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Abstract—The DEWMA control chart was developed as
a useful tool to monitor the process mean quickly under
autocorrelated data. The Average Run Length (ARL) metric,
which is designed for control charts, is intended for measuring
the ability of the control chart. In this work, an analytical
Integral Equation or explicit ARL will be developed for data
on the DEWMA control chart that are characterized by a
quadratic trend AR(1) model. Banach’s fixed point theorem
was used to proved its uniqueness and existence after it was
generated by the second form of the Fredholm integral equation.
It has evolved compared to the ARL obtained via the Numerical
Integral Equation (numerical IE) approach and looked at in
connection with the EWMA chart, which has shown to have
superior detection capabilities. The AEQL and RMI metrics
were used to confirm their ability. Furthermore, real-world data
from the relevant domains of finance and economics was used
to test this suggested technique.

Index Terms—Integral equation solution, average run length,
Banach’s fixed point, DEWMA control chart.

I. INTRODUCTION

CONTROL chart is the instruments available in the
statistical process control (SPC) discipline for tracking

and identifying changes in the process mean. The Shewhart
control chart is often used to detect significant changes [1].
There are two types of control charts for identifying tiny
changes: cumulative sum (CUSUM) [2] and exponentially
weighted moving average (EWMA) [3]. Control chart details
are available in Montgomery [4]. Next, extensive literature
has noted that many control charts were developed from
EWMA-type control charts. They exceeded the standard
EWMA control chart in terms of sensitivity in monitoring
tiny changes in the process. For example, the modified
exponentially weighted moving average (MEWMA) chart
[5] enables monitoring of tiny changes. After Shamma and
Shamma presented the control chart, which is the dou-
ble exponentially weighted moving average (DEWMA) [6],
Mahmoud and Woodall adjusted it [7]. This control chart is
useful for rapidly identifying little changes.

Small amounts of the autocorrelation between subsequent
observations can significantly impact the control chart’s
statistical characteristics. Several researchers have examined
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how autocorrelation affects control chart efficiency. Specif-
ically, autocorrelation levels generated during or moving
average MA(1) or autoregressive AR(1) time series models
were slightly or significantly raised, which made it more
difficult to identify out-of-control alerts on the CUSUM
chart seen in Johnson and Bagshaw [8]). Nonetheless, the
autocorrelated data might be the result of the other control
chart, such as EWMA, and a modification of the EWMA
type. Time series observations have become prevalent in
the real world. In particular, trends and seasonality, together
with an AR or MA component [9], [10], can potentially be
integrated into a time series model via data from the financial
and economic domains.

To maximize accuracy, it is best to reduce ”white noise,” or
the discrepancy between estimated and real values. Despite
usually having a normal distribution, the autocorrelated data
can also produce white noise, also known as Gaussian white
noise. However, non-Gaussian white noise has an intriguing
exponential distribution and may be used to express a wide
range of data. In their earlier work, Mohamed and Hocine
focused specifically on white noise in their Bayesian research
on AR(1) with exponential white noise [11]. Suparman [12]
suggested estimating parameters for an AR model under
exponential white noise.

A common metric used to assess the success rate of a
control chart is the ARL or average run length. A control
chart’s performance could be represented as the average
number of observations required to identify an out-of-control
state in the process multiplied by the probable probability
of detecting an out-of-control signal. The average number of
observations a process in control makes before indicating that
it is out of control is known as ARL0. On the other hand,
the average number of observations, also known as ARL1,
is necessary to detect an out-of-control change in a process
variable. The ARL0 value should be large. Conversely, the
ARL1 number has to be as low as feasible to show that
the procedure is suitable for quickly identifying any out-of-
control circumstances.

There are several methods that have been proposed for
computing the ARL of a control chart, involving the integral
equation (IE), the Markov Chain method, and Monte Carlo
simulation. However, this study discusses the IE approach,
which is often used for computing ARL. There are two
options in the IE approach: numerical IE and analytical IE.
The numerical IE was converted into a system of linear
equations using the Fredholm integral equation of the second
type, and its existence and uniqueness were verified using
Banach’s fixed point theorem. In contrast, the analytical IE
was built using explicit formulas. Hawkins [13] utilized IE
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to calculate the ARL of the CUSUM chart, whereas Crowder
[14] utilized IE to evaluate the ARL of the EWMA chart.
Vanbrackle and Reynolds [15] devised the ARL using the
Markov Chain approach and analytical IE with the EWMA
and CUSUM charts, which were based on the first-order
autoregressive AR(1) model. Phanyaem [16] created explicit
formulas for IE on the CUSUM chart, which were originally
run under the SARMA model. Karoon et al. presented
explicit formulas for underlying trend AR(p) and seasonal
AR(p) processes on the extended EWMA control chart using
the IE technique and applied them to real-world data in
various fields [17],[18]. Phanthuna et al. [19] developed the
exact ARL of the modified EWMA control chart using IE
methods and compared its performance to traditional control
charts under the AR(1) model. In addition, Karoon and
Areepong [20],[21] improved the ARL of the DEWMA chart
using IE methods and compared the abilities of other control
charts, both simulated and real-world data, based on the
obtained seasonal AR(p) and trend AR(p) model. Recently,
Phanthuna et al. [22] presented the ARL with the IE approach
of a double modified EWMA (DMEWMA) chart under AR
model.

