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Process Driven by Liu Process
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Abstract—Statistical inference is a critical issue in the appli-
cations of uncertain differential equations. In this paper, such
a parameter estimation problem is formulated for Ornstein-
Uhlenbeck process driven by Liu process from discrete obser-
vation. The contrast function is given to obtain the least squares
estimators. The consistency and asymptotic distribution of two
estimators are derived. Some numerical simulations and an
empirical analysis on the loan interest rates of RMB under
the real data are provided to verify the effectiveness of the
estimation methods.

Index Terms—1Least squares estimation; Ornstein-Uhlenbeck
process; Liu process; consistency; asymptotic distribution

I. INTRODUCTION

Almost all systems are affected by noise and exhibit
certain random characteristics ( [9], [10]). When modeling
or optimizing a stochastic system, due to the complexity
of the internal structure and the uncertainty of the external
environment, parameters of the system are unknown. In
the past few decades, many authors studied the parameter
estimation problem for stochastic differential equations. For
example, Prakasa Rao ( [15]) discussed the asymptotic
properties of the maximum likelihood estimator and Bayes
estimator for linear stochastic differential equations driven
by a mixed fractional Brownian motion. Ginovyan ( [4])
studied parameter estimation for Lévy-driven continuous-
time linear models with tapered data. When the system
is observed discretely, Hu et al. ( [5]) derived the strong
consistency of the least squares estimator for the fractional
stochastic differential system. At the same year, Hu et
al. ( [6]) studied the parameter estimation for fractional
Ornstein-Uhlenbeck processes with general Hurst parameter.
Wei ( [17]) analyzed the estimation for Cox-Ingersoll-Ross
model driven by small symmetrical stable noises. Kaino and
Uchida ( [8]) considered a linear parabolic stochastic partial
differential equation with one space dimension. When the
system is observed partially, Xiao et al. ( [20]) provided least
squares estimators for Vasicek processes, derived the strong
consistency and asymptotic distribution of estimators. Wei (
[19]) analyzed state and parameter estimation for nonlinear
stochastic systems by extended Kalman filtering. Botha et al.
( [1]) investigated particle methods for stochastic differential
equation mixed effects models.

In practical problems, it is difficult to apply the general
theory to build models because of some emergencies. Liu
( [12]) created the uncertainty theory to address this uncer-
tainty. Then, Liu ( [13]) perfected the uncertainty theory by
establishing four axioms and proposed the Liu process. Liu
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process is the uncertain process for dealing with dynamic
systems in uncertain environments. In recent years, parameter
estimation for stochastic differential equations driven by Liu
process has been discussed in some literature. For instance,
Yao and Liu ( [22]) used the method of moments to estimate
the parameters in uncertain differential equations. Sheng et
al. ( [16]) employed least squares estimation for uncertain
differential equations and proposed a principle of minimum
noise. Yang et al. ( [21]) used a-path approach to estimate the
parameter of uncertain differential equations from discretely
sampled data. Lio and Liu ( [11]) applied the method of mo-
ments to estimate the time-varying parameters in uncertain
differential equations. Liu and Liu ( [14]) provided a new
method in uncertain differential equation based on uncertain
maximum likelihood estimation.

The Ornstein-Uhlenbeck process is extensively used in
finance during the past few decades as the one-factor short-
term interest rate model. Therefore, statistical inference for
Ornstein-Uhlenbeck processes has been studied by many
authors. For example, Chen et al. ( [2]) showed the Berry-
Esseen bound of the least squares estimator for fractional
Ornstein-Uhlenbeck processes based on continuous-time ob-
servation. Chen and Zhou ( [3]) considered an inference
problem for an Ornstein-Uhlenbeck process driven by a
general one-dimensional centered Gaussian process. Zhang
et al. ( [23]) discussed the parameter estimation for Ornstein-
Uhlenbeck driven by Ornstein-Uhlenbeck processes with
small Lévy noises. Hu and Xi ( [7]) proposed generalized
moment estimators to estimate the parameters and proved the
strong consistency and asymptotic normality. Wei and Xu (
[18]) studied least squares estimation for Ornstein-Uhlenbeck
process driven by sub-fractional Brownian processes from
discrete observations. Different from above literature, we
considered the parameter estimation for Ornstein-Uhlenbeck
process driven by Liu process. In this paper, the contrast
function is introduced to obtain the least squares estimators.
The consistency and asymptotic distribution of the esti-
mators are derived by Markov inequality, Cauchy-Schwarz
inequality and Gronwall’s inequality. The rest of this paper
is organized as follows. In Section 2, we give the contrast
function to obtain the least squares estimators. In Section
3, we obtain the consistency and asymptotic distribution of
the estimators. In Section 4, some numerical simulations are
provided. An empirical analysis on the loan interest rates of
RMB under the real data is provided. The conclusion is given
in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

