm. The second search is the motion relative 

to the middle between two randomly picked sub-swarm 

members. In this second search a swarm member is randomly 
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picked from each sub swarm. Then, the middle location or 

solution between these two randomly picked swarm members 

are calculated. Then, the swarm member will move relative 

to this reference. The direction depends on the comparative 

quality between the reference and the swarm member. If this 

reference is better than the swarm member, then the swarm 

member moves toward the reference. Otherwise, the swarm 

member avoids or moves away from this reference. The 

illustration of these two searches is presented in Fig. 2. 

These two searches are interpreted into four sequential 

searches. The first search is the motion toward the middle of 

two sub-swarm leaders from the first split. The second search 

is the motion relative to the middle of two randomly picked 

sub swarm members from the first split. The third search is 

the motion toward the middle of two sub swarm leaders from 

the second split. The fourth search is the motion relative to 

the middle of two randomly picked sub swarm members from 

the second split.  

This fundamental concept of BCA is then transformed into 

the algorithm of BCA. The formal presentation of BCA is 

found in algorithm 1. Meanwhile, the mathematical 

formulation following this algorithm is presented in (1) to 

(19). Below are the annotations used in this formalization. 

 

a swarm member 

A swarm 

A11, A12 the first and second sub swarms from the first 

split 

A21, A22 the first and second sub swarms from the 

second split 

abe swarm leader 

abe11, abe12 sub swarm leaders from the first split 

abe21, abe22 sub swarm leaders from the second split 

are1, are2, 

are3, are4 

the first to fourth references 

blo, bhi lower boundary and higher boundary 

c candidate 

d dimension 

f objective function 

i, j index for swarm member and index for 

dimension 

r1 real uniform random number [0,1] 

r2 integer uniform random number [1,2] 

t iteration 

tm maximum iteration 

 

The mathematical formulation starts with the declaration of 

the sub swarms. It is presented in (1) to (4). Equations (1) and 

(2) represent the first swarm split. Meanwhile, (3) and (4) 

represent the second swarm split. This process is performed 

before the initialization phase. 

 

𝐴11 = {𝑎𝑖|𝑎𝑖 ∈ 𝐴 ∧ 1 ≤ 𝑖 ≤
𝑛(𝐴)

2
}          (1) 

 

𝐴12 = {𝑎𝑖|𝑎𝑖 ∈ 𝐴 ∧
𝑛(𝐴)

2
+ 1 ≤ 𝑖 ≤ 𝑛(𝐴)}       (2) 

 

𝐴21 = {𝑎𝑖|𝑎𝑖 ∈ 𝐴 ∧ 𝑖 = 𝑜𝑑𝑑}            (3) 

 

𝐴22 = {𝑎𝑖|𝑎𝑖 ∈ 𝐴 ∧ 𝑖 = 𝑒𝑣𝑒𝑛}           (4) 

 

Initialization phase is presented in lines 3 to 7 in algorithm 1. 

Meanwhile, the mathematical formulation following the 

initialization phase is presented in (5) to (10). Equation (5) 

states that the swarm members are uniformly distributed 

within the search space in the initialization phase. Then, the 

sub-swarm leaders are updated using (6) to (9). Equations (6) 

and (7) are used to update the sub swarm leaders in the first 

split while (8) and (9) are used to update the sub swarm 

leaders in the second split. The swarm leader is updated by 

using (10) after the updating process of sub swarm leaders 

ends. 

 

algorithm 1: best couple algorithm (BCA) 

1 begin 

2   define all sub swarms using (1) to (4) 

3   for i=1 to n(A) 

4     initialize swarm member using (5)  

5     calculate sub swarm leaders using (6) to (9) 

6     calculate swarm leader using (10) 

7   end 

8   for t=1 to tm 

9     perform first search using (11) to (13) 

10     perform second search using (14), (15), (13) 

11     perform third search using (16), (17), (13) 

12     perform fourth search using (18), (19), (13) 

13     update sub swarm leader using (6) to (9) 

14     update swarm leader using (10) 

15   end for 

16 end 

 

𝑎𝑖,𝑗 = 𝑏𝑙𝑜,𝑗 + 𝑟1(𝑏ℎ𝑖,𝑗 − 𝑏𝑙𝑜,𝑗)           (5) 

