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Abstract—The study employs sensitivity analysis and optimal
control algorithms to understand the dynamics of COVID-19
comprehensively. It assesses the stability of equilibrium points
and computes the basic reproduction number using a next-
generation matrix. Additionally, it investigates both the global
and local stability of the disease-free equilibrium point and
identifies the potential emergence of an endemic equilibrium
if the basic reproduction number surpasses one. Sensitivity
analysis of the fundamental parameters is conducted, and the
model is calibrated with actual COVID-19 case data from India.

Furthermore, the study extends the model to include optimal
control utilizing the Pontryagin maximum principle. This opti-
mal control strategy integrates the use of face masks, hand
sanitizers, and isolation as control measures. Mathematical
simulations are employed to evaluate the effectiveness and cost-
efficiency of various control strategies. Based on the analysis
and simulations, the study suggests that the most effective
and economically feasible approach to curbing the spread of
COVID-19 involves a combination of wearing face masks, using
hand sanitizers, and practicing social isolation. This research
provides valuable insights into the dynamics of COVID-19,
emphasizing the significance of adopting control measures such
as wearing face masks, using hand sanitizers, and adhering to
social distancing to mitigate the virus’s spread.

Index Terms—SIQR Model, reproduction number, stability
analysis, equilibrium.

I. INTRODUCTION

IN December 2019, Wuhan, China, witnessed the emer-
gence of a novel coronavirus strain, swiftly spreading

globally and prompting the WHO to declare a pandemic in
March 2020. Named COVID-19, this coronavirus is believed
to have originated from transmission between snakes and bats
to humans, with the initial outbreak traced back to the Wuhan
seafood market, as determined by the WHO.

The zoonotic nature of COVID-19 underscores the im-
portance of understanding infectious diseases originating
in animals and their potential impact on human health.
Additionally, the unprecedented global spread of the pan-
demic underscores the interconnectedness of our world and
the imperative for collaborative efforts in addressing such
health crises. International research and collaboration have
played a crucial role in combating the virus, showcasing

Manuscript received September 25, 2023; revised June 26, 2024.
R. Ramesh is an Assistant Professor in the Department of Mathematics

at Faculty of Engineering and Technology, SRM Institute of Science and
Technology, Ramapuram-600 089, Chennai, Tamil Nadu, INDIA. (e-mail:
rameshmaths106637@gmail.com).

G. Arul Joseph is an Assistant Professor in the Department of Mathe-
matics at College of Engineering and Technology, Faculty of Engineering
and Technology, SRM Institute of Science and Technology, Kattankulathur-
603 203, Chengalpattu District, Tamil Nadu, INDIA. (corresponding author
e-mail: aruljosg@srmist.edu.in).

the significance of global cooperation in tackling emerging
diseases.

The response to the COVID-19 pandemic highlights the
interconnectedness of nations and the essential role of collab-
oration in addressing and mitigating health crises. Through
international cooperation and dedicated research, countries
have developed comprehensive strategies to control the
spread of COVID-19 and identify effective treatments. These
collective efforts emphasize the importance of a unified
global response to emerging infectious diseases, highlighting
the ongoing need for collaboration and knowledge sharing to
safeguard global public health.

The pandemic has not only underscored the necessity
of a globally coordinated approach but also emphasized
collective responsibility. It has highlighted the importance
of nations working together, pooling resources and expertise
to confront emerging infectious diseases effectively. The
significance of shared knowledge has become increasingly
apparent, emphasizing the need for a united front to protect
individuals globally.

In essence, the COVID-19 pandemic has emphasized the
need for a global response to emerging infectious dis-
eases, underscoring the interconnectedness of nations and
the crucial role of international collaboration in addressing
health crises. The exemplary global response to the pan-
demic showcases the importance of fostering international
collaboration and maintaining a coordinated approach to
combating emerging infectious diseases. Beyond its impact
on global health, COVID-19 has disrupted financial markets,
educational systems, and social fabric worldwide.

Symptoms of COVID-19 range from coughing, sniffling,
and difficulty breathing to fatigue, headache, diminished taste
and smell, diarrhea, throat discomfort, and muscular dis-
comfort. Additionally, COVID-19 can affect various bodily
functions, including those of the lungs, liver, and kidneys.
The mortality rate varies among countries, influenced by en-
vironmental factors, dietary habits, and demographic factors
such as age and pre-existing conditions like diabetes, cancer,
and obesity. Individuals aged 60 and above, especially those
with underlying health conditions, face an increased risk of
severe infection.

The incubation period of COVID-19 ranges from 2 to 14
days, during which an infected individual may not display
symptoms but can transmit the virus to others. Understanding
these aspects of the disease is crucial for implementing
effective preventive measures and healthcare strategies to
mitigate its impact.

Public health professionals and regulators continuously
monitor the dynamics and transmission patterns of in-
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fectious diseases to formulate effective control mea-
sures. Community-wide education, self-protection initiatives,
proper use of face masks, avoiding large gatherings, main-
taining physical distance, and regular handwashing are fun-
damental preventive measures.

Implementing well-designed shutdown strategies and
promptly isolating exposed or infected individuals are es-
sential for curbing virus transmission. Vaccination programs
targeting high-risk individuals are crucial for building im-
munity. Collaboration between public health professionals,
regulatory bodies, and the general population is instrumental
in implementing and sustaining effective control measures.