Based on the literature reviews above, the analytical IE of
ARL was validated for its existence and uniqueness before
deriving an explicit ARL solution. Furthermore, it is nec-
essary to demonstrate both the existence and uniqueness of
explicit ARL equations using Banach’s fixed point theorem.
The purpose of this work was to create an ARL for detect-
ing changes in the first-order quadratic trend autoregressive
(AR(1)) process with exponential white noise. It was run on
the DEWMA control chart, utilizing analytical and numerical
IE methods. Furthermore, it was not previously discovered
for evaluating ARL using a quadratic trend AR model. At
last, this explicit ARL was applied to real-world data, and it
is discussed in this study in terms of finance and economics.

II. PRELIMINARIES

This section examines the fundamentals of the first-order
quadratic trend autoregressive process, often known as the
quadratic trend AR(1) process, and its underlying exponential
white noise. Additionally, the ARL formula that was created
utilizing analytical and numerical IE techniques displayed the
statistical structure of the DEWMA control chart. And then,
the final subsection covers Banach’s fixed-point theorem.

A. The First-Order Quadratic Trend Autoregressive Process

The quadratic trend AR(1) process, or the first-order
quadratic trend, was generalized from the Box-Jenkins
ARIMA model. Time series are widely used in many
domains, including technology, epidemiology, finance, and
economics. Let Xt be a sequence from a quadratic trend
AR(1) model defined as

Xt = η + ωt+ ϱt2 + ϕ1Xt−1 + ξt (1)

where η is the constant of the process, the ω and ϱ are
coefficients corresponding to time t and t2, respectively. The
error terms, as given in ξt ∼ Exp(α), are expected to be
exponentially distributed white noise. The initial coefficient
of the autoregressive process is ϕ1 with 0 < ϕ1 ≤ 1.

B. Fundamentals of the Structure of the Control Charts

The EWMA control chart is an instrument utilized in SPC
to monitor and identify minor to moderate deviations in the
process mean. The recursive equation below could possibly
have been used to state the EWMA control chart [3] statistic.

Et = λXt + (1− λ)Et−1, t = 1, 2, 3, ..., (2)

where EWMA control chart parameter Xt represent a se-
quence of the quadratic trend AR(1) process with running
based on exponential white noise. λ denotes an exponential
smoothing parameter with 0 < λ ≤ 1. In this work, the
variance of EWMA statistic (Et) is

(1− (1− λ)2t)

(
λ

2− λ

)
σ2.

If t gets large, the term consists of t converge to 0. Xt is a
process with mean (µ) and variance (σ2). The upper (UCL)
and lower (LCL) control limits for detecting process changes
are as follows:

UCL = µ+Gσ

√
λ

2− λ
,

LCL = µ−Gσ

√
λ

2− λ
,

where G is the width of control limit of EWMA control
chart. And then, the stopping time (Et) can be expressed as

τb = inf {t ≥ 0 : Et > b} ,

where b is the upper control limit (UCL) of EWMA control
chart.

The DEWMA control chart, developed by Mahmoud and
Woodall [6] in 2010, is a valuable substitute method for
detecting minute modifications in the process. The DEWMA
control chart statistic can be shown using the following
equation:

Et = λ2Xt + (1− λ2)Et−1,

Wt = λ1Et + (1− λ1)Wt−1, t = 1, 2, 3, ..., (3)

where λ1 and λ2 are the exponential smoothing parameters
of DEWMA chart under 0 < λ1, λ2 ≤ 1. Xt is a process
with mean (µ) and variance (σ2). The variance of Wt is

σ2 λ21λ
2
2

(λ1 − λ2)2
(A+B − 2C) .

where A, B, and C represent

(1− (1− λ2)
2t)(1− λ2)

2

1− (1− λ2)2
,

(1− (1− λ1)
2t)(1− λ1)

2

1− (1− λ1)2
,

(1− ((1− λ1)(1− λ2))
t)(1− λ1)(1− λ2)

1− (1− λ1)(1− λ2)
,

respectively.
If t gets large, the term that exists of t converges to 0.

From the DEWMA control chart, the following are the upper
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(UCL) and lower (LCL) control limits for identifying process
changes:

UCL = µ+ ǴσU,

LCL = µ− ǴσU,

where U represents√
λ21λ

2
2

(λ1 − λ2)2
(A+B − 2C),

and Ǵ is expressed as the width of control limit of DEWMA
control chart. And then, the stopping time (Wt) can be
expressed as

τh = inf {t ≥ 0 :Wt > h} ,

where h is the upper control limit (UCL) of DEWMA control
chart. When λ1 = 1 in (3), the DEWMA statistic transforms
into the EWMA statistic, see in (2).

C. Feature of the ARL

In the whole project, the error term (ξt) is a series of
continuous, i.i.d. random variables drawn from the exponen-
tial distribution or denoted as (f(x, α)). The following is an
expression for the ARL feature:

ARL =

{
ARL0 = E∞(τh), θ = ∞
ARL1 = E1(τh), θ = 1

.

Here, the change point was considered as follows:

ξt =

{
Exp(α0), t = 1, 2, ..., θ − 1
Exp(α1), t = θ, θ + 1, ...

,

where Eθ() is the expectation under (ξt ∼ Exp(α)), α0 and
α1 are known parameters. Herein, θ = ∞ denotes no change
in the process, also called the in-control process of ARL
(ARL0). While θ = 1 denotes the first time of change from
α0 to α1 in the process, we refer to it as an out-of-control
process of ARL (ARL1).

D. Analytical IE for the ARL on the DEWMA Control Chart
with Quadratic Trend AR(1) rocess

The ARL for the Fredholm integral equation of the second
kind was built in this section utilizing analytical IE[23]. The
approximate ARL on the DEWMA control chart is used to
track modifications in the quadratic trend AR (1). To begin,
substitute (1) into (3) as shown below:

Wt = λ1λ2(η + ωt+ ϱt2 + ϕ1Xt−1 + ξt)

+ λ2(1− λ1)Et−1 + (1− λ2)Wt−1.