 

𝑎𝑏𝑒11
′ = {

𝑎𝑖 , 𝑓(𝑎𝑖) < 𝑓(𝑎𝑏𝑒11) ∧ 1 ≤ 𝑖 ≤
𝑛(𝐴)

2

𝑎𝑏𝑒11, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (6) 

 

𝑎𝑏𝑒12
′ = {

𝑎𝑖 , 𝑓(𝑎𝑖) < 𝑓(𝑎𝑏𝑒12) ∧
𝑛(𝐴)

2
+ 1 ≤ 𝑖 ≤ 𝑛(𝐴)

𝑎𝑏𝑒12, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (7) 

 

𝑎𝑏𝑒21
′ = {

𝑎𝑖 , 𝑓(𝑎𝑖) < 𝑓(𝑎𝑏𝑒21) ∧ 𝑖 = 𝑜𝑑𝑑
𝑎𝑏𝑒21, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (8) 

 

𝑎𝑏𝑒22
′ = {

𝑎𝑖 , 𝑓(𝑎𝑖) < 𝑓(𝑎𝑏𝑒22) ∧ 𝑖 = 𝑒𝑣𝑒𝑛
𝑎𝑏𝑒22, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (9) 

 

𝑎𝑏𝑒
′ = {

𝑎𝑖 , 𝑓(𝑎𝑖) < 𝑓(𝑎𝑏𝑒)
𝑎𝑏𝑒 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

             (10) 

 

The first and second searches are formalized using (11) to 

(15). Equation (11) is used to determine the middle between 

two sub swarm leaders of the first split. Equation (12) 

represents the motion toward the first reference. Equation 

(13) represents the strict acceptance for the updating process 

of the corresponding swarm member. Equation (14) 

represents the random selection of sub swarm members and 

the generation of the second reference which is in the middle 

between these two randomly selected sub swarm members.  

 

𝑎𝑟𝑒1,𝑗 =
𝑎𝑏𝑒11,𝑗+𝑎𝑏𝑒12,𝑗

2
               (11) 
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𝑐𝑖,𝑗 = 𝑎𝑖,𝑗 + 𝑟1(𝑎𝑟𝑒1,𝑗 − 𝑟2𝑎𝑖,𝑗)           (12) 

 

𝑎𝑖
′ = {

𝑐𝑖 , 𝑓(𝑐𝑖) < 𝑓(𝑎𝑖)
𝑎𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

              (13) 

 

𝑎𝑟𝑒2,𝑗 =
𝑎𝑟𝑎11,𝑗+𝑎𝑟𝑎12,𝑗

2
, 𝑎𝑟𝑎11 = 𝑈(𝐴11) ∧ 𝑎𝑟𝑎12 = 𝑈(𝐴12)  

                      (14) 

 

𝑐𝑖,𝑗 = {
𝑎𝑖,𝑗 + 𝑟1(𝑎𝑟𝑒2,𝑗 − 𝑟2𝑎𝑖,𝑗), 𝑓(𝑎𝑟𝑒2) < 𝑓(𝑎𝑖)

𝑎𝑖,𝑗 + 𝑟1(𝑎𝑖,𝑗 − 𝑟2𝑎𝑟𝑒2,𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (15) 

 

Equations (16) to (19) are used for the third and fourth 

searches. Equation (16) represents the generation of the third 

reference that is in the middle between two sub swarm leaders 

in the second split. Equation (17) represents the motion 

toward the third reference. Equation (18) is used to generate 

the fourth reference which is in the middle between two 

randomly selected sub swarm members from the second split. 

Equation (19) represents the motion relative to the fourth 

reference.  