In the realm of mathematical modeling, researchers strive
to devise accurate representations of the virus and formu-
late control methods to prevent its spread. Our research
introduced the SIQR model, categorizing infected individ-
uals into super-spreaders and those in isolation to enhance
disease assessment and prevention. This model integrates
non-pharmaceutical interventions such as quarantine, health
education, and maintaining physical distance to mitigate
virus transmission.

In conclusion, the COVID-19 pandemic has highlighted
the importance of a global response to emerging infectious
diseases and emphasized international collaboration in ad-
dressing health crises. The exemplary global response has
showcased the significance of fostering collaboration and
maintaining a coordinated approach to combating emerging
infectious diseases.

II. SIQR MATHEMATICAL MODELING OF INDIAN
PANDEMIC COVID-19 EQUATION

Based on the current situation, we categorize the human
population into four compartments:

S(t): Individuals susceptible to the virus, Q(t): Those
infected and isolated/quarantined, I(t): Individuals showing
symptoms of the illness, R(t): Individuals who have recov-
ered from COVID-19. In the Q(t) category, we assume that
some infected individuals are placed in quarantine, including
those who are isolated as part of this group.

TABLE I: PARAMETER MEANINGS FOR MODEL

Parameters Description

Λ Recruitment Rate

β Disease Transmission Rate from S to I

θ Disease Transmission Rate from I to Q

α Recovery Rate from I to R

λ Recovery Rate from Q to R

γ Natural Death Rate

dS
dt = Λ− βSI − γS

dI
dt = βSI − (γ + θ + α)I

dQ
dt = θI − (λ+ γ)Q

dR
dt = αI + λQ− γR

(1)

III. THE INDIAN PANDEMIC COVID-19 EQUATION HAS
A BOUNDED SOLUTION

The system’s (1) boundedness property.
Let M = S + I + Q + R then

dM
dt

=
dS

dt
+

dE

dt
+

dI

dt
+

dR

dt
dM
dt

= Λ− γM

then
dM
dt

+ γM ≤ Λ

We may get by integrating the above inequality and applying
Birkhoff and Rota’s theorem for differential equations.

M ≤ Λ

γ
[1− e−γt] + M0e

−γt (2)

now for t → ∞

Hence all the solutions of System of Nonlinear Equations (1)
that are commence in R5

+ are restricted in the region

IV. THE COVID-19 EQUATION‘S THE INITIAL ILLNESS
TRANSMISSION RATE FOR THE INDIAN PANDEMIC

The initial rate of illness transmission, commonly denoted
as R0, is a numerical measure that impacts the velocity of
illness propagation. An epidemic transitions into a pandemic
solely when R0 surpasses 1. This pivotal value is ascer-
tained through the next-generation matrix approach, which
involves computing the spectral radius of a square matrix.
This spectral radius signifies the maximum absolute value
of the eigenvalues of FV −1, where F denotes the Jacobian
of infection rate during the recruitment process, and V −1

represents the Jacobian of other transmission parameters in
disease equations. Therefore, it is appropriate to reference
the system as delineated in [18].

dI
dt = βSI − (γ + θ + α)I

dQ
dt = θI − (λ+ γ)Q

(3)

We can write the above system as

dy

dt
= F (y)− V (y)

y =

(
I
Q

)
, F (y) =

(
βSI
0

)
, V (y) =

(
(γ + θ + α)I
(λ+ γ)Q− θI

)
The absolute maximum eigenvalue of the matrix is used to
get the initial disease transmission number E0

(
ΛM
γ , 0, 0, 0

)
in the disease-free equilibrium, the Jacobian matrices of F
and V are now given by the

F = J
(
F
I0

)
=

(
βS0 0
0 0

)
V = J

(
V
I0

)
=

(
γ + θ + α 0

−θ λ+ γ

)
Then

V −1 =
1

(γ + θ + α)(λ+ γ)

(
λ+ γ 0
θ γ + θ + α

)
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Fig. 1: Under this Assumption the Mathematical Model of Indian Pandemic COVID-19

V −1 =

(
1

(γ+θ+α) 0
θ

(γ+θ+α)(λ+γ)
1

(λ+γ)

)
The initial illness transmission number (R0) of the matrix
FV −1 is given by,

FV −1 =

βS0 0
0 0

( 1
(γ+θ+α) 0

θ
(γ+θ+α)(λ+γ)

1
(λ+γ)

)

FV −1 =
βS0

(γ + θ + α)

R0 =
βΛ

(γ)(γ + θ + α)
(4)

V. PROCEDURE COVID-19 EQUATION EQUILLIBRIUM
SOLUTION FOR INDIA

There are two conceivable equilibrium states within the
system. The first is the disease-free equilibrium point, labeled
as E0, where infection is entirely absent from the population
and is determined by the initial susceptible population S0.
The second equilibrium point is the endemic equilibrium,
denoted as E1 (S∗, I∗, Q∗, R∗), where infection remains
consistently present in the system. This state is characterized
by stable values of the susceptible (S∗), infected (I∗),
quarantined (Q∗), and recovered (R∗) populations.