Firstly, we give some definitions about uncertain variables
and Liu process.

Definition 1: ( [12], [13]) Let £ be a o-algebra on a
nonempty set I'. A set function M : £ — [0,1] is called
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an uncertain measure if it satisfies the following axioms:
Axiom 1: (Normality Axiom) M(T') = 1 for the universal
set I

Axiom 2: (Duality Axiom) M(A) + M(A°) = 1 for any
event A.

Axiom 3: (Subadditivity Axiom) For every countable se-
quence of events Ay, Ao, -+,

M{UA}<ZM{A}

i=1

Axiom 4: (Product Axiom) Let (I'y,, Li, M) be uncertainty
spaces for k = 1,2, ---. Then the product uncertain measure
M is an uncertain measure satisfying
M{IIZ A} = mlan{Ak}

where Ay are arbitrarily chosen events from Lj for k =
1,2, -

An uncertain variable £ is a measurable function from the
uncertainty space (T, £, M) to the set of real numbers.

Definition 2: ( [12]) For any real number z, let £ be an

uncertain variable and its uncertainty distribution is defined
by

O(x) = M(£ < x).
In particular, an uncertain variable £ is called normal if it
has an uncertainty distribution

(\fg‘r))) 171, c 8?7

denoted by N (p,0). If 4 =0, 0 =1, £ is called a standard
normal uncertain variable.

Definition 3: ( [13]) An uncertain process C; is called a
Liu process if
(1) Cp = 0 and almost all sample paths are Lipschitz contin-
uous, (ii) Cy has stationary and independent increments, (iii)
the increment C's s —C has a normal uncertainty distribution

O(z) = (1 + exp(

—TT 4
— ) Lz eR
V3t e

In this paper, we study the parametric estimation prob-
lem for the following uncertain Ornstein-Uhlenbeck process
driven by Liu process:

Dy (z) = (1 + exp(

dXt (Oé — 5Xt)dt + EdCt, t> 0,
(1
Xo =0,

where o and 3 are unknown parameters, ¢ € (0,1], C; is
Liu process. It is assumed that {X;,t > 0} is observed at n
regular time intervals {t; = £,i =1,2,--- ,n}.

Consider the following contrast function

n

Z‘Xti - Xt'i—l - (Oé - BXti—l)Ati—l|27 (2)

=1

pn,&‘(av ﬁ) =

where Ati,1 = ti — ti,1 = %

It is easy to obtain the least square estimators

a _nyia (X — Xy )X Z:‘L:l X,
e i X )P —n i X
B nZZ (X, — X, 1)21 1 X
(Zi:l Xtiq) - nZi:I Xt%fl
n’ Z?:1(Xt - Xt )Xy,
i Xe )P —ndlil X2,
_ HZ?zl(th — Xti—l) 21':1 Xti—l
(Z?:l X )2 = ”Z?:l Xt%_l '

3)

~
ﬁn,e =

III. MAIN RESULTS AND PROOFS

Let X° = (X?,t > 0) be the solution to the following
ordinary differential equation:

dX? = (g — BoXD)dt, X = o, 4)

where aq and [y are true values of the parameter.
Since

t; ti

Xsds—i—s/ dCs. (5)

ti—1

1
Xti - Xti71 = gao - ﬁO

ti—1
Then, @, . and 3, . can be rewritten as follows:

