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Abstract—In this research, we put forward a type of
model averaging methods for estimating the conditional density
function, based on a non-parametric estimation method and
two different loss functions. Such methods provide accurate
and stable estimation of the conditional density function. In
addition, we develop prediction bands for the conditional
density function in the case of finite samples by combining
conformal prediction and model averaging. Conclusions from
computational simulations and real data assessments based on
photometric redshift estimation indicate the superiority of our
proposed methods in comparison to other alternative methods.

Index Terms—Model Averaging, Conformal Prediction, Pho-
tometric Redshift Estimation

I. INTRODUCTION

REDSHIFT is a critical parameter for measuring the
distance between galaxies and Earth, and it plays an

important role in inferring cosmological model parameters.
The goal of estimating photometric redshift is to infer
the redshift Z of a galaxy from the observed photometric
measurements X . By establishing a linear regression model,
researchers study the correspondence between X and Z,
and take E(Z | x) as the appraisal result. However, since
the conditional density f(z | x) is often non-symmetric
and multimodal, instead of a Gaussian distribution, and
the noise often possesses heteroscedasticity, there is little
useful information contained in point estimation results of
the redshift [1], [2], [3], [4]. Furthermore, due to the pos-
sibility of two galaxies showing diverse redshifts exhibiting
analogous photometric features and the presence of complex
observational noise, the conditional density f(z | x) actually
provides a better description than E(Z | x). The estimation
of f(z | x) significantly reduces systematic errors in down-
stream cosmological analyses [1], [2], [4], [5].

There is a growing number of studies that focus on the
estimation of f(z | x). To illustrate, in the situation of
low-dimensional covariates, researchers propose several non-
parametric methods to estimate f(z | x). Among these
methods, the first step is to assess f(z,x) and f(x) sep-
arately using divergent techniques and then combine them
by f(z | x) = f(z,x)/f(x) [6], [7]. Such methods include
local polynomial regression [8], least squares estimation
[9], and quantile estimation [10]. For covariates with a
moderate dimension, Hall et al. [11] developed a technique
for optimizing the parameters of a kernel density estimator,
and this method identifies that elements of the covariates
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X are related to f(z | x). However, since this approach
heavily relies on selecting different bandwidths for each com-
ponent, it is computationally cumbersome. Moreover, such
methods typically require a pre-set dimension reduction step,
which can lead to significant information loss. Efromovich
[12] proposed an orthogonal series estimator of f(z | x).
This approach automatically performs a dimension reduc-
tion procedure on the covariates. However, this method is
incapable of handling high-dimensional covariates, because
it requires the calculation of a tensor product. To deal with
this problem, Izbicki and Lee [13] proposed the Flexible
non-parametric conditional density estimation via regression
(FlexCode) method, which transforms the high-dimensional
conditional density estimation problem into an expansion
coefficient estimation problem for an orthogonal series.

It is crucial to acknowledge that the data generating
process remains unknown in practical problems. Thus, re-
searchers usually build candidate models using the observed
data to better approximate this process. We eventually build
multiple candidate models. It is crucial to make sure that
we select the true model among all candidate models, since
subsequent statistical inferences and asymptotic properties
based on incorrect models may be biased. This would fur-
ther lead to incorrect judgments and decisions for practical
problems. In this case, model selection is a helpful tool
to select the model achieving the best performance out-
comes given a certain criterion. Common model selection
methods include AIC [14], BIC [15] and cross-validation
[16]. However, there are certain potential drawbacks about
model selection methods [17]: 1) High inferential risk. If the
selected model prove to be incorrect, then the corresponding
parameter estimates and statistical inference results may be
biased, and researchers tend to underestimate the variance
of parameter estimates and overestimate the actual coverage
probability of a confidence interval [18], [19]. 2) Estimation
instability. Yuan and Yang [20] define a measurement named
Perturbation instability in estimation (PIE) to assess the
model selection instability. They point out that when the
PIE value is large, the model selection method exhibits
greater instability, which may lead to unstable estimation
or prediction results. Similar opinions are found in Leung
and Barron [19]. 3) Loss of information. After obtaining the
candidate model with the best performance, researchers may
proceed with the subsequent analysis based on this selected
model, while discarding the rest of the candidate models.
This approach ignores the useful information contained in
these discarded models [21].