S∗ = γ+θ+α
β

I∗ = Λβ−γ(γ+θ+α)
β(γ+θ+α)

Q∗ = θ
λ+γ (

Λβ−γ(γ+θ+α)
β(γ+θ+α) )

R∗ = α(λ+γ)+θλ
γ(λ+γ) (Λβ−γ(γ+θ+α)

β(γ+θ+α) )

(5)

VI. COVID-19 INDIAN PANDEMIC IS LOCALLY
ASYMPTOTICALLY STABLE

In this part, we examine the regional asymptotic stabi-
lization requirement for various solutions. The disease-free
equilibrium, denoted as E0, is unstable if R0 > 1, but locally
asymptotically stable if R0 = 1.The Jacobian matrix of
system (1) at a disease-free equilibrium is given by [22].

J =


−γ −βS0 0 0
0 βS0 − (γ + θ + α) 0 0
0 θ −(γ + λ) 0
0 0 0 −γ



| J −KI |=[ −γ − k −βS0 0 0
0 (βS0 − (γ + θ + α)) − k 0 0
0 θ −(γ + λ) − k 0
0 0 0 −γ − k

]
the free of illness stability of characteristic Equn:(1) is now
indicated by

(k + γ)2(k + λ+ γ)(k + θ + γ + α)(1−R0) (6)

All of the Eigen values in the Jacobian matrix are manifestly
negatives if and only if R0 < 1. As a result, if R0 > 1,
the system is unstable; otherwise, it is locally asymptotically
stable. As a result was verified [25].

VII. ENDEMIC EQUILLIBRIUM EQUATION FOR THE
INDIAN PANDEMIC COVID-19

We are now looking at the local asymptotic stability of
the endemic equilibrium E1. The Endemic equilibrium E1

is locally asymptotically stable when R0 is smaller than one.
The Jacobian matrix of System Equn:(1) is provided by

J =


−βI∗ − γ −βS∗ 0 0

βI∗ βS∗ − (γ + θ + α) 0 0
0 θ −(γ + λ) 0
0 α λ −γ


| J −KI |=[ −βI∗ − γ − k −βS∗ 0 0

βI∗ βS∗ − (γ + θ + α) − k 0 0
0 θ −(γ + λ) − k 0
0 α λ −γ − k

]
The equation generated by equating to zero a system of equa-
tions’ characteristic polynomial Equn:(1) near its endemic
equilibrium E2 is [25]

(k+γ)(k+λ+γ)(λ2+λ(
β

(γ + θ)
−1))(γ)(γ+θ+α)(1−R0) = 0

(7)
According to the equation, the roots that remain are quadratic
polynomials roots, and the initial pair of roots are negative
real values Equn:(5). It’s additionally crucial to keep in mind
that all parametric parameters are positives. We could deduce
based on Routh- Hurwitz guidelines that the system Equn:(1)
is asymptotically stable locally at its endemic equilibrium
E1.

VIII. GLOBAL STABILITY ANALYSIS OF SIQR MODEL
FOR COVID-19

In epidemiological models, achieving global stability is
highly desirable because it indicates that the disease can be
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Fig. 2: Surface plot of R0 for a variable value of β = 0 to 1

Fig. 3: Plot for R0 for a fixed value of β = 0.8

Fig. 4: Contour plot of R0 as a function of β and γ

controlled or eradicated over the long term. This implies that
with effective measures to prevent the initial spread or rein-
troduction of the disease, it can be eliminated permanently.
The global stability of E0 in system Equn:(1) is established
by the following theorem.

Theorem 1. If the value of R0 is less than or equal to one,
the system described by Equation:(1) in the model achieves
global asymptotic stability.

Proof: We will now proceed to construct the following

Lyapunov function,

L1(S) = (S − S0)− S0 log

(
S

S0

)
(8)

where S0 = Λ
γ corresponding to the E0.

we obtain L1 = 0 ⇐⇒ S = S0.
By differentiating equation (8) with respect to t we get
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∂L1

∂t
= S

′
−
(
S0

S

)
S

′

∂L1

∂t
= S

′
[
1−

(
S0

S

)]
∂L1

∂t
= (Λ− βSI − γS)

[
1−

(
S0

S

)]
(9)

∂L1

∂t
= (Λ− βSI − γS)

[
1−

(
Λ

γS

)]
where S0 = Λ

γ

∂L1

∂t
= (Λ− βSI − γS)

[
γS − Λ

γS

]
∂L1

∂t
=

[
(Λ− γS)

2

γS

]
−
(
1− Λ

γS

)
βSI ≤ 0

By applying the Lyapunov theorem, E0 is globally asymptot-
ically stable (g.a.s.). Next, the global stability E1 in system
Equn:(1) is demonstrated.

Theorem 2. If the value of R0 exceeds one, the system
described by Equation: (1) becomes unstable within the
specified domain.

Proof: To demonstrate the global stability of E1, we will
attempt to construct the following Lyapunov function.

L2(M) = (M −M∗)−M∗ log

(
M

M∗

)
(10)

where M = S+I+Q+R and M∗ = S∗+I∗+Q∗+R∗

By calculating the time derivative of L2 along the solutions
of system (1), we obtain the following expression:

∂L2

∂t
= M

′
(
1− M∗

M

)
(11)

∂L2

∂t
= [Λ− γM ]

(
1− M∗

M

)
where M

′
= [Λ− γM∗]

∂L2

∂t
= [γM∗ − γM ]

(
M −M∗

M

)
∂L2

∂t
= −γ [M −M∗]

(
M −M∗

M

)
∂L2

∂t
= −γ

(
(M −M∗)2

M

)
≤ 0 (12)

Therefore, it can be observed that ∂L2

∂t is negative and
∂L2

∂t = 0 if and only if S = S∗, I = I∗, Q = Q∗, R = R∗

within domain 2 (Equn:(10)). Consequently, the singleton
set E1 is the largest positively invariant set contained within
(S, I,Q,R) ∈ Equn : (1) and L2 = 0 By the Lyapunov-
LaSalle theorem, we can conclude that E1 is globally asymp-
totically stable (g.a.s.).