 

𝑎𝑟𝑒3,𝑗 =
𝑎𝑏𝑒21,𝑗+𝑎𝑏𝑒22,𝑗

2
               (16) 

 

𝑐𝑖,𝑗 = 𝑎𝑖,𝑗 + 𝑟1(𝑎𝑟𝑒3,𝑗 − 𝑟2𝑎𝑖,𝑗)           (17) 

 

𝑎𝑟𝑒4,𝑗 =
𝑎𝑟𝑎21,𝑗+𝑎𝑟𝑎22,𝑗

2
, 𝑎𝑟𝑎21 = 𝑈(𝐴21) ∧ 𝑎𝑟𝑎22 = 𝑈(𝐴22)  

                      (18) 

 

𝑐𝑖,𝑗 = {
𝑎𝑖,𝑗 + 𝑟1(𝑎𝑟𝑒4,𝑗 − 𝑟2𝑎𝑖,𝑗), 𝑓(𝑎𝑟𝑒4) < 𝑓(𝑎𝑖)

𝑎𝑖,𝑗 + 𝑟1(𝑎𝑖,𝑗 − 𝑟2𝑎𝑟𝑒4,𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (19) 

III. RESULT 

The performance of BCA is assessed in three ways. The 

first assessment is called benchmark assessment. Its objective 

is to compare the performance of BCA to the performance of 

the existing metaheuristics. In other words, the benchmark 

assessment is performed to measure the improvement 

provided by the proposed BCA.  

 

TABLE I  
23 BENCHMARK FUNCTIONS 

No Function Type Dimension Problem Space Global Optimal 

1 Sphere HDUF 40 [-100, 100] 0 

2 Schwefel 2.22 HDUF 40 [-100, 100] 0 
3 Schwefel 1.2 HDUF 40 [-100, 100] 0 

4 Schwefel 2.21 HDUF 40 [-100, 100] 0 

5 Rosenbrock HDUF 40 [-30, 30] 0 
6 Step HDUF 40 [-100, 100] 0 

7 Quartic HDUF 40 [-1.28, 1.28] 0 

8 Schwefel HDMF 40 [-500, 500] -418.9 x dim 
9 Ratsrigin HDMF 40 [-5.12, 5.12] 0 

10 Ackley HDMF 40 [-32, 32] 0 

11 Griewank HDMF 40 [-600, 600] 0 
12 Penalized HDMF 40 [-50, 50] 0 

13 Penalized 2 HDMF 40 [-50, 50] 0 

14 Shekel Foxholes FDMF 2 [-65, 65] 1 
15 Kowalik FDMF 4 [-5, 5] 0.0003 

16 Six Hump Camel FDMF 2 [-5, 5] -1.0316 

17 Branin FDMF 2 [-5, 5] 0.398 
18 Goldstein-Price FDMF 2 [-2, 2] 3 

19 Hartman 3 FDMF 3 [1, 3] -3.86 

20 Hartman 6 FDMF 6 [0, 1] -3.32 
21 Shekel 5 FDMF 4 [0, 10] -10.1532 

22 Shekel 7 FDMF 4 [0, 10] -10.4028 

23 Shekel 10 FDMF 4 [0, 10] -10.5363 

 
TABLE II  

SIMULATION RESULT FOR HIGH DIMENSION UNIMODAL FUNCTIONS (HDUF) 

F Parameter TIA [39] COA [15] LEO [33] OOA [17] WaOA [18] BCA 

1 mean 3.8137 3.6134x102 7.6376 1.0633x102 2.5859 0.0000 

std deviation 0.9173 2.0181x102 3.9696 4.1079x101 2.3127 0.0000 

mean rank 3 6 4 5 2 1 
2 mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

std deviation 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

mean rank 1 1 1 1 1 1 
3 mean 7.1323x102 1.6017x104 3.4843x103 1.1729x104 1.1044x103 3.8542x101 

std deviation 6.3083x102 8.1915x103 2.8459x103 8.1109x103 7.4968x102 4.8111x101 

mean rank 2 6 4 5 3 1 
4 mean 1.7630 1.6522x101 2.3610 7.5534 1.4771 0.0031 

std deviation 0.3904 2.7478 0.7188 1.7087 0.6077 0.0011 

mean rank 3 6 4 5 2 1 
5 mean 1.1080x102 3.2822x104 1.1641x102 2.7374x103 6.2537x101 3.8926x101 

std deviation 1.5876x101 2.2998x104 8.2061x101 2.1305x103 1.1207x101 0.0255 

mean rank 3 6 4 5 2 1 
6 mean 8.1432 4.0240x102 1.7381x102 1.2831x102 1.0551x101 7.6143 

std deviation 1.5876 1.4659x102 7.2356x101 5.6214x101 2.0242 0.5987 

mean rank 2 6 5 4 3 1 
7 mean 0.0442 0.1888 0.0350 0.1049 0.0326 0.0095 

std deviation 0.0245 0.0831 0.0173 0.0518 0.0183 0.0059 

mean rank 4 6 3 5 2 1 
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TABLE III  