nfBo > i f% | Xsds 3070 X2 s

a =« - =
ne o+ (zi X PnSi, XE
nBo >ty Xe;_ 1ft L Xs d521 1 Xt _q
i 1th NE 7712 ti—1
n521 1 X ti 1ft Xti—l
(o Xy )7 —"Z .
ne Y i 1ft1 ldC ZL 1 X
(i Xeyy )P—n iy X7
Bo > i 1ff de* e X2 _1
B ERE 5 e P L :uxil
7ﬁ02i=lxt7‘,—1 fii71 sdéi 1 X,
(%ZLlth‘,—l)Q_vlT i= 1XQL 1
t;
ey Xe, [y}, dCsx 771 1 Xty
(%Zrzlxti—l)zii le 1
n t;
. X 1ft; ldC 12
(% . 1th 1)2 n = 1Xt21'71
B . nBo 37 1ft, 1 Xs ds 37 X'z 1
e i X, )2—n 2o X7
2 n tg
n=fo > 0, X, 1 f"i—l Xds
(i Xy 4)2—n i X7,

2 n ti
n'e iy Xo;_y Ji), dCs

tem s
n t; n
"Ezz lftl 1dC 2 1Xt7 1
( Xt, 1) —”Z ti_1
BOZ?I.L de ?1Xt, 1
T GXE 1th DEE-DID ¢
BOEL 1 Xt 1ft X ds
1 2 __ n 2
( —1 Xty 1) n Lai= 1Xt13,1
+ 527 1 Xty ftl 1 Cs
(% ?1Xn 1)27% i X2 -1
€21 fti;l dCs 5 Ei:l

(%Z?:lxti_1)2_% 71X2 1.
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Next, we give some lemmas which are very important for
proving the main results.

Lemma 1: When ¢ — 0 and n — oo, we have

sup | X; — X7 Bo.
0<#<1

Proof: Note that
t t
X, — X! = —50/ (X — X%)ds + 5/ dCs.  (6)
0 0

Since Cy = 0, by using Cauchy-Schwarz inequality, we
have

X — X7
t
< 253\/ (X, — X)ds|? 4 2¢2|C, |2
0
t
< 2631&2/ | X, — X22ds + 2¢% sup |Cy]?.
0 0<t<1

By applying Gronwall’s inequality, we obtain

X, — X0 < 26262568 sup |Gy, (7
0<t<1
Thus, we get
sup |X; — XP| < V2eePt sup |Ct|. (3)
0<t<1 0<t<1

Therefore, when ¢ — 0 and n — oo, we have

sup | X; — X9 5 0. 9)
0<t<1
The proof is complete. ]

Lemma 2: When ¢ — 0 and n — 0o, we obtain
BN 2 P ! 042
—ZXt,_l—>/ (X?)2dt.
niI 0

Proof: Note that

1 — 1 — 1 —
S Kb =D ()P D (XL - (X)),
=1 1=1 =1
(10)
We have
1 ¢ 0 2 P ! 0\2
;Z(Xti*l) S (x93t (11
T =1 0

According to Lemma 1, when ¢ — 0 and n — oo, we

obtain

1 n
(X, = (X))
=1
1 n
= |ﬁ Z(Xti—l + Xl?i—l)(Xti—l N Xg—1)|

i=1

IN

1 n
-~ DX = X0 (X [+ 1X )
=1

IN

1 n
E Z(|Xﬁ71 - Xtoi,l ‘2
1=1

+2|Xt07,71 ‘ |Xti71 - X271 |)

1 n
= ﬁ ZIXti—l - X?i,l ‘2
1=1

1 n
+2E Z|X271 | |Xti71 - X271 ‘
i=1

< ( sup |X; — X7|)*
0<t<1

1 n
+2 sup | X; — X91= ) |x°
Ogtlg)l‘ ¢ tIn;I to |

£o.

Therefore, we obtain
1 ¢ 2 P! 042
=3 X7, %/ (X0)2dt.
nim 0

The proof is complete. [ |
Theorem 1: WhenAs — 0, n — oo, the least squares
estimators @, . and 3, . are consistent, namely

12)