IX. COVID-19 SENSITIVITY ANALYSIS IN INDIA

It is determined in this component if changing parameter
values affect the functional value of the fertility number.
Determining the crucial parameter that may function as
a critical threshold for illness treatment is essential. R0’s

sensitivity index to β, γ, α, θ be as follows [25]

∂R0

∂β
=

Λ

γ(γ + θ + α)

∂R0

∂γ
=

−βΛ(2γ + θ + α)

(γ(γ + θ + α))2

∂R0

∂θ
=

−βΛγ

(γ(γ + θ + α))2

∂R0

∂α
=

−βΛγ

(γ(γ + θ + α))2

Because partial derivatives of beta are positive, raising any of
the preceding elements raises the basic reproductive number
R0. The proportionate response to proportional stimulation
can be used to determine elasticity.

Eβ = β
R0

(∂R0

∂β ) = β
R0

( Λ
γ(γ+θ+α) ) = 1

Eγ = γ
R0

(∂R0

∂γ ) = γ
R0

(−βΛ(2γ+θ+α)
(γ(γ+θ+α))2 ) = −1.83

Eθ = θ
R0

(∂R0

∂θ ) = θ
R0

( −βΛγ
(γ(γ+θ+α))2 ) = −1.00166

Eα = α
R0

(∂R0

∂α ) = α
R0

( −βΛγ
(γ(γ+θ+α))2 ) = −1.1646

(13)

From the above system of equationsEβ is positive, while

Fig. 5: Sensitivity index of R0 against various parameter

Eγ ,Eθ,Eα. It’s all negative. This clearly illustrates that
raising the value of β will result in an increase in the value
of R0. While increasing the value of γ, θ, α will decrease the
value of R0, A highly susceptible factor should be thoroughly
investigated since minor modifications in the structure of the
system may result in large quantitative changes in R0.

X. FORMATION OF SIQR MODEL WITH
SYNCHRONIZATION

The slave system tracks the master system‘s trajectories
as part of SIQR system with synchronization. However, it
can be rephrased as the stabilization of the trajectories of a
nonlinear system representing a difference between [31] two
dynamics system. If one of the systems is master, and the
other one is slave. Using the optimal control techniques, we
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may adjust the slave system‘s response to synchronize [31]
with the master SIQR system. These functions only affect the
slave system and have no effect on SIQR system response
of the master, first we define a master system [31].

Ṡ1 = Λ− βS1I1 − γS1 − c1u1(t)

İ1 = βS1I1 − (γ + θ + α)I1 + c1u2(t)

Q̇1 = θI1 − (λ+ γ)Q1 + c1u3(t)

Ṙ1 = αI1 + λQ1 − γR1 − c1u4(t)

(14)

However, we define a slave system as follows

Ṡ2 = Λ− βS2I2 − γS2 − c2u1(t)

İ2 = βS2I2 − (γ + θ + α)I2 + c2u2(t)

Q̇2 = θI2 − (λ+ γ)Q2 + c2u3(t)

Ṙ2 = αI2 + λQ2 − γR2 − c2u4(t)

(15)

The control signals are represented by the unknown terms u1,
u2, u3, u4. This type of dynamical system can be defined as
the distinction between master and slave [31].

(ėS , ėI , ˙eQ, ˙eR) = (Ṡ2 − Ṡ1, İ2 − İ2, Q̇2 − Q̇2, Ṙ2 − Ṙ2)
(16)

The study of error dynamical systems resulted in the creation
of our time delay correlative synchronization controller [31].

ėS = (Λ− βS1I1 − γS1 − c1u1(t))
−(Λ− βS2I2 − γS2 − c2u1(t))

ėI = (βS1I1 − (γ + θ + α)I1 + c1u2(t))
−(βS2I2 − (γ + θ + α)I2 + c2u2(t))

˙eQ = (θI1 − (λ+ γ)Q1 + c1u3(t))
−(θI2 − (λ+ γ)Q2 + c2u3(t))

˙eR = (αI1 + λQ1 − γR1 − c1u4(t))
−(αI2 + λQ2 − γR2 − c2u4(t))

(17)

then

ėS = (S2 − S1)[β(I2 − I1) + γ] + (c1 − c2)u1(t)

ėI = (I2 − I1)[β(S2 − S1) + (γ + θ + α)]
+(c1 − c2)u2(t)

˙eQ = θ(I2 − I1)− [(λ+ γ)(Q2 −Q1)]
+(c1 − c2)u3(t)

˙eR = α(I2 − I1)[λ(Q2 −Q1)− γ(R2 −R1)]
+(c1 − c2)u4(t)

(18)

We define active control functions u1(t), u2(t), u3(t) and
u4(t) as [31].