SIMULATION RESULT FOR HIGH DIMENSION MULTIMODAL FUNCTIONS 

F Parameter TIA [39] COA [15] LEO [33] OOA [17] WaOA [18] BCA 

8 mean -2.1441x103 -3.6980x103 -3.4552x103 -3.3469x103 -3.3674x103 -3.2833x103 
std deviation 3.8170x102 4.9592x102 4.8126x102 5.3624x102 6.6161x102 4.3868x102 

mean rank 6 1 2 4 3 5 

9 mean 3.2342x101 1.3497x102 2.0750x102 1.2943x102 1.1989x101 0.9084 
std deviation 2.1206x101 5.0442x101 6.5116x101 5.3624x101 9.0926 4.0301 

mean rank 3 5 6 4 2 1 

10 mean 0.7889 5.3017 1.1129 3.4781 0.6211 0.0006 
std deviation 0.1514 0.8213 0.3514 0.5467 0.2595 0.0002 

mean rank 3 6 4 5 2 1 

11 mean 0.6680 4.6471 0.8890 1.9218 0.4814 0.0022 
std deviation 0.1806 1.8843 0.1961 0.4108 0.2337 0.0068 

mean rank 3 6 4 5 2 1 

12 mean 0.5882 6.1303 0.9989 2.1993 0.8921 0.8611 
std deviation 0.1219 1.7803 0.1881 0.7774 0.2023 0.1282 

mean rank 1 6 4 5 3 2 

13 mean 2.9810 3.7357x102 3.7791 8.8116 3.4862 3.1208 

std deviation 0.3026 8.8267x102 0.3730 3.3118 0.2565 0.0960 

mean rank 1 6 4 5 3 2 

 

In the benchmark assessment, BCA is contended with five 

new metaheuristics: TIA, COA, LEO, OOA, and WaOA. All 

these metaheuristics were first introduced in 2023. 

Meanwhile, the second assessment is called individual search 

assessment. Its objective is to evaluate the contribution of 

each search in BCA as BCA is a multi-search metaheuristic. 

In the first assessment, all searches in BCA are active. On the 

other hand, in the second assessment, only one search active 

in each session of simulation. 

A set consisting of 23 functions is chosen representing the 

problem. These functions are clustered into three groups: 

seven high dimension unimodal functions (HDUF), six high 

dimension multimodal functions (HDMF), and ten fixed 

dimension multimodal functions (FDMF). These functions 

were chosen for two reasons. The first reason is this set of 

functions covers various circumstances of problems. It covers 

both unimodal functions and multimodal functions. The 

search space width in these functions also varies from the 

narrow ones to the very large ones. Moreover, the terrain of 

the search spaces also varies from smooth, ripple, to 

ambiguous. These varieties make solving each function with 

single optimizer become more challenging. The second 

reason is that this set of functions is popular in many studies 

proposing new metaheuristic like in KMA [13] or TIA [39], 

besides CEC 2005 [43], CEC-2011 [36], CEC-2017 [37], and 

so on. The detailed description of these functions can be seen 

in Table 1.  

 
TABLE IV  

SIMULATION RESULT FOR FIXED DIMENSION MULTIMODAL FUNCTIONS 

 

 

 

 

 

 

 

  