~ P ~ P
On.e — O, Bn,e — BO~
Proof: From Lemmas 1-2, we obtain

1 n 1 n P 1 1
X X, B ([ xbai- [ (x0pan
i=1 i=1

(13)
As %Z?:l Xth‘—l £> fol(X?)2dt and %Z?:l th‘—l £>

fol X?dt, when € — 0 and n — oo, we have

n t; n 1 1
i 1 P
ﬂOZ/t_ IXsdsEZXEH %ﬂg/o det/o (X0)2dt,
=1 - =1

(14)
and
n t; 1 n P
Bo > Xi,, Xods— > X, 5
i=1 i1 i=1
1 1
BO/ (XE)th/ XPdt.
0 0
Then,

n t; n
502/ X,dst S OXE
i=1Yti-1 ni3

n t; 1 n
60> X, / Xds— Y Xi, Lo,
i=1 tio1 i=1

Volume 54, Issue 8, August 2024, Pages 1643-1648



TAENG International Journal of Applied Mathematics

Since According to Lemma 1, when ¢ — 0, n — oo and ne —
00, we have

n ti
;Xt“/t ldC Zth (Ch = C ), (5) %Zth / X.d|

i—
ti—

and B
. 1 <Y X [ K
P S ti—
ZXti—l(Cti - Cti—l) - / ngcta (16) =t " '
— 0
1 g—ln—lﬂoqutifl X 1+1x2_D)
when n — oo. i=1
Then, when € — 0 and n — oo, we have ti_?g&tjxt'
P
n t; — 0.
P
X dCy = 0. 17
: ; fo /til (1n Then, we obtain
n t;
Thus, e 18 Z t X.ds £o.
i=1 7 ti-
ey Xi ftt_l dCEY"  Xe .y p . - Thus, we have
r - o — U. _ n t; 1
(% Ei:l Xti—l)Q - %Zi:l Xt%,l € 150 Zz‘:l ftl X ds Zz 1 ti—1 E) 0 (20)
, (EX iy X )2 =220, X
Furthermore, when ¢ — 0 and n — oo, it can be checked and
that N . "
n t; dC 1 n X2 57160 Zi:l th,—l ftll—l XSdS%L ZiZI X271 P
5Zi:1fti,1 ani 1% L (19) IS X, 2157 X7 — 0. (@21
' n Lui= tic1) 7 Lai= i—1
(% Z?:l Xti—l) Ez 1 tl 1 . " ! " 1
Since
. n t; 1
Therefore, when ¢ — 0 and n — 0o, we obtain ZXti—l / dc., B / XtodC's,
ti—1 0
~ P
O e — Q.
1 1 4 1 -
0 0
Using the same methods, we have /0 Xy dt /0 XpdCy = N(0,( /0 Xpdt)®)
~  p 1 4 1
Bn.e = Bo- cl/ (X9)2dt 5 /\/(07/ (X0)2dt),
0 0
The proof is complete. m Wwe obtain
Theorem 2: When € — 0, n — 0o and ne — oo, L d X0dt)? + 24t
e N @n,e — ag) > N0, fo Xoar)y? ? ) (22)
X0dt)? + th 0 o
e (@ne — a0) S N0, Uy - Jy (X ; ), As
fo XPdt)? fo dt 15
3 (ﬁn,s - 50)
J ) fl XOd¢ E_lﬁo Z?:l ftll_l XSdS% Z?:l Xty
-1 0t = 7 n
(Bn,e = o) = N0, Lxoq02 — [Y(x0 th)' (% Do Xt )2 — %Zi:l X7
(fO t ) fO( t) 1 n ti
e oD iy Xeis ftifl Xsds .
Proof: According to the explicit decomposition for &y, ¢, h Asr X, )2-1 Z” X —& B
it is obvious that . !
Zl 1 th 1 ‘[t,L 1
E_l(a” e Oé()) ( Z Xti—l) ~n Zi:l XtQi,l
_ t; n n i n
e Bo ity Jy, , Xs dst >0 Xt%,l 2im1 ti,l dCyy 3201 Xeiy
(n Zi:l Xti—l) Zz 1 1‘Z 1 (% Z?:l Xti71)2 — % Z;L:l th,
e~ 6o Yo Xiy ‘[ti—l Xsdsg DD, O It is obvious that
- n ; n — t 7
(% Zi:l Xti—1)2 - %Zi:l Xt21-,1 160 Zz 1J¢;_ Xd lZil lth—l
S X ) LdCE YT Xy (5 2 Xti—l) 5 i X
+ 7 = 0 - n :
(% Zi:l th‘,—l)2 - % Zi:l Xt27;_1 B € 1ﬁ0 Zi:l Xti—l fti,1 Xst
S [ dC A Y X2 (3 i Xea)? = 5 i X7
_ ] " »
(3 i X )2 = 5 o X7 —e" 160 =0, (23)
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TABLE 1 . . .
LEAST SQUARES ESTIMATOR SIMULATION RESULTS OF ctg AND g by uncertain Ornstein-Uhlenbeck process as Equation (1).
Then, we derive the least squares estimators
True Average Value Absolute Error (an,67 Bn,e) = (9~16777 2'3298)
(a0.50) S N 3 a B Thus, let ¢ = 0.95, the uncertain Ornstein-Uhlenbeck
@0, 0] Sl an " Oi) ”‘ 607 process could be written as
1000 10528 2.0463 00528  0.0463 dX; = (9.1677 — 2.3298X;)dt + 0.95dC}.
(1,2) 2000 1.0271 2.0195 0.0271 0.0195 Hence, the 9-path th (O <0< 1) is the solution of
following ordinary differential equation
5000 1.0049 2.0027 0.0049 0.0027
p 0 V3 0
dX{ = (9.1677 — 2.3208X{)dt + 0.95~ " In -—dt.
. _
and
n ; TABLE III
Doy Xty j;i_l dCy LOAN INTEREST RATE OF RMB FROM 4/21/1991 TO 4/20/2020.
(i X )2 = i X2,
t; 1
DD I SRS DD O n 12 3 4 5 6 7 8 9 10
(F X X ) = w2 X2,
1 t; 0 0.60 120 1.80 240 3.00 3.60 4.20 4.80 5.40
d 2 [, XPdt
SNO, ). (24
(Jo XPdt)? — [ (XP)2dt Xi, 972 1224 1476 1530 12.42 10.53 1035 7.56 621 5.76
Then, we have
5 fl Xod n 11 12 13 14 15 16 17 18 19 20
1.5 d £dt
e (Bre = Bo) SN0, ————7 ———). (29)
(Jo XPdt)? — [ (XP)2dt ti 600 660 720 7.80 840 9.00 9.60 10.20 10.80 11.40
The proof is complete. ]