To avoid potential problems caused by model selection
methods, researchers utilize an alternative method called
model averaging. This method combines the estimation or
prediction results from each candidate model with a specific
model weight. Intuitively, model averaging can avoid select-
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ing inferior models, thereby reducing the risk of estimation
and prediction [19], [22]. Moreover, as a smooth extension
of model selection, model averaging typically reduces loss of
information and produces more stable estimates. According
to the weight choice criterion, model averaging is chiefly di-
vided into two categories: Bayesian model averaging (BMA)
and Frequentist model averaging (FMA). See [23], [24], [25],
[26] for detailed overviews. By treating the model structure
as random, BMA assigns prior probabilities to both the model
structure and the key parameter in each candidate model.
Afterward, this method calculates the posterior probabilities
of each candidate model, which are later used to construct
model weights. However, BMA has several distinct draw-
backs. First, there is no standard protocol for selecting prior
distributions for both candidate models and the parameters
of interest. Second, the calculation of posterior probabilities
may involve complicated integrations, which can be com-
putationally inefficient. Given this circumstance, FMA is an
alternative method that establishes the weight choice criterion
using frequentist methods, without the need to specify prior
distributions.

Based on the different strategies for assigning model
weights, FMA can be categorized into three types: infor-
mation criterion model averaging, adaptive model averaging,
and optimal model averaging. Buckland et al. [27] con-
structed model weights based on two types of information
criteria and proposed Smoothed-AIC and Smoothed-BIC,
respectively. This study primarily concentrates on the op-
timal model averaging method. Optimal model averaging is
that under certain conditions, its estimator is asymptotically
optimal, as it attains the minimal achievable bound of the
loss function. Hansen [28] first proposed an optimal model
averaging method named Mallows model averaging (MMA),
which selects the model weights based on the Mallows crite-
rion. The related model averaging estimator is demonstrated
to possess asymptotic optimality under specified regularity
conditions. However, this strategy bounds the model weights
to a particular discrete subset, and all candidate models
are required to be strictly nested. Wan et al. [29] extended
the framework of Hansen [28] to a non-nested setting of
candidate models and a continuous weight space, and showed
asymptotic optimality under this setting. Hansen and Racine
[30] developed Jackknife model averaging (JMA) for linear
regression models. The JMA method develops the weight
choice criterion, and this resultant estimator still maintains
asymptotic optimality. In comparison to MMA, JMA extends
the applicability to models characterized by heteroscedastic-
ity and non-nested candidate models. Lin et al. [31] first
developed a novel model averaging approach for density
functions under the parametric framework. The idea of a
model selection criterion, named Takeuchi information crite-
rion (TIC) [32], is used to modify the weight choice criterion.
Theoretical properties, including asymptotic optimality and
the consistency of model weights, are provided. However,
this method is still within the framework of parametric mod-
els and cannot be extended to the non-parametric framework,
which is the motivation of our work.

Regarding the challenge of conditional density estimation,
this paper proposes two types of model averaging methods
based on different loss functions, i.e., the Kullback-Leibler
(KL) divergence and conditional density estimation (CDE)

loss. The weight choice criterion is set to be the cross-
validation method to determine model weights for different
candidate models. Furthermore, since point estimation may
not contain enough information under certain special cases,
we intend to provide prediction bands for the conditional
density function in the finite sample case by combining
optimal model averaging with Highest predictive density
(HPD) conformal prediction. Moreover, we also combine
MMA method with Inductive conformal prediction (ICP) to
develop a prediction interval for point estimation. Simula-
tion studies and factual data analysis based on photometric
redshift estimation are carried out to assess the performance
of our proposed model averaging methods in comparison to
other alternative methods.

The subsequent sections of the research are arranged in the
following manner. Section 2 details the foundational setup
of the research problem and introduces how to construct
candidate models. Then, we introduce the KL divergence
and CDE loss, and propose the model averaging estimator.
Section 3 briefly reviews the marginal validity and asymp-
totic properties of conformal prediction, and introduces the
ICP and HPD conformal prediction. Building on the model
averaging estimates in the previous section, two algorithms
that combine model averaging and conformal prediction are
presented. In Section 4, we conduct simulation experiments
under two model settings. Section 5 employs the recom-
mended technique to the practical problem of photometric
redshift estimation, and the experimental results confirm the
superiority of the two model averaging methods proposed in
this research. Finally, in Section 6, we summarize the content
of the whole paper and discuss related issues.