Since t = 1 for the first time, the initial values E0 = ε
and W0 = ν are established. The DEWMA statistic with
quadratic trend AR(1) can be stated as follows:

Wt = λ1λ2(D + ξ1) + λ2(1− λ1)ε+ (1− λ2)ν.

where D denotes η + ω + ϱ+ ϕ1X0.

In the control process, W1 can be written as bound control
limits between l and h as:

l < W1 < h.

The variable ξ1 can be expressed as the interval of the control
limit as follows:

l − λ2(λ1D + z1)− z2 < ξ1λ1λ2 < h− λ2(λ1D + z1)− z2

then,

l − z2
λ1λ2

− (λ1D + z1)

λ1
< ξ1 <

h− z2
λ1λ2

− (λ1D + z1)

λ1
,

where z1 and z2 are (1− λ1)ε and (1− λ2)ν, respectively.

Theorem 1: The Fredholm integral equation of the second
kind is applied to solve the analytical IE ARL on the
DEWMA chart.

Considering the function below, it represents the Fredholm
integral equation of the second sort.

φ(ν) = 1 +

∫ h−z2
λ1λ2

− (λ1D+z1)
λ1

l−z2
λ1λ2

− (λ1D+z1)
λ1

φ(W1)f(ξ1)dξ1.

Proof: Let φ(ν) represents the analytical IE ARL that
corresponds to the quadratic trend AR(1) process on the
DEWMA chart. Also,
Let

ψ = λ1λ2D + λ2z1 + z2 + λ1λ2ξ1

ψ was rewritten in term of ξ1 as follows:

ξ1 =
ψ − λ1λ2D − λ2z1 − z2

λ1λ2

=
ψ − z2
λ1λ2

− (λ1D + z1)

λ1

will get

dξ1 =
1

λ1λ2
dψ.

Therefore, the equation rearranged is

φ(ν) = 1 +
1

λ1λ2

∫ h

l

φ(ψ)f(ξ1)dψ.

By changing the integral variable, it will be the equation in
(4) below.

φ(ν) = 1 +
1

λ1λ2

∫ h

l

φ(ψ)f

(
ψ − z2
λ1λ2

− (λ1D + z1)

λ1

)
dψ.

(4)

In this study, ξ1 is defined as an exponential distribution
with parameter α. Therefore, the Fredholm integral equation
of the second sort for analytical ARL can be presented as:

φ(ν) = 1 +
Q(ψ)

αλ1λ2
Y, (5)

where
Q(ψ) = e

z2
λ1λ2

− (λ1D+z1)
λ1 ,

Y =

∫ h

l

φ(ψ)e
−ψ

αλ1λ2 dψ,

and
Ω0(ψ) = e

−ψ
αλ1λ2 .

In this paper, we considered the interval control limit
[o, h]. So, l is determined as 0. After (5) was proved by
Banach’s fixed point theorem, which will be shown in the
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last subsection, the result showed proportional existence and
uniqueness.

The integral equation Y , which can be rewritten as:

Y =
1

αλ1λ2

∫ h

0

[1 +Q(ψ)Y ] e
−ψ

αλ1λ2 dψ

= −αλ1λ2[Ω0(h)−1]+
Y

αλ1λ2
e

z2
αλ1λ2

− (λ1D+z1)
αλ1

∫ h

o

e
−ψ
αλ1 dψ

= −αλ1λ2 [Ω0(h)− 1]− Y

λ2
e

z2
αλ1λ2

− (λ1D+z1)
αλ1 [Ω0(hλ2)− 1]

Thus, it can be rearranged as

Y =
−αλ1λ2 [Ω0(h)− 1]

1 + e
z2

αλ1λ2
− (λ1D+z1)

αλ1

λ2
[Ω0(hλ2)− 1]

.

Finally, the equation (5) is substituted into the integral
equation Y . By constructing the Fredholm integral equation
of the second sort, the analytical ARL of the DEWMA
chart can possibly be derived as follows:

φ(ν) = 1− λ2Ω(z2) [Ω0(h)− 1]

λ2Ω0(−λ2(λ1D + z1)) + [Ω0(hλ2)− 1]
. (6)

The proof of analytic ARL or explicit formulas for ARL
is complete.

In (6), the in-control ARL, or ARL0, is represented by
substituting α with α0. Similarly, the out-of-control ARL
(ARL1) is illustrated by substituting α with α1. Then,
α1 = α0(1 + δ), and δ represented the shift changes in the
monitoring process.

E. Numerical IE for the ARL on the DEWMA Control Chart
with Quadratic Trend AR(1) Process

This study employs the Gauss-Legendre quadrature rules
methodology to implement an approximation ARL based on
the nemerical IE method.

Definition 1: The quadratic rules commonly used for the
integral equation ∫ h

0

f(s)ds

can also be estimated by the sum of the areas of a rectangle,
as follows: ∫ h

0

W (s)f(s)ds ≈
m∑
j=1

wjf(cj),

where cj = h
m

(
j − 1

2

)
, j = 1, 2, ...,m, the integral f value

is defined by utilizing base h/m with heights at the interval
midpoints rule, and W (s) is weight function. The interval
[0, h] is divided into 0 ≤ c1 ≤ c2 ≤ ... ≤ cm ≤ h, and set
of constant weights wj = h/m; j = 1, 2, ...,m.