F Parameter TIA [39] COA [15] LEO [33] OOA [17] WaOA [18] BCA 

14 mean 7.9810 7.2799 7.1527 8.7168 9.0781 6.4432 
std deviation 2.7256 3.4008 3.9438 4.1862 3.9976 3.6199 

mean rank 4 3 2 5 6 1 

15 mean 0.0008 0.0080 0.0024 0.0040 0.0042 0.0007 
std deviation 0.0004 0.0083 0.0034 0.0049 0.0069 0.0005 

mean rank 2 6 3 4 5 1 

16 mean -1.0302 -1.0257 -1.0302 -1.0237 -1.0295 -1.0307 
std deviation 0.0043 0.0050 0.0018 0.0074 0.0040 0.0019 

mean rank 2 5 2 6 4 1 

17 mean 0.4781 0.4147 0.3999 0.4136 0.3996 0.4227 
std deviation 0.2815 0.0247 0.0022 0.0185 0.0019 0.0888 

mean rank 6 4 2 3 1 5 

18 mean 4.9056 5.9285 3.0352 6.8994 9.0201 3.0763 
std deviation 5.7894 7.5027 0.0436 1.6629x101 1.8871x101 0.2106 

mean rank 3 4 1 5 6 2 

19 mean -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 
std deviation 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

mean rank 1 1 1 1 1 1 

20 mean -2.8968 -2.9422 -3.1223 -3.0238 -3.0093 -2.7805 
std deviation 0.2571 0.1652 0.1028 0.1417 0.1429 0.2261 

mean rank 5 4 1 2 3 6 

21 mean -2.9090 -3.0979 -2.6325 -2.2663 -2.6140 -3.6328 
std deviation 1.7543 1.6671 1.2102 0.9645 1.3766 1.1652 

mean rank 3 2 4 6 5 1 
22 mean -3.1173 -3.0939 -2.9231 -2.4745 -2.8865 -4.0279 

std deviation 1.6797 1.4009 1.0576 0.9287 1.6030 1.3824 

mean rank 2 3 4 6 5 1 
23 mean -2.4839 -2.5297 -3.6172 -2.6827 -2.7752 -3.4847 

std deviation 0.5039 0.5775 1.7749 0.9054 1.0683 0.9573 

mean rank 6 5 1 4 3 2 
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In both first and second assessments, both swarm size and 

maximum iteration are set to 10. Due to very low maximum 

iteration, it becomes more difficult to find the acceptable 

solution or quasi optimal solution. This scenario is different 

from many studies where the maximum iteration is set high. 

The result of the first assessment is presented in Table 2 to 

Table 5. Meanwhile, the result of the second assessment is 

presented in Table 6. In Table 6, the best result in every 

function is written in bold font. The decimal point smaller 

than 10-4 is rounded. 

Table 2 indicates that BCA performs well in overcoming 

the high dimension unimodal functions. BCA becomes the 

best performer in all seven HDUFs. It is also the distinct best 

performer for six functions (f1, f3, f4, f5, f6, and f7). Meanwhile, 

all contestants achieve the same result in solving f2. BCA 

achieves the global optimal solution in solving f1 and f2. 

Except in f2, the performance gap between the best performer 

and the worst performer is wide. The gap performance 

between BCA as the best contestant and TIA as the second-

best contestant is narrow in solving f4. The gap performance 

between BCA as the best contestant and WaOA as the 

second-best contestant is narrow in solving f5. Otherwise, the 

performance gap between the first best contestant and the 

second-best contestant is wide in five functions (f1, f3, f6, and 

f7). 

Table 3 indicates that BCA still performs well and is 

superior enough in solving HDMFs. BCA becomes the first 

best contestant in three functions (f9, f10, and f11), second best 

contestant in two functions (f12 and f13), and fifth best 

contestant in f8. In f12 and f13, TIA becomes the best contestant 

and better than BCA. Meanwhile, in f8, TIA is the only 

contestant where BCA is better than it. The competition in 

solving f8 is fierce and it can be seen through the narrow 

performance gap between the best contestant and the worst 

contestant. On the other hand, the performance gap between 

the best contestant and the worst contestant is wide in four 

functions (f9, f10, f11, and f13). 

Table 4 indicates the good performance of BCA in solving 

FDMFs. BCA becomes the distinct best contestant in five 

functions (f14, f15, f16, f21, and f22). All contestants achieved the 

same result in f19. Meanwhile, BCA becomes the second-best 

contestant in two functions (f18 and f23), the fifth-best 

contestant in f17, and sixth-best contestant in f20. Different 

from in HDUFs and HDMFs, the performance gap among 

contestants in FDMFs is narrow. All contestants achieved the 

same result in f19.  
 