II. CROSS-VALIDATION MODEL AVERAGING

In this section, we first outline the basic setup of the
research problem and then detail the process of constructing
candidate models. Next, we establish the procedure of model
averaging estimation, and introduce the KL divergence and
CDE loss. By utilizing cross-validation, we determine the
weight choice criteria for both loss functions. Finally, we
present the formulae of the model averaging estimators.

A. Model setup

We consider a set of independent and identically dis-
tributed samples {Yi,Xi}ni=1. Our goal is to determine the
conditional density of Yi based on the value of Xi. Since the
conditional density function of the true model is unknown,
we construct an array of candidate models as approximations
to the actual conditional density function. Each candidate
model uses a different subset of the covariates X to establish
a connection with the response variable Y , which forms M
non-nested candidate models.

There have been various approaches to estimating the
conditional density function [33], [34], [35], [36], [37]. In
this study, we choose FlexCode as an example. First, this
method specifies an orthogonal basis (ϕi)i∈N in L2(R), to
outline the conditional density f(y | x) with respective to y,
it is,

f(y | x) =
∑
i∈N

βi(x)ϕi(y),
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where

βi(x) = ⟨f(· | x), ϕi⟩

=

∫
R
ϕi(y)f(y | x)dy

= E [ϕi(Y ) | x] .

The conditional density estimation under various candidate
models are denoted by f̂1(y | x), . . . , f̂M (y | x). By
combining these estimates with a set of model weights w =
(w1, . . . , wM )T, we obtain the model averaging estimation
for the conditional density function as

f̂w(y | x) =
M∑

m=1

wmf̂m(y | x), (1)

where

w ∈ W = {w ∈ [0, 1]M :
M∑

m=1

wm = 1}.

a Since the weight wm in Equation (1) remains unknown, we
select the weight wm based on the criterion of minimizing
cross-validation after estimating fm(·) by non-parametric
methods.

B. Loss functions

We evaluate the difference between the model averaging
estimator in (1) and the actual conditional density function
f(y | x) based on two types of loss functions: KL diver-
gence and CDE loss. The KL divergence is used to assess
the information loss between two distributions, while the
CDE loss is used to measure the spatial proximity between
two conditional distributions. The specific forms of the KL
divergence and CDE loss are shown below:

KL(f̂w, f) = E [log{f (y | x)}]− E
[
log{f̂w (y | x)}

]
= −E

[
log

{
M∑

m=1

wmf̂m(y | x)

}]
+ C1, (2)

CDE(f̂w, f)

=

∫∫
(f̂w(y | x)− f(y | x))2dP (x)dy

=

∫∫
f̂2
w(y | x)dP (x)dy

− 2

∫∫
f̂w(y | x)f(y,x)dxdy + C2

=

∫∫ ( M∑
m=1

wmf̂m(y | x)

)2

dP (x)dy

− 2
M∑

m=1

wm

∫∫
f̂m(y | x)f(y,x)dxdy + C2, (3)

where C1 = E [log{f (y | x)}] and C2 =
∫∫

f2(y |
x)dP (x)dy are fixed values unrelated to estimation.

It is noteworthy that the KL divergence is a universal
method applicable to estimation of the density and the con-
ditional density function [38], while the CDE loss proposed
by Izbicki et al. [13] is only applicable to estimation of the
conditional density function.

Given the formulae of (2) and (3), we use the plug-in
method to estimate them separately, and obtain

K̂L(f̂w, f) = − 1

n

n∑
i=1

(
log{

M∑
m=1

wmf̂m(Yi | Xi)}

)
,

ĈDE(f̂w, f) =
1

n

n∑
i=1

∫ ( M∑
m=1

wmf̂m (y | Xi)

)2

dy


−

n∑
i=1

M∑
m=1

2wmf̂m (Yi | Xi) .

C. Weight choice criteria

Similar to Hansen and Racine [30] and Zhang and Liu[39],
we also consider using cross-validation methods to construct
weight choice criteria. In the J-fold cross-validation, we
randomly divide n samples into J folds, with each fold
containing H samples (we take as a given that H = n/J
is a non-fractional number). Under the mth candidate model
for the conditional density function, we select the lth fold
sample as the test set and use the remaining J − 1 fold
samples for estimation of the conditional density function,
resulting in the estimated conditional density f̂m,[−l](y | x).
Next, we propose two types of weight choice criteria based
on Equation (2) and (3). The weight choice criterion corre-
sponding to the CDE loss function is shown as follows:

CVCDE(w)

=
J∑

l=1

H∑
h=1


∫ ( M∑

m=1

wmf̂m,[−l]

(
y | X(l−1)H+h

))2

dy


−

J∑
l=1

H∑
h=1

M∑
m=1

2wmf̂m,[−l]

(
Y(l−1)H+h | X(l−1)H+h

)
.