Theorem 2: The numerical IE method ϑ(ν) under
quadratic trend AR(1) with exponential white noise on the
DEWMA chart could be shown in (7) as:

ϑ(ν) = 1 +
1

λ1λ2

m∑
j=1

wjϑ(cj)f

(
cj − z2
λ1λ2

− (λ1D + z1)

λ1

)
,

(7)

where z2 = (1− λ2)ν and j = 1, 2, ...,m.

Proof: The Gauss-Legendre quadrature procedure was
used to apply the ϑ(ν) to the estimated ARL from the integral
equation in (4). Substituting ν with cj in (7), and it was
rearranged as yields equation (8), that is:

ϑ(ci) = 1+
1

λ1λ2

m∑
j=1

wjϑ(cj)f

(
cj − ci
λ1λ2

− z1 − ci
λ1

−D

)
,

(8)
where i = 1, 2, ...,m.

Solving the system in terms of m linear equation, the
equation (8) can be rearranged to look like this:

ϑ(c1) = 1+
1

λ1λ2

m∑
j=1

wjϑ(cj)f

(
cj − c1
λ1λ2

− z1 − c1
λ1

−D

)

ϑ(c2) = 1+
1

λ1λ2

m∑
j=1

wjϑ(cj)f

(
cj − c2
λ1λ2

− z1 − c2
λ1

−D

)
...

ϑ(cm) = 1+
1

λ1λ2

m∑
j=1

wjϑ(cj)f

(
cj − cm
λ1λ2

− z1 − cm
λ1

−D

)

This is identical to the matrix form
Lm×1 = 1m×1 +Rm×mLm×1 and (Im −Rm×m)

−1

exists. The unique solution that can be written is

Lm×1 = (Im −Rm×m)
−1

1m×1, where Lm×1 =

ϑ(c1)...
ϑ(cm)

,

1m×1 =

1...
1

, Im = diag(1, 1, ..., 1) is a identity matrix,

and Rm×m is a matrix of (m,m)th elements:

Rm×m =
1

λ1λ2


r11 r12 · · · r1m
r21 r22 · · · r2m

...
...

. . .
...

rm1 rm2 · · · rmm


where

rij = wjf

(
cj − ci
λ1λ2

− z1 − ci
λ1

−D

)
: i, j = 1, 2, ...,m.

The approximation for the integral equation can be derived
from the summation where cj is substituted by ν in ϑ(cj),
completing the proof.

F. The uniqueness and existence of ARL’s analytical IE
Running on DEWMA Chart

The second-kind Fredholm integral equation is influenced
by the analytical IE for the ARL of the DEWMA control
chart with the quadratic trend AR(1) process. The uniqueness
and existence of the ARL solution are shown in this section
using Banach’s fixed-point theorem.
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Definition 2: A fixed point that represents a mapping T :
X → X of a set X across itself represents a mapping from
x ∈ X onto itself, that is

Tx = x.

Definition 3: Let a metric space be represented by (X, d).
A contraction on X is defined as a mapping T : X → X ,
provided that there is a positive constant K < 1 such that

d(T (x), T (y)) ≤ Kd(x, y);∀x, y ∈ X

In terms of geometry, this suggests that the images T (x)
and T (y) exhibit a closer relationship than the points x and y.

Theorem 3: Banach’s Fixed Point Theorem
Let T : X → X represent a contraction mapping with
contraction constant 0 ≤ u < 1. Let (X, d) represent a full
metric space.
Then

∥T (φ(ν)1)− T (φ(ν)2)∥ ≤ u ∥φ(ν)1 − φ(ν)2∥ ,

for all φ(ν)1, φ(ν)2 ∈ X. has to show a unique fixed point
x ∈ X (such that T (φ(ν)) = φ(ν)),i.e. a unique fixed-point
in X [23].

Proof: To present that T in (9) represents mapping of
contraction for φ(ν)1, φ(ν)2 ∈ [0, h] by show that

∥T (φ(ν)1)− T (φ(ν)2)∥ ≤ u ∥φ(ν)1 − φ(ν)2∥ ,

for all
φ(ν)1, φ(ν)2 ∈ u[0, h]

with 0 ≤ u < 1 under the norm

∥φ(ν)∥∞ = supν∈[0,h] |φ(ν)| .

From (5), consider T as an operation in the (9) class of
all continuous functions, and also substitute 0 for l, as the
following example illustrates.

T (φ(ν)) = 1+
1

αλ1λ2
e

(1−λ2)ν
λ1λ2

− (λ1D+z1)
λ1

∫ h

0

φ(ψ)Ω0(ψ)dψ.

(9)
Consider: ∥T (φ(ν)1)− T (φ(ν)2)∥∞

= supν∈[0,h]

∣∣∣∣∣ Q(ψ)

αλ1λ2

∫ h

0

(φ1(ψ)− φ2(ψ)Ω0(ψ)) dψ

∣∣∣∣∣
≤ supν∈[0,h] |∥T (φ(ν)1)− T (φ(ν)2)∥∞Q(ψ) (Ω0(h)− 1)|

= ∥T (φ(ν)1)− T (φ(ν)2)∥∞ supν∈[0,h] |Q(ψ)| |Ω0(h)− 1|

≤ u ∥T (φ(ν)1)− T (φ(ν)2)∥∞ ,

where

u = supν∈[0,h] |Q(ψ)|
∣∣∣e −h
αλ1λ2 − 1

∣∣∣ ; 0 ≤ u < 1.

The explicit formula for ARL, or the analytical IE for
ARL, is the existence and uniqueness of a solution that can be
solved wholly with the help of Banach’s fixed-point theorem.