TABLE V  

SUPERIORITY SUMMARY OF BCA 

Cluster Number of functions where BCA is better 

TIA 

[39] 

COA 

[15] 

LEO 

[33] 

OOA 

[17] 

WaOA 

[18] 

1 6 6 6 6 6 

2 4 5 5 5 5 

3 8 7 5 7 7 
Total 18 18 16 18 18 

 

The result in Table 2 to Table 4 is then summarized in Table 

5. Table 5 presents the superiority of BCA among other 

contestants based on the number of functions in which BCA 

is better than the related contestant in every cluster of 

functions. This exhibition shows that overall, BCA is better 

than TIA, COA, LEO, OOA, and WaOA in 18, 18, 16, 18, 

and 18 functions respectively. This distribution shows that 

LEO is the toughest competitor of BCA. Moreover, except 

for LEO, the superiority of BCA among other contestants 

takes place in all groups of functions. 

The result presented in Table 6 indicates the superiority of 

the third search compared to other searches. The third search 

achieves the best result in 14 functions. Its superiority takes 

place in all groups of functions. Meanwhile, the first search, 

second search, and third search achieve the distinct best result 

in 2, 2, and 3 functions respectively. Overall, the performance 

gap between the first search and third search is narrow. A 

narrow performance gap also occurs between the second 

search and fourth search.  

The third assessment is conducted to assess the proposed 

BCA to tackle a practical problem. The practical problem is 

also needed as it consists of constraints so that the practical 

problem can be seen as a constrained problem. In this work, 

the economic load dispatch (ELD) problem is chosen as the 

practical one. 

 The ELD problem is known as a popular optimization 

problem in power systems. The system consists of a set of 

power generating units which can be generators or power 

plants. Each generating unit produces power within its own 

power range (minimum and maximum powers) where this 

case can be seen as inequality constraint. Then, the power that 

is produced by each generating unit will be accumulated as 

total power. This total power should meet the power demand 

where in this case can be seen as an equality constraint. The 

operation of each generating unit produces cost where the 

produced power becomes variable. This operational cost 

function is presented as a quadratic equation in its basic form. 

The operational cost of each generating unit is then 

accumulated as total cost and it should be minimized. 

Based on this general explanation, it can be summarized 

that as an optimization problem, ELD consists of three parts: 

the system, objective, and constraint. The system is a set of 

generating units. The objective is to minimize the total 

operational cost. There are two constraints: the equality 

constraint and inequality constraint. The inequality constraint 

is that the power of each generating unit should be within its 

power range. The equality constraint is that the total power 

should be equal to the power demand. 

In this paper, the use case is a set of power grids that 

consists of 13 generating units. There are three scenarios for 

the power demand: 1,000 MW; 1,800 MW; and 2,600 MW. 

The detail description of the system including the power 

range and the constants of the cost function can be found in 

[44] and in [45]. The result is presented in Table 7. 

Result in Table 7 shows the fierce confrontation among 

metaheuristics in solving the ELD problem. This fierce 

confrontation occurs in all scenarios, whether the demand is 

1,000 MW; 1,800 MW; or 2,600 MW. This fierce 

confrontation can be seen from the total cost range between 

the best performer and the worst one.  

The positioning of BCA among its confronters in this third 

assessment is as follows. In the first scenario, BCA is the best 

performer, but the result is the same as TIA, LEO, and 

WaOA. In the second scenario, BCA is in the fourth place 

after LEO, OOA, and WaOA. In the third scenario, BCA is 

in the second place after WaOA. 
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IV. DISCUSSION 

The result of benchmark assessment proofs that BCA has 

good both exploitation and exploration capabilities. 

Theoretically, the high dimension unimodal functions are 

designed to measure the exploitation capability due to its 

single optimal solution [37]. It means that any search should 

be deployed to find this global optimal solution as fast as 

possible. 

The high dimension multimodal functions are designed to 

measure the exploration capability [37]. As it is known that 

multimodal functions consist of multiple optimal solutions, 

avoiding the local optimal solution becomes a priority. Once 

the searching process is entrapped in the local optimal region, 

there should be a mechanism to explore other regions to keep 

the possibility of a better optimal solution would be found. 