(4)

By minimizing Equation (4), we obtain the model weights
under the CDE loss, as shown in Equation (5),

ŵCDE = argmin
w∈W

CVCDE(w). (5)

The weight choice criterion for the KL divergence is
shown in Equation (6),

CVKL(w)

=
J∑

l=1

H∑
h=1

log
M∑

m=1

wmf̂m,[−l]

(
Y(l−1)H+h | X(l−1)H+h

)
.

(6)

By maximizing this equation, we obtain the model weights
under the KL divergence, as shown in Equation (7),

ŵKL = argmax
w∈W

CVKL(w). (7)

By substituting the optimal weights (5) and (7) into
Equation (1), we can obtain the model averaging estimates
corresponding to the CDE loss function and the KL diver-
gence function:

f̂ŵCDE
(y | x) =

M∑
m=1

ŵCDE,mf̂m(y | x),
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f̂ŵKL
(y | x) =

M∑
m=1

ŵKL,mf̂m(y | x).

The above method employs a strategy of selecting optimal
weights by minimizing the loss function between the estima-
tion of the conditional density function and its true value. The
CDE loss function enables the model averaging estimate to
be as close as possible to the actual conditional density func-
tion, and the KL divergence effectively reduces information
loss. By combining conformal prediction, we conduct simu-
lation experiments and demonstrate the effectiveness of this
method in the practical application of photometric redshift
estimation. First, the length of the prediction bands generated
by HPD conformal prediction is still directly affected by
the estimation quality. The cross-validation model averaging
methods proposed in this paper can provide stable predictions
for HPD conformal prediction. Using the HPD conformal
prediction bands as an evaluation and comparison technique
for the conditional density estimation is meaningful, as
conformal prediction can provide prediction bands for model
averaging estimates under finite samples. Both complement
each other.

III. CONFORMAL PREDICTION BASED ON MODEL
AVERAGING

In the following section, we provide a brief to review
the theoretical properties of conformal prediction, such as
marginal validity, conditional validity, and asymptotic con-
ditional validity. Then, we introduce the ICP and HPD
conformal prediction with asymptotic conditional validity.
Furthermore, we combine them with model averaging tech-
niques, resulting in two prediction algorithms for model
averaging estimators in the case of finite samples.

A. Review of conformal prediction

Point estimators usually contain relatively limited infor-
mation, while interval estimators provide more comprehen-
sive information about the range of possible values for the
prediction. This helps us understand the concentration and
dispersion of the prediction results. Conformal prediction is a
type of method that calculates a prediction interval with exact
coverage probability in the finite sample case. Typically, this
method generates a prediction interval Cα(Xn+1) for the
response Yn+1 simply based on the interchangeable assump-
tion, the training samples {Yi,Xi}ni=1 and the covariates of
the target sample Xn+1 [40], [41]. This interchangeability
only requires the order of sample data to be interchangeable
(the joint probability distribution remains invariant after the
order of the samples is permutated [42]). This provides
a theoretical guarantee for the marginal coverage of the
prediction interval [43], which is called marginal validity:

P (Yn+1 ∈ Cα (Xn+1)) ≥ 1− α, (8)

where 1− α represents the corresponding confidence level.
In addition to studying the marginal validity of the pre-

diction set as a whole, researchers intend to find theoretical
guarantees that are stronger than Equation (8). Consequently,
a guarantee called conditional validity is established:

P (Yn+1 ∈ Cα (Xn+1) | Xn+1) ≥ 1− α.

Unfortunately, we can only ensure conditional validity by
posing strong assumptions regarding the joint distribution of
(X,Y ) [44], [45]. Given this limitation, Lei and Wasserman
[45], Guan [46] and Barber et al. [47] studied local validity
as an intermediate result, which is shown as follows:

P (Yn+1 ∈ Cα (Xn+1) | Xn+1 ∈ A) ≥ 1− α,

where A is the local neighborhood where the target sample
Xn+1 falls. These methods use the training samples that fall
into the same local neighborhood A to complete conformal
prediction. The intention is to approximate conditional valid-
ity by achieving validity in a sufficiently small local neigh-
borhood. However, when dealing with high-dimensional data,
these methods often need to create larger local neighborhoods
to contain enough training samples, which contradicts their
original intention.