X¢, 324 225 198 220 250 2.80 3.05 330 3.05 2.80

IV. SIMULATION
n 21 22 23 24 25 26 27 28 29 30

In this experiment, we use iterative approach to generate a
discrete sample (X, ,)i=1,..» and compute &, . and [, .
from the sample. We let zp = 0.1, the size is increasing
from 1000 to 5000. In Table 1, ¢ = 0.1. In Table 2, ¢ =
0.01. The tables list the value of least squares estimators X, 6.60 680 655 615 515 490 490 546 480 4.65
“Qn.e”, " Bn.e”, the absolute errors “|&iy, « —ao|”,”|Bn.e — Bol”
and the confidence interval. According to Figure 1, all observations fall into the area

The tables illustrate that when n is large enough and € is  petween 0.01-path X% and 0.99-path X?-99. Therefore, the
small enough, the obtained estimators are very close to the  methods used in this paper are reasonable.
true parameter value. If we let n converge to the infinity and
€ converge to zero, the estimator will converge to the true

t; 12.00 12.60 13.20 13.80 14.40 15.00 15.60 16.20 16.80 17.40

value. 18 ‘ ‘
16 - ]
TABLE 11 )

SIMULATION RESULTS OF CONFIDENCE INTERVAL OF oo AND ﬁ() 14 B
12 B
True Average Value 0.95 10 |
8 \’ il

(a0, Bo) Size n Qin Bn confidence 11
interval of 60 1

a0 |
4H J
1000 1.0364 2.0381 [0.9201,1.1965] 2 7\\ |

\

(1,2) 2000 1.0105 2.0113 [0.9636,1.1086] or \\ 1
5000 1.0008 2.0007 [0.9920,1.0327] -2 ]

We verify the results under the real data in this section.
Table 3 shows the real data about loan interest rate of RMB
from 4/21/1991 to 4/20/2020. The interest rate is described

Fig. 1. Observations and 6-path of X;
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V. CONCLUSION

In this paper, we have studied the problem of parameter
estimation for Ornstein-Uhlenbeck process driven by Liu
process from discrete observations. We have derived the
consistency and asymptotic distribution of the estimators. We
will consider the parameter estimation for partially observed
uncertain differential equations in future works.
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