III. THE EFFICACY EVALUATION FOR CONTROL CHART

The efficacy of a control chart is often measured in
terms of ARL. In the article, the analytical IE for ARL
(denoted as φ(ν)) was compared to the numerical IE for
ARL (denoted as ϑ(ν)) using the absolute percentage relative
change (%APRC), which was computed using the equation
(10) below [24].

%APRC =

∣∣∣∣φ(ν)− ϑ(ν)

φ(ν)

∣∣∣∣× 100% (10)

Next, the efficacy of ARL was evaluated using the average
extra quadratic loss, which is called AEQL, and the relative
mean index, or refer to RMI matrices [25]. These were
operated under various parameters and various control charts.

One of these, the AEQL, is derived by applying it across
a variety of shift sizes, which can then be assessed using
overall performance metrics. The AEQL is computed in (11)
below:

AEQL =
1

Θ

δmin∑
δi=δmin

(
δ2i ×ARL(δi)

)
(11)

where δi represents the value of shift change order i,
ARL(δi) is explicit ARL value of each control chart for
the value of shift change order i, and Θ represents the total
amounts of shift change order i from δmin to δmax.

Another one is the RMI, which is used to calculate each
control chart’s efficacy via the mathematical formula in (12)
as

RMI =
1

n

n∑
i=1

(
ARLi −minARLi

minARLi

)
(12)

where ARLi denotes the ARL of control chart that
calculated using the shift size in terms of row i, and
minARLi represents the lowest ARL of overall control
charts compared to the shift size in terms of row i, for
i = 1, 2, ..., n.

The control chart with the highest efficacy for identifying
process changes under quadratic trend AR(1) with exponen-
tial white noise is the one with the lowest AEQL and RMI
values.

IV. EXPERIMENTAL RESULTS

Here, the simulation studies on the DEWMA control chart
compare the efficacy of the analytical IE or explicit formula
φ(ν) with the numerical IE or NIE approach ϑ(ν) for the
quadratic trend AR(1) process. The efficacy of the ARL of
both methods was initially evaluated by determining that
δ = 0 is an in-control process and δ > 0 is an out-of-control
process. The numerical IE for ARL is generated with the
amount of division points or denotes m = 500. In this
research, the MATHEMATICA mathematical software was
used to calculate the analytical and numerical IEs for ARL.
The results were obtained using an Intel(R) Core(TM)
i5-8250U CPU and 4.00 GB RAM.

The state of the calculated ARL can be described as
follows:
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Input:
1) Define in-control process at ARL0 = 370
2) Set parameters such as the coefficient of the quadratic

trend AR(1) model, including ϕ1, η, ω, and ϱ
3) Set the lower control limit (LCL), herein it is l = 0
4) Set the control chart parameters, including λ2 equal to

0.05 and 0.10, and then λ1 = 0.4λ2, λ1 = λ2, and
λ1 = 1 represent DEWMA with unequal λ, DEWMA
with equal λ, and EWMA, respectively.

5) Set parameters for two states of the control process
under the error term (ξt ∼ Exp(α)), namely α instead
of α0 for the in-control (ARL0), whereas α instead of
α1 = (1 + δ)α0 for the out-of-control (ARL1)

6) Set shift changes in the process or showed as δ equals
0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5

Output:
1) Find the upper control limit (h) from calculating and

determining ARL0 equals 370
2) Compute the ARL1 for each shift size by using the

upper control (h) value obtained by the previous step
and varying the values of the shift size δ.

The results in Tables I and II show the results of comparing
the ARL1 values with varying shift changes running on the
DEWMA chart for the quadratic trend AR(1) process based
on determining parameters λ as two conditions, namely cases
of equal λ (refer to λ1 = λ2) and cases of unequal λ
(refer to λ1 = 0.4λ2). They were compared in percentage
of %APRC and calculation time in seconds. The results
show that the ARL1 values of both techniques show hardly
any difference, but the ARL for the analytical IE method
expresses superior efficacy in terms of computation time,
which shows that it appears very instantly in all situations.
On the other hand, the ARL for the numerical IE method
expresses the computation time slower than the analytical IE
method in approximately three seconds for all shift changes
in all situations.

Note that ”time” in the whole table in this research is to
show the computational time of the ARL that was obtained
by the numerical IE method, whereas the computational time
of the ARL that was obtained by the analytical IE method
has very little value, or approximately 0.001 seconds, so it
is not displayed in the table.

V. ILLUSTRATIVE EXAMPLE OF REAL-WORLD DATA

This section presents the results of implementing the
suggested the analytical IE and numerical IE techniques
to monitor changes on the DEWMA control chart using
real data, which is running under the quadratic trend AR(1)
process with exponential white noise. The real data consists
of a monthly natural gas futures price dataset in USD,
covering the period from January 2018 to February 2024,
with 74 observations. The real-world dataset was fitted to
the quadratic trend AR(1) model. The whole parameters was
estimated using the statistical software package SPSS. The
results in Table III indicates that the the dataset is suitable
for quadratic trend AR(1) model presenting statistically
significant parameters with coefficients ϕ1 = 0.877, ω =
0.182, ϱ = −0.002. The Kolmogorov-Simirov test was used
to determine if the residual series of a white noise distribution
was asymptotic or exponential. The findings demonstrate that

the white noise strongly fitted the exponential distribution at
a P-value of 0.366 > 0.05 and a mean equal to 0.7166 while
the process under control, as stated in Table IV.

Furthermore, the model’s appropriateness has been
verified by plotting a line graph between the real and
fitted dataset components, which appear to be in almost
identical agreement, as illustrated in Fig. 1. According to
the previously stated text, the quadratic trend AR(1) model
Xt could possibly be expressed mathematically as follows:

Xt = 0.182t− 0.002t2 + 0.877Xt−1 + ξt,

where
ξt ∼ Exp(α0 = 0.7166).