(c1 − c2)u1(t) = VS − (S2 − S1)(I2 − I1)β
(c1 − c2)u2(t) = VI − (S2 − S1)(I2 − I1)β
(c1 − c2)u3(t) = VQ − (I2 − I1)θ
(c1 − c2)u4(t) = VR − (I2 − I1)α− (Q2 −Q1)λ

(19)

ėS = (S2 − S1)γ + VS = γeS + VS

ėI = (I2 − I1)(γ + α+ θ) + VI = (γ + α+ θ)eI + VI

˙eQ = −(Q2 −Q1)(γ + λ) + VQ = −(γ + λ)eQ + VQ

˙eR = −(R2 −R1)γ + VR = −γeR + VR

(20)

The terms VS , VI , VQ and VR are the linear function of the
error terms eS , eI , eQ and eR with the choice of u1,u2,u3

and u4 the error system between the master and slave system
becomes [31].

ėS = γeS + VS

ėI = (γ + α+ θ)eI + VI

˙eQ = −(γ + λ)eQ + VQ

˙eR = −γeR + VR

(21)

In fact, we do not solve the above equations if the
solution converges to zero, Therefore the control terms
VS(eS),VI(eI),VQ(eQ) and VR(eR) can be chosen such that
the above system of equations becomes stable with zero
steady state [31]. 

VS

VI

VQ

VR

 = A


eS
eI
eQ
eR

 (22)

Where A is a 4 x 4 real matrices so that all the eigen value of
λi of the above system satisfy the following condition [31].

| arg(λi) |>
απ

2
(23)

we choose

A =

 γ − k 0 0 0
0 (γ + θ + α)− k 0 0
0 0 −(γ + λ)− k 0
0 0 0 −γ − k


The eigen values of the linear system Equn:(22) are equal
(-k, -k, -k, -k) which is enough to satisfy the necessary and
sufficient condition of Equn:(23). In order to compare the
obtained result with that of the master–slave synchronization
scheme u1(t), u2(t), u3(t) and u4(t). When a fault error
in Figures:(6-9) occurs, the master–slave synchronization
error shown in Figures:(6-9). Moreover, the master is the
controlling device that initiates and coordinates the actions
of the other devices, known as slaves. Slaves are devices
that are controlled by the master. They follow the commands
or signals provided by the master device. Synchronization
error occurs when there is a mismatch or timing issue in the
communication or coordination between the master and slave
devices. For example, if the master expects a response from a
slave at a certain time and the slave does not respond within
that time frame, a synchronization error may occur. Now, a
Figures:(6-9) illustrating master and slave synchronization
errors might include timelines or sequences of events. It
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Fig. 6: Synchronization error with fault u1(t)

Fig. 7: Synchronization error with fault u2(t)

Fig. 8: Synchronization error with fault u3(t)

Fig. 9: Synchronization error with fault u4(t)
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could show when the master sends a command, when the
slave is supposed to respond, and any discrepancies or
errors that occur. The diagram might also depict factors like
delays, disruptions, or conflicts that lead to synchronization
errors[31].

XI. COVID-19 INDIAN PANDEMIC: OPTIMAL CONTROL

The prevention and control effort, such as the use of facial
masks by society, demonstrates an overall health awareness
campaign to educate people about the importance of facial
masks in avoiding COVID-19 transmission. The evaluation
attempt indicates efforts such as handwashing to avoid in-
fection, as well as maintaining distance. Through the use
of online platforms, radio, TV, and conventional communal
legitimacy, the public health awareness responsibility aims
to educate the public about the significance of maintaining
social distance and washing their hands. The measures em-
ployed to isolate those who were exposed to people with
the infection involve recruiting and instructing healthcare
providers to use protective clothing and footwear (PPE)
[22], recording the contact information of those exposed
to COVID-19 via home inspections and calls, providing
psychotherapy, offering emergency vehicles for transporting
people with the infection to quarantine centers, conducting
general/COVID-19 examinations, providing isolation centers
for medical care, and other related activities [30].

dS
dt = Λ− βSIu1(t)− γS

dI
dt = βSIu1(t)− (γ + θ + α)I

dQ
dt = θI − (λ+ γ)Q+ u2(t)R

dR
dt = αI + λQ− (γ + u2(t))R

(24)

K[u1(t), u2(t)] =

∫ tα

0

[I(t) +
1

2
C1u1

2(t) +
1

2
C2u2

2(t)]dt

(25)
The set of differential Equn:(1), subject to all control efforts
u1(t), u2(t), are considered to be limited and time-dependent
Lebesgue functions on the interval (0, t), where t is the final
time. The set of control efforts is defined as

Φ = (u1(t), u2(t)|0 ≤ u1(t), u2(t) ≤ 1, (0 ≤ t ≤ tα))

The variables C1 and C2 are the cost-balancing factors for
the use of a facial mask (u1), efforts of soaping hands
to avoid infection, as well as distance (u2), accordingly.
The expressions suggest the costs for the use of a facial
mask, efforts of soaping hands to avoid infection, as well
as distance, in that order. Due to the research on optimal
epidemic administration, the cost of the controls is deemed
to be nonlinear and quadratic [29, 30]. If u1 = u2 = 1, then
at time t, 100% effort is put into the use of a facial mask
and efforts of soaping hands to avoid infection, respectively
[28]. If u1 = u2 = 0, then there is no use of a facial
mask and efforts of soaping hands to avoid infection, no
isolation for the infected non-hospitalized individuals, and
no handwashing[33].