The fixed dimension multimodal functions are designed to 

measure the balance between exploration and exploitation 

[37]. These functions are well-known for their ambiguity. In 

some functions, the terrain of the search space is flat with 

some narrow holes consisting of optimal solutions. The flat 

terrain makes the improvement becomes more difficult. 

Meanwhile, the narrow holes make the optimal solution more 

difficult to find. Short step means longer iteration while long 

step means jumping over the region consisting of the optimal 

solution. A small region of the optimal solution makes the 

agent easy to pull out from this region. 

The result of the benchmark assessment also shows three 

other findings. The first finding is that the neighborhood 

search is not important.  COA [15], LEO [33], OOA [17], and 

WaOA [18] are enriched with the neighborhood search with 

reduced search space during the iteration besides the directed 

search as primary strategy. This neighborhood search is first 

introduced in MPA [21].  Meanwhile, both BCA and TIA 

[39] are not enriched with this neighborhood search. While 

TIA has a single search which is the motion relative to all 

other agents [39], BCA performs only two strategies in four 

searches. The second finding is that splitting the swarm into 

sub-swarms and the existence of sub-swarm leaders improves 

the exploration capability. The first sub swarm leader is the 

global leader while second sub swarm leader is not always the 

second global leader. It becomes the alternative for COA 

[15], LEO [33], OOA [17], and WaOA [18] that choose only 

the global leader.  

The result of individual search assessment indicates that the 

searching toward the best solution gives better results than the 

searching relative to other solution within swarm. The 

performance gap between these two searches is wide in the 

high dimension functions. Meanwhile, this performance gap 

is narrow in the fixed dimension functions. Moreover, 

searching toward the best solution produces the same result 

as searching relative to a randomly picked solution. 

The result in the ELD problem shows that solving the 

constrained problems is more difficult than the unconstrained 

ones. In the constrained problem, the solution space is 

narrower because there is a collective boundary regarding the 

equality between the total output power and the demand 

power. It makes the circumstance where the power of a 

generating unit is not so independent to be set anywhere 

within its power range. The power of a generating unit 

reduces the power range of other generating units as a 

collective system. 

 
TABLE VI  

INDIVIDUAL SEARCH ASSESSMENT RESULT 

F Average Fitness Score 

First Search Second Search Third Search Fourth Search 

1 2.5268x101 9.9516x101 1.9103x101 7.5497x101 
2 0.0000 0.0000 0.0000 0.0000 

3 2.2577x103 9.0606x103 2.5615x103 8.8716x103 

4 2.9764 6.2356 2.6427 5.6459 
5 3.8174x102 2.5243x103 2.9830x102 2.3748x103 

6 2.8996x101 1.0298x102 2.5858x101 8.8772x101 
7 0.0438 0.1005 0.0482 0.0962 

8 -2.3049x103 -2.8655x103 -2.2616x103 -2.9678x103 

9 7.9553x101 2.8210x102 5.6839x101 2.7359x102 
10 2.1016 3.2243 1.8270 3.1980 

11 1.1433 1.8289 1.0770 1.7351 

12 1.2170 1.9098 1.2169 2.1463 
13 4.7401 7.5917 4.6668 7.0547 

14 1.1254x101 1.1839x101 1.3536x101 7.8287 

15 0.0106 0.0133 0.0008 0.0170 

16 -0.9763 -1.0064 -0.9734 -0.9957 

17 1.0644 0.7259 2.0747 0.6859 

18 2.9608x101 9.4076 2.3568x101 7.5801 

19 -0.0495 -0.0495 -0.0495 -0.0495 

20 -2.3506 -2.4851 -2.3888 -2.4173 

21 -2.0084 -1.5282 -2.0270 -1.9980 
22 -1.9698 -1.6343 -2.2030 -1.7648 

23 -2.0354 -1.8388 -2.2754 -1.6421 

 

TABLE VII  
ASSESSMENT RESULT ON HANDLING ELD PROBLEM 

Metaheuristic Total Cost (USD/hour) 

1000 MW 1800 MW 2600 MW 

TIA 11,297 17,945 24,795 
COA 11,298 17,947 24,789 

LEO 11,297 17,938 24,783 

OOA 11,298 17,939 24,786 
WaOA 11,297 17,940 24,778 

BCA 11,297 17,942 24,779 
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The computational complexity of BCA is presented as 

O(n(A).d) during the initialization phase and O(4tm.n(A).d) 

during the iteration phase. There are two factors that make the 

computational complexity of BCA during the initialization 

and iteration different. First, BCA performs only a single 

search which is the full random search during initialization. 