Next, ARL1 was used to calculate the analytical IE and
the numerical IE under various parameters after computing
the control limits for ARL0 = 370 using (6) and vary
used under small shift sizes (0 < δ < 0.05) and moderate
shift sizes (0.05 < δ < 0.50). The capabilities of the two
techniques are expressed in Table V and VI. The ARL1

findings from both methodologies were identical to those
in Table I and II, which shows simulated data. However, the
computing time for the analytical IE approach was practically
instantaneous, which is significantly lower than that of the
numerical IE technique. So, this indicates that the analytical
IE for ARL1 is an effective way to detect changes in the
process on the DEWMA control chart.

After that, the quadratic trend AR(1) process using real
data was applied to both the EWMA and DEWMA charts.
The control charts’ efficiency was compared in terms of
ARL1, which is derived from analytical IE and fluctuates
with shift changes ranging from small to moderate in the
process mean. For the efficiency comparison, the smoothing
parameter λ of the EWMA chart was defined as λ = λ2
equal to 0.05, 0.10, and providing λ1 = 1 of the DEWMA
chart became the EWMA chart. The comparative findings are
given in Table VII. The DEWMA chart provided a smaller
ARL1 than the EWMA chart in all cases. The DEWMA
chart that is defined as λ1 = 0.4λ2 provided the smallest
ARL1 when compared to the DEWMA control chart that
determined λ1 = λ2 and the EWMA control chart, illustrated
as Figs. 2 and 3. Moreover, the efficiencies of the DEWMA
control chart were confirmed by computing metrics such
as the RMI and AEQL values, which were calculated by
formulas in (11) and (12), respectively. Both metrics
provided the lowest value for the DEWMA control chart with
unequal λ under the coefficients, which were determined as
λ1 < λ2 and subordinate as the DEWMA control chart with
equal λ, and the biggest value for the EWMA control chart,
as shown in Table VIII and Fig. 4. It is noted that the bold
in Table VIII express the lowest values of RMI and AEQL
when comparing whole values between the whole control
chart in this study. As a result, control charts showing the
lowest RMI and AEQL values are better tracked and detected
than other control charts. The RMI and AEQL values also
show results that correspond to the out-of-control ARL or
ARL1 values.
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Fig. 1. The monthly dataset of natural gas futures price was showed real-data and fitted model under the quadratic trend AR(1) model
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Fig. 2. ARL1 values of the control charts with the datasets of natural gas futures under the quadratic trend AR(1) process with λ2 = 0.05 for
ARL0 = 370

This means that, under these conditions, the DEWMA con-
trol chart outperformed the EWMA control chart, particularly
when specified as λ1 < λ2, which in cases of this study
expressed λ1 = 0.4λ2.

After that, we had to demonstrate the performance of the
DEWMA control chart when used to detect shift changes
in the process with real-life data. In Figs. 5 and 6, we
express the detecting performance of the DEWMA chart
when compared to the EWMA chart. In this part, the
smoothing parameters (λ2 = 0.05 and λ1 = 0.4λ2) were
determined for the DEWMA chart, which is compared to

the EWMA chart with λ = λ2 = 0.05 in terms of detecting
changes. The first detection signal was issued at the 11th and
56th observation points on the DEWMA and EWMA control
charts, respectively (the observations in red are plotted above
the UCL, which shows a green line). These findings support
the effectiveness of the suggested analytical IE for ARL on
the DEWMA chart. This has a direct impact on the price of
natural gas futures, and checking out changes is important
in both the economy and finance. From the viewpoint of
investors, the control chart above can be applied to the
starting point for making lucrative investment decisions.
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Fig. 6. Detecting changes for quadratic trend AR(1) process for the datasets of natural gas futures running on DEWMA control chart with λ1 = 0.4λ2

VI. CONCLUSIONS

By analyzing and evaluating the ARL computation,
analytical and numerical IE approaches can be utilized
to determine the effectiveness of a control chart. In the
current study, the quadratic trend AR(1) process with
exponential white noise was tracked using both techniques
for determining the ARL on the DEWMA chart. By
comparing calculation times and employing the absolute
percentage relative change benchmark, the computation
of ARL was utilized to confirm the accuracy of the
analytical ARL, also referred to as explicit ARL. Compared
to numerical ARL, which requires substantially longer
computation times, analytical ARL performs better and can
be calculated instantly. The suggested ARL, which operates
on the DEWMA chart, can be expanded to compare to the
EWMA chart. It shows more capability detecting than the
EWMA chart for all studies under the condition’s study. So,
the DEWMA chart is an excellent option for identifying
tiny and moderate shift changes in both simulated and real

data under autocorrelated data, particularly when specified
as λ1 < λ2. And then, the fitted model is the quadratic
trend AR(1) model, similar to the reviews of literature in
the first section, such as [20], [21]. However, determining
the appropriate values of the DEWMA control chart in these
scenarios might be difficult. As a consequence, determining
the most appropriate values for the parameters of the
DEWMA control chart should be researched further. The
study’s scope might be expanded to include various types
of procedures for actual data with varying features.
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TABLE I
COMPARING ARL1 OBTAINED BY THE ANALYTICAL AND NUMERICAL
IE TECHNIQUES OF THE DEWMA CHART UNDER QUADRATIC TREND

AR(1) PROCESS FOR ARL0 = 370 WITH η = 1, ω = 0.3, ϱ = 0.5,
λ1 = λ2 , AND λ2 = 0.05