This section will look at the control time-dependent pa-
rameters. Our aim is to find an optimal control for the use
of a facial mask u1 and efforts of soaping hands to avoid

infection u2, such that

K [u∗
1(t), u

∗
2(t)] = min

(u1(t),u2(t)∈ϕ)
K [u1(t), u2(t)] (26)

Applying Pontryagin’s Maximum Principle to the COVID-
19 model of Equn:(3) yields the required conditions that an
optimum solution must meet. This concept transforms system
Equn:(3) and Equn:(14) into a problem of minimizing the
pointwise Hamiltonian, H1, which is denoted as:

U = (I, u1(t), u2(t), τ1, τ2, τ3, τ4)

U = L

[
I, u1(t), u2(t), τ1

(
dS

dt

)
, τ2

(
dI

dt

)
, τ3

(
dQ

dt

)
, τ4

(
dR

dt

)]
(27)

H = [I(t) +
1

2
C1u1

2(t) +
1

2
C2u2

2(t)]

+τ1(Λ− βSIu1(t)− γS)

+τ2(βSIu1(t)− (γ + θ + α)I) (28)
+τ3(θI − (λ+ γ)Q+ u2(t)R)

+τ4(αI + λQ− (γ + u2(t))R)

Let τi, where i = 1, 2, 3, ..., denotes the related costate
variables for the state variables S, I , Q, R. The following
theorem is stated using Equn:(7).

Theorem 3. Given an optimum control u∗
1(t), u∗

2(t), and
solutions S0

1(t), I01 (t), Q0
1(t), R0

1(t) of the related state
system Equn:(1) that minimize U(t), costate variables exist
that satisfy the following systems of equations.

τ̇1 =(τ1 − τ2)βu1I + τ1γ

τ̇2 =(τ1 − τ2)βu1S + (τ2 − τ3)θ

− (τ2 − τ4)α+ τ2γ

(29)
τ̇3 =(τ3 − τ4)λ+ τ3γ

τ̇4 =(τ4 − τ3)u2 + τ4γ

the transversely conditions were satisfied by the adjoint
variables

τ1(tα) = 0, τ2(tα) = 0, τ3(tα) = 0, τ4(tα) = 0

t ∈ tα

the optimality conditions are also listed.

u∗
1(t) = max

{
0,min

(
βS∗I∗(τ1−τ2)

C1

)}
u∗
2(t) = max

{
0,min

(
Q∗(τ3−τ4)

C2

)}
The differential equations regulating the costate variables
are found by differentiating the Hamiltonian function, H ,
at the corresponding solutions of equations Equn:(3) and
the optimum control with final time conditions.We try to
minimize the Hamiltonian using the control variable u∗

1(t),
u∗
2(t). Moreover, the Hamiltonian is linear in the control

parameter. If we consider the optimal control is singular,
then the switching function as
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For various values of u1 (0.02,0.04,0.05,0.06 and 0.1),
Fig: (10-13) represent the optimal control graph for usage
of a facial mask and no efforts of soaping of hands.

For various values of u2 (0.02,0.04,0.05,0.06 and 0.1),
Fig: (14-17) represent the optimal control graph for no
usage of a facial mask and efforts of soaping of hands.

τ̇1 = −∂U
∂S = (τ1 − τ2)βu1I + τ1γ

τ̇2 = −∂U
∂I = (τ1 − τ2)βu1S + (τ2 − τ3)θ

−(τ2 − τ4)α+ τ2γ

τ̇3 = −∂U
∂Q = (τ3 − τ4)λ+ τ3γ

τ̇4 = −∂U
∂R = (τ4 − τ3)u2 + τ4γ

(30)

This yields the costate system in Equn:(13). The optimality
requirements are specified in the interior of the control set.

Φ = (u1(t), u2(t)|0 ≤ u1(t), u2(t) ≤ 1, (0 ≤ t ≤ tα))

∂H1

∂U1
= C1u1 − τ1βSI + τ2βSI

∂H1

∂U1
= C2u2 − τ3Q+ τ4R

(31)

solving u1(t) as u∗
1(t) and u2(t) as u∗

2(t), then we get

u∗
1(t) =

(τ1−τ2)βS
0I0

C1

u∗
2(t) =

(τ3−τ4)Q
0

C2

(32)

Equn:(29) gives the optimal control efforts in compact form,
utilizing the boundaries of the controls u∗

1(t) and u∗
2(t). The

optimality system is given by Equn:(1), Equn:(26), together
with the optimality requirements Equn:(29)), the initial con-
ditions S0

1 , I01 , Q0
1 and R0

1 final time conditions Equn:(28).
Due to the a priori boundedness of the state variables, costate
functions, and the resulting Lipschitz structure of the ODEs,
the uniqueness of the optimality system solutions is obtained
for the small-time interval t ∈ tα.

XII. COVID-19 INDIAN EPIDEMIC NUMERICAL
ANALYSIS

We performed numerical modelling to examine the effects
of public education, quarantine, and handwashing, as well
as the fraction of exposed people who will be restricted.
This was carried out employing parameter values and initial
conditions from the COVID-19, SARS, and MERS literature
[30]. We initiated numerical simulations by considering the
values of the parameters in Table:(II). Since β is the disease-
induced mortality rate and γ is the natural death rate, we
may deduce that β < γ. As a starting point, consider these
traits along with the essential prerequisites.The following
are the initial conditions for the state variables: S(0) = 2,
I(0) = 0, Q(0) = 0 and R(0) = 0,We numerically solve our
proposed model Equn:(1). The numerical result is validated
when R0 < 1, and the solutions of model Equn:(1) converge
to the DFE, as illustrated in Fig: 2.
The forward backward sweep strategy is used to solve the
optimality system. Lenhart and Workman [30] describe
the scheme’s specifics. Many researchers have calculated

different values of the basic reproduction number for person-
to-person transmission, reservoir-to-person transmission,
and environmental transmission, and their results have
been compared with other types of coronaviruses, SARS,
and MERS, showing almost identical results [26, 29]. As
a result, we concentrate our numerical simulation on the
influence of various combinations of control interventions
with varying control profiles on the transmission dynamics
of COVID-19[33].