On the other hand, there are four searches in BCA during the 

iteration. Second, there is not any loop until the maximum 

iteration in the initialization phase while in the iteration 

phase, the outer loop is the loop from the first iteration to 

maximum iteration. 

Meanwhile, there are three limitations regarding this work. 

The first limitation is that BCA cannot accommodates all 

variances of swarm split whether they are quality-based 

swarm split or no quality-based swarm split. The second 

limitation is that BCA cannot accommodate all references 

and step size for the directed searches. The third limitation is 

that this work cannot accommodate all use cases for 

assessment whether they the unconstrained or constrained 

ones. 

This presentation triggers some potentials for improvement, 

or in general, the future development of metaheuristics. The 

first potential is the splitting of the swarm into sub-swarms. 

As previously mentioned, almost all metaheuristics do not 

implement swarm splitting or segregation of roles. On the 

other hand, some metaheuristics, like in KMA [13] or COA 

[15] performs swarm splitting.  

The quality-based swarm splitting may produce better 

performance by the reasoning that there should be different 

strategy between higher quality swarm members and lower 

quality swarm members. But quality-based swarm splitting 

brings consequence in adding complexity due to performing 

sorting in every iteration. Meanwhile, the swarm splitting 

without considering the quality is designed to accommodate 

more strategies without increasing the complexity.  

The second potential is the construction of more powerful 

references for the directed search. This work has shown that 

a reference constructed from multiple leaders is better than a 

reference constructed from only one leader. But the scheme 

does not change along the iteration. In the future, constructing 

an iteration-considered reference is also challenging.  

The third potential is the implementation of BCA in wider 

constrained practical problems. In the optimization problems 

in power system, there are several other cases, such as 

economic emission dispatch problem, unit commitment 

problem, optimal power flow problem, and so on, with many 

other considerations, such as power loss can also be added to 

enrich the decision-making process. 

These constrained practical problems are not limited to the 

problems in the power system. There are a lot of problems in 

manufacturing system that ranges from selecting suppliers, 

deciding the products, allocating resources, whether 

machines or people, to the storage system. Expanding to the 

logistic system, the problems range from fleet management, 

warehouse or inventory, and so on. Some of these problems 

are numerical problems while the others are combinatorial 

ones.  

V. CONCLUSION 

A new stochastic optimization called best couple algorithm 

(BCA) has been presented in this paper. The swarm-splitting 

into two equal size sub swarms becomes the fundamental 

concept of BCA. This paper has also presented that there are 

two splitting strategies in BCA. Then, the highest quality sub 

swarm members become the sub swarm leader. The searching 

process is then performed by moving toward the middle 

between two sub swarm leaders and moving relative to the 

middle between two randomly picked sub swarm members. 

The set consisting of 23 functions is employed representing 

the problems in the benchmark assessment where BCA is 

challenged with five metaheuristics: TIA, COA, LEO, OOA, 

and WaOA. The result shows that BCA is better than TIA, 

COA, LEO, OOA, and WaOA respectively. Meanwhile, the 

individual search assessment result indicates that the motion 

toward the middle of two sub-swarm leaders performs better 

than the motion relative to the middle between two randomly 

picked sub swarm members. The third assessment exhibits 

the tight competition among metaheuristics in handling ELD 

problem. 

The potential for future studies can be traced back to the 

superiority of the reference consisting of the middle between 

two sub swarm leaders. It means that constructing new 

reference for the directed search becomes the window of 

opportunity for proposing a new metaheuristic. Besides the 

swarm slitting mechanism can also be used for further 

improvement. Moreover, utilizing BCA to solve many kinds 

of practical problems can be used for more comprehensive 

assessment. 
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