δ ϕ1 0.2 -0.2

h 0.000050495 0.0000753491

0.0001 φ(ν) 313.301115208 316.749204596

ϑ(ν) 313.301115172 316.749204512

time 2.749 2.875

%APRC 1.169E-08 2.651E-08

0.0005 φ(ν) 193.759037054 201.040395570

ϑ(ν) 193.759037035 201.040395526

time 3.015 2.953

%APRC 9.816E-09 2.215E-08

0.001 φ(ν) 131.318612119 138.142914506

ϑ(ν) 131.318612106 138.142914478

time 2.937 2.922

%APRC 9.635E-09 2.029E-08

0.005 φ(ν) 37.1051635088 39.8438802849

ϑ(ν) 37.1051635061 39.8438802786

time 2.938 2.890

%APRC 7.187E-09 1.594E-08

0.01 φ(ν) 19.8423547644 21.3717437523

ϑ(ν) 19.8423547631 21.3717437491

time 2.874 2.891

%APRC 6.649E-09 1.495E-08

0.05 φ(ν) 4.70243308278 5.04802587954

ϑ(ν) 4.70243308255 5.04802587898

time 2.859 2.953

%APRC 4.897E-09 1.112E-08

0.1 φ(ν) 2.73243894931 2.91289706242

ϑ(ν) 2.73243894922 2.91289706217

time 2.907 2.938

%APRC 3.572E-09 8.257E-09

0.2 φ(ν) 1.76041426731 1.85490762548

ϑ(ν) 1.76041426727 1.85490762539

time 2.921 2.984

%APRC 2.044E-09 4.856E-09

0.5 φ(ν) 1.21993867069 1.25871817298

ϑ(ν) 1.21993867068 1.25871817296

time 2.954 3.079

%APRC 5.459E-10 1.384E-09
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TABLE II
COMPARING ARL1 OBTAINED BY THE ANALYTICAL AND NUMERICAL
IE TECHNIQUES OF THE DEWMA CHART UNDER QUADRATIC TREND
AR(1) PROCESS FOR ARL0 = 370 WITH η = 1, ω = 0.3, ϱ = −0.5,

λ1 = 0.4λ2 , AND λ2 = 0.10

δ ϕ1 0.4 -0.4

h 0.000109152 0.00024334

0.0001 φ(ν) 315.889777618 323.832324169

ϑ(ν) 315.889777454 323.832323309

time 2.906 2.844

%APRC 5.206E-08 2.657E-07

0.0005 φ(ν) 199.240725216 215.440208438

ϑ(ν) 199.240725142 215.440208015

time 3.016 2.984

%APRC 3.720E-08 1.963E-07

0.001 φ(ν) 136.443960371 152.006719469

ϑ(ν) 136.443960332 152.006719232

time 3.015 2.952

%APRC 2.904E-08 1.560E-07

0.005 φ(ν) 39.1525099033 45.7143936031

ϑ(ν) 39.1525098968 45.7143935633

time 2.968 3.001

%APRC 1.659E-08 8.718E-08

0.01 φ(ν) 20.9843982909 24.6865939244

ϑ(ν) 20.9843982880 24.6865939066

time 2.875 2.968

%APRC 1.395E-08 7.214E-08

0.05 φ(ν) 4.95988722533 5.80596282070

ϑ(ν) 4.95988722487 5.80596281788

time 3.000 2.970

%APRC 9.353E-09 4.859E-08

0.1 φ(ν) 2.86662958919 3.31058262434

ϑ(ν) 2.86662958900 3.31058262314

time 2.938 2.921

%APRC 6.802E-09 3.642E-08

0.2 φ(ν) 1.83047591840 2.06524855418

ϑ(ν) 1.83047591833 2.06524855372

time 2.921 3.077

%APRC 3.943E-09 2.233E-08

0.5 φ(ν) 1.24850986344 1.34814254776

ϑ(ν) 1.24850986342 1.34814254766

time 2.907 2.999

%APRC 1.101E-09 7.105E-09

TABLE III
THE QUADRATIC TREND AR(1) COEFFICIENTS FOR THE DATASET OF
NATURAL GAS FUTURES PRICE FROM JANUARY 2018 TO FEBRUARY

2024

Variable Coefficient Std. Error t Sig.

AR(1) (ϕ1) 0.877 0.055 15.832 0.000

ω 0.182 0.062 2.956 0.004

ϱ -0.002 0.001 -2.028 0.046
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TABLE IV
TESTING THE SUITABILITY OF EXPONENTIAL WHITE NOISE USING THE

KOLMOGOROV-SMIRNOV TEST

α0 Kolmogorov-Smirnov Z Sig.