Fig:18-21 The solution curves for the model Fig:(1)
at disease free equilibrium point. Fig:(19-22) shows the
numerical results of the system Fig:(1) when R0 < 1.
These figures show that all numerical solutions for
the problem converged to the disease-free equilibrium
E0 = (1.1, 0.82, 0, 0.08) for the case R0 > 1.

Fig:(22-25) The solution curves for the model Fig:(1)
at Endemic Equilibrium point. Fig:(22-25). Dynamical phe-
nomena around Endemic Equilibrium. When R0 > 1 the nu-
merical results of the system Fig:(1) are depicted in Fig:(4).
These figures show that all numerical solutions converged
to the Endemic equilibrium.E∗(0.234, 3.134, 0.005, 0.6201)
for the case R0 > 1.

XIII. RESULT AND DISCUSSION

We conducted numerical modeling to assess the impacts
of public education, quarantine measures, handwashing, and
the restriction of the fraction of exposed individuals. This
analysis utilized parameter values and initial conditions
derived from existing literature on COVID-19, SARS, and
MERS [30]. The aim is to provide a comprehensive under-
standing of how these interventions, informed by previous
research, influence the dynamics of infectious diseases and
contribute to effective control strategies. We begin numerical
simulations by considering the values of the parameters in
Table:(??). Since β is the disease-induced mortality rate and
γ is the natural death rate, we may deduce that β > γ. As
a starting point, consider these traits as well as the essential
prerequisites. The following are the beginning conditions for
the state variables: S0 = 2, I0 = 0, Q0 = 0, and R0 = 0.
We numerically solve our proposed model Equn:(1). The
numerical result is validated when R0 < 1 and the solutions
of model Equn:(1) converge to the DFE.

The surface plot of R0 (basic reproduction number) for
a variable value of the beta (β) parameter provides a visual
representation of how changes in the transmission rate influ-
ence the potential spread of an infectious disease shown in
(Fig:2). The surface plot visually illustrates the relationship
between R0 and varying values of the β parameter. The x-
axis typically represents the β values, the y-axis represents
other relevant parameters, and the z-axis corresponds to the
resulting R0 values. When the surface plot is generated,
it allows researchers and epidemiologists to observe how
changes in the transmission rate (β) impact the overall
transmission potential of the disease. A steeper upward slope
on the surface plot indicates a higher R0, suggesting a
greater likelihood of widespread transmission. Conversely,
a flatter slope signifies lower transmission potential. This
type of visualization is invaluable in understanding the
sensitivity of R0 to changes in the transmission rate, helping
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Fig. 10: For various values of u1 (0.02,0.04,0.05,0.06 and 0.1) at susceptible rate.

Fig. 11: For various values of u1 (0.02,0.04,0.05,0.06 and 0.1) at infected rate.

Fig. 12: For various values of u1 (0.02,0.04,0.05,0.06 and 0.1) at quarantine rate.
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Fig. 13: For various values of u1 (0.02,0.04,0.05,0.06 and 0.1) at recovery rate.

Fig. 14: For various values of u2 (0.02,0.04,0.05,0.06 and 0.1) at susceptible rate.

Fig. 15: For various values of u2 (0.02,0.04,0.05,0.06 and 0.1) at infected rate.

Fig. 16: For various values of u2 (0.02,0.04,0.05,0.06 and 0.1) at quarantine rate.
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Fig. 17: For various values of u2 (0.02,0.04,0.05,0.06 and 0.1) at recovery rate.

TABLE II: PARAMETER MEANINGS FOR MODEL

Parameters Description Values/Range Reference

Λ Recruitment Rate 2 assumed

β Disease Transmission Rate from S to I 1.05 /day [11]

θ Disease Transmission Rate from I to Q 0.001 /day [11]

α Recovery Rate from I to R 0.9871 /day [25]

λ Recovery Rate from Q to R 0.1243 /day [25]

γ Natural Death Rate 0.5 [11]

Fig. 18: Plot for change in susceptible rate at disease free equilibrium point.

Fig. 19: Plot for change in infected rate at disease free equilibrium point.
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Fig. 20: Plot for change in quarantine rate at disease free equilibrium point.

Fig. 21: Plot for change in recovery rate at disease free equilibrium point.

Fig. 22: Plot for change in susceptible rate at endemic equilibrium point.

researchers make informed decisions about interventions and
control measures to mitigate the spread of infectious diseases.
It provides a dynamic and intuitive representation of the
complex relationship between transmission parameters and
disease dynamics.

The forward-backward sweep strategy stands as the chosen
method for solving the optimality system, with its details out-
lined by Lenhart and Workman [30]. This strategic approach
is employed to navigate the intricacies of the optimality
system efficiently. Numerous researchers have undertaken
the calculation of distinct values for the basic reproduc-
tion number, considering diverse transmission modes such
as person-to-person, reservoir-to-person, and environmental
transmission. Comparisons have been drawn between these

values and those associated with other coronaviruses like
SARS and MERS, revealing striking similarities [26, 29].

In light of the consistent findings across various trans-
mission modes and coronaviruses, our numerical simulations
hone in on a specific focus. We direct our attention to
exploring the impact of diverse combinations of control
interventions, each characterized by distinct control profiles,
on the transmission dynamics of COVID-19. This targeted
approach aims to unravel the nuanced interactions between
different control measures and their effectiveness in shap-
ing the trajectory of COVID-19 transmission. The change
in the SIQR (Susceptible-Infectious-Quarantined-Recovered)
rate at the disease-free equilibrium point refers to how the
rate of individuals transitioning through the SIQR compart-
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Fig. 23: Plot for change in infected rate at endemic equilibrium point.

Fig. 24: Plot for change in quarantine rate at endemic equilibrium point.

Fig. 25: Plot for change in recovery rate at endemic equilibrium point.

ments evolves when there is no active infection present in
the population.

The SIQR model is a compartmental model used to
represent the dynamics of an infectious disease within a
population. It divides individuals into different compartments
based on their disease status: Susceptible (S), Infectious (I),
Quarantined (Q), and Recovered (R) shown in Figs. 9. This
is a state in the model where no individuals are actively
infected. At this point, all individuals are in the susceptible
state, and there is no ongoing transmission of the disease.
The rate of change in the SIQR compartments signifies how
the numbers of individuals in each compartment are evolving
over time.

In this context, attention is directed towards the rate of

change within the SIQR compartment. The alteration in the
rate of change within the SIQR compartment at the disease-
free equilibrium point is affected by diverse factors, including
the efficacy of interventions, control measures, or variations
in model parameters. As an illustration, the rate might be in-
fluenced by the effectiveness of quarantine measures, public
health campaigns, or vaccination strategies. The examination
of the alteration in the SIQR rate offers insights into the
dynamic behavior of the model in the absence of continuous.
It helps to understand how the population responds to dif-
ferent scenarios and interventions in maintaining a disease-
free state. Understanding the change in the SIQR rate at
the disease-free equilibrium point is crucial for optimizing
control strategies as shown in (Fig:18-25). Researchers and
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policymakers can use this information to identify effective
measures that contribute to preventing the resurgence of
infections and maintaining a disease-free state. In summary,
the change in the SIQR rate at the disease-free equilibrium
point offers valuable insights into the responsiveness of
the population to interventions and control measures when
the infectious disease is not actively spreading. It aids in
formulating strategies to keep the disease under control and
prevent its re-emergence within the community.

XIV. CONCLUSION

This research article presents a detailed analysis of the
SIQR mathematical model augmented with an optimal con-
trol strategy aimed at mitigating the spread of infectious
diseases, specifically targeting the COVID-19 pandemic. The
model incorporates two control measures, represented by u1

and u2, corresponding to the use of face masks and the
effectiveness of handwashing, respectively. By integrating
these control variables into the model, the researchers aim
to evaluate their efficacy in reducing disease transmission.

The baseline scenario assumes a high initial transmission
rate, represented by R0 = 16.67, indicative of a rapidly
spreading infectious agent. However, the model identifies an
endemic equilibrium state characterized by stable values of
susceptible, infected, quarantined, and recovered populations
(S∗, I∗, Q∗, R∗). These equilibrium values (S∗ = 0.23,
I∗ = 3.13, Q∗ = 0.005, R∗ = 0.62) provide valuable
insights into the long-term dynamics of the disease within
the population.

The introduction of the optimal control strategy, leveraging
the use of face masks and handwashing, yields promising
results in reducing disease spread. Through mathematical
simulations, the researchers demonstrate that the application
of these control measures leads to a significant reduction
in the rate of infection, effectively curbing the epidemic
trajectory. This underscores the importance of proactive in-
terventions and individual behaviors in controlling infectious
disease outbreaks.

Furthermore, the study explores the implementation of a
synchronization method of control, employing master and
slave equations to coordinate and optimize control efforts
across different regions or populations. By synchronizing
control measures, the researchers aim to enhance the overall
effectiveness of disease containment strategies, particularly
in scenarios involving interconnected or geographically dis-
persed communities.

We conducted numerical modeling to assess the impacts of
public education, quarantine measures, handwashing, and the
restriction of the fraction of exposed individuals. This anal-
ysis utilized parameter values and initial conditions derived
from existing literature on COVID-19, SARS, and MERS
[30]. The aim is to provide a comprehensive understanding
of how these interventions, informed by previous research,
influence the dynamics of infectious diseases and contribute
to effective control strategies. We begin numerical simula-
tions by considering the values of the parameters in Table
2. Since β is the disease-induced mortality rate and γ is
the natural death rate, we may deduce that β > γ. As a
starting point, consider these traits as well as the essential
prerequisites. The following are the beginning conditions for
the state variables.

In conclusion, the research article highlights the efficacy of
the SIQR mathematical model coupled with optimal control
strategies in mitigating the spread of infectious diseases
like COVID-19. The findings underscore the importance of
proactive and coordinated control efforts, emphasizing the
significant impact of individual behaviors and community-
level interventions in containing epidemics. By leveraging
mathematical modeling and control theory, the study pro-
vides valuable insights that can inform public health policies
and interventions aimed at safeguarding population health
and mitigating the impact of infectious disease outbreaks.
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