0.7166 0.920 0.366

TABLE V
COMPARING ARL1 OBTAINED BY THE ANALYTICAL AND NUMERICAL
IE TECHNIQUES WITH NATURAL GAS FUTURES DATASETS ON DEWMA

CHART AND FITTED MODEL AS A QUADRATIC TREND AR(1) WITH
η = 0, ω = 0.182, ϱ = −0.002, ϕ1 = 0.877 AND λ1 = λ2

λ1 λ1 = λ2

δ λ2 0.05 0.10

h 0.0000288496 0.000467211

0.0001 φ(ν) 310.901613026 324.150749630

ϑ(ν) 310.901613005 324.150748639

time 2.922 3.062

%APRC 6.741E-09 3.058E-07

0.0005 φ(ν) 189.659149414 216.766540925

ϑ(ν) 189.659149404 216.766540433

time 2.718 2.892

%APRC 5.329E-09 2.269E-07

0.001 φ(ν) 127.636993174 153.405301968

ϑ(ν) 127.636993167 153.405301691

time 2.938 3.031

%APRC 5.176E-09 1.805E-07

0.005 φ(ν) 35.6990496113 46.3658120666

ϑ(ν) 35.6990496097 46.3658120199

time 3.000 2.922

%APRC 4.502E-09 1.007E-07

0.01 φ(ν) 19.0635634790 25.0601229655

ϑ(ν) 19.0635634782 25.0601229446

time 2.875 2.999

%APRC 4.235E-09 8.318E-08

0.05 φ(ν) 4.52791571863 5.89271333767

ϑ(ν) 4.52791571849 5.89271333437

time 2.906 2.953

%APRC 3.088E-09 5.604E-08

0.1 φ(ν) 2.64160786349 3.35634366506

ϑ(ν) 2.64160786343 3.35634366365

time 3.000 3.032

%APRC 2.224E-09 4.210E-08

0.2 φ(ν) 1.71316014403 2.08966421554

ϑ(ν) 1.71316014401 2.08966421499

time 2.859 2.985

%APRC 1.249E-09 2.594E-08

0.5 φ(ν) 1.20096916623 1.35878369486

ϑ(ν) 1.20096916623 1.35878369475

time 2.969 2.968

%APRC 3.222E-10 8.344E-09

TABLE VI
COMPARING ARL1 OBTAINED BY THE ANALYTICAL AND NUMERICAL
IE TECHNIQUES WITH NATURAL GAS FUTURES DATASETS ON DEWMA

CHART AND FITTED MODEL AS A QUADRATIC TREND AR(1) WITH
η = 0, ω = 0.182, ϱ = −0.002, ϕ1 = 0.877 AND λ1 = 0.4λ2

λ1 λ1 = 0.4λ2

δ λ2 0.05 0.10

h 0.000000175337 0.0000229736

0.0001 φ(ν) 275.628385856 304.303642943

ϑ(ν) 275.628385773 304.303642931

time 3.173 2.875

%APRC 3.012E-08 3.911E-09

0.0005 φ(ν) 136.404693741 178.177387947

ϑ(ν) 136.404693763 178.177387941

time 2.921 2.984

%APRC 1.593E-08 3.214E-09

0.001 φ(ν) 83.7753961133 117.507762330

ϑ(ν) 83.7753961091 117.507762328

time 2.985 2.907

%APRC 5.067E-09 1.810E-09

0.005 φ(ν) 20.8899339504 31.9532604611

ϑ(ν) 20.8899339496 31.9532604606

time 2.906 2.985

%APRC 3.896E-09 1.484E-09

0.01 φ(ν) 11.0376255677 17.0019633053

ϑ(ν) 11.0376255674 17.0019633051

time 3.016 3.000

%APRC 2.167E-09 1.156E-09

0.05 φ(ν) 2.77237634817 4.06915151876

ϑ(ν) 2.77237634816 4.06915151873

time 2.968 2.968

%APRC 3.127E-10 7.709E-10

0.1 φ(ν) 1.74154967709 2.40371243003

ϑ(ν) 1.74154967709 2.40371243002

time 3.063 2.876

%APRC 1.205E-11 5.296E-10

0.2 φ(ν) 1.26250664800 1.59046811212

ϑ(ν) 1.26250664800 1.59046811212

time 2.938 2.969

%APRC 2.139E-11 2.785E-10

0.5 φ(ν) 1.04342648279 1.15326761212

ϑ(ν) 1.04342648279 1.15326761212

time 2.937 2.953

%APRC 9.576E-13 6.331E-11
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TABLE VII
COMPARISON OF ARL1 OBTAINED BY ANALYTICAL IE TECHNIQUE
WITH THE DATASETS OF NATURAL GAS FUTURES RUNNING ON THE

EWMA AND DEWMA CHARTS AND FITTED MODEL AS THE
QUADRATIC TREND AR(1) WITH PARAMETERS:

η = 0, ω = 0.182, ϱ = −0.002, ϕ1 = 0.877 FOR ARL0 = 370

Control chart

λ2 δ EWMA DEWMA DEWMA

λ1 = 1 λ1 = λ2 λ1 = 0.4λ2

0.0001 335.997 310.902 275.628

0.0005 245.680 189.659 136.405

0.001 183.992 127.637 83.775

0.005 61.595 35.699 20.890

0.051 0.01 33.958 19.064 11.038

0.05 8.010 4.528 2.772

0.1 4.486 2.642 1.742

0.2 2.704 1.713 1.263

0.5 1.640 1.201 1.043

0.0001 336.895 324.151 304.304

0.0005 246.653 216.767 178.177

0.001 184.882 153.405 117.508

0.005 61.996 46.366 31.953

0.102 0.01 34.188 25.060 17.002

0.05 8.061 5.893 4.069

0.1 4.511 3.356 2.404

0.2 2.716 2.090 1.590

0.5 1.645 1.359 1.153
1b = 0.00822407, h = 0.0000288496,and h = 0.000000175337 for λ1 = 1, λ2 , and 0.4λ2

2b = 0.0165435, h = 0.000467211, h = 0.0000229736 for λ1 = 1, λ2 , and 0.4λ2

TABLE VIII
RMI AND AEQL VALUES FOR INDICATED PERFORMANCE OF CHARTS

Control chart EWMA DEWMA

λ2 λ1 λ1 = 1 λ1 = λ2 λ1 = 0.4λ2

0.05 RMI 1.269 0.460 0.000

AEQL 0.065 0.045 0.037

0.10 RMI 0.667 0.317 0.000

AEQL 0.066 0.053 0.043
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