Furthermore, under weaker conditions, other researchers
establish asymptotic conditional validity using different tech-
niques, such as the quantile regression [48], [49], cumulative
distribution function estimators [50], [51] and density esti-
mators [52]. Note that the asymptotic conditional validity
requires that there exists a set Λn satisfying P(Xn+1 ∈ Λn |
Λn) = 1− oP(1), such that

inf
Xn+1∈Λn

|P (Yn+1 ∈ C (Xn+1) | Xn+1)− (1− α)| = oP(1).

B. Conformal prediction based on Mallows model averaging
We now describe how to construct the prediction interval

that satisfy marginal validity for conformal prediction. We
focus on the combination of inductive conformal prediction
and Mallows model averaging.

The inductive conformal prediction first randomly parti-
tions the sample {Yi,Xi}ni=1 into two subsets, namely the
training set D and the calibration set D′. Then, the model is
trained taking advantage of samples from D. The algorithm
uses an arbitrary real-valued function S (X, Y,D) as the
conformity score to generate an effective prediction interval.
The conformity score measures the degree of difference
between the target sample and the samples in the subset D′.
A smaller score indicates that the sample is more consistent
with the calibration set D′. Hence, S (X, Y,D) is also called
a nonconformity score. If the conformity score is a good
measurement of the degree of difference between the target
sample and the samples in the subset D′, then the prediction
bands can be effective (small). Furthermore, after separately
calculating S (Xn+1, y,D) and S (Xi, Yi,D) , i ∈ D′, we
define

π(y) =
I (S (Xn+1, y,D) ≤ S (Xn+1, y,D))

1 + #D′

+

∑
i∈D′ I (S (Xn+1, y,D) ≤ S (Xi, Yi,D))

1 + #D′

=
1 +

∑
i∈D′ I (S (Xn+1, y,D) ≤ S (Xi, Yi,D))

1 + #D′

where 1(·) is an indicator function. Assuming that the
sample is interchangeable, the scores S (Xn+1, y,D) and
S (Xi, Yi,D) , i ∈ D′ are symmetric. When Yn+1 = y holds,
it follows that π(Yn+1) obeys a uniform distribution, which
ensures the marginal validity. By traversing the grid points
of y values, we can construct prediction bands as{

y : S (Xi, y,D) ≥ U⌊α⌋
}
,

IAENG International Journal of Applied Mathematics

Volume 54, Issue 8, August 2024, Pages 1678-1688

 
______________________________________________________________________________________ 



where U⌊α⌋ is the upper α-quantile of the conformity score
S (Xi, Yi,D) , i ∈ D′.

In many cases, we only need to use the L1 distance as a
conformity score, which is defined as

S (Xi, Yi,D) = |Yi − µ̂ (Xi)| . (9)

When the conformity score S (Xi, Yi,D) is monotonically
transformed, the prediction interval generated by conformal
prediction remains unchanged. For example, if S is non-
negative, replacing S with S2 makes no difference. There-
fore, the choice of distance measure is relatively unimpor-
tant. The crucial step in determining the conformity score
S (Xi, Yi,D) is the choice of point estimator µ̂ (Xi) [42],
[45]. First, the length of the prediction interval generated
by conformal prediction still depends on the quality of the
estimation. The MMA method, as the foundation of optimal
model averaging, provides asymptotically optimal estima-
tion, which can provide stable predictions for conformal
prediction. Using the conformal prediction interval as an
assessment and benchmarking method for the regression
function estimator is meaningful. Conformal prediction can
provide a prediction interval for model averaging estimates
under finite samples. Both aspects complement each other.

The MMA method considers the linear model

y = µ+ e = Xβ + e,

where β is the unknown regression coefficient and e is
the stochastic error term with a mean of 0 and a variance
of σ2. By calculating the regression residuals ê1, . . . , êM
in each candidate model and the variance estimate σ̂2 =
(n−p)−1ê′M êM in the full model, we can obtain the weight
selection criterion of MMA method:

C(w) = w′Ê′Êw + 2σ̂2w′P ,

ŵ = argmin
w∈W

C(w),

where Ê = (ê1, . . . , êM ) and P = (p1, . . . , pM )
T are the

dimensions of the regression coefficients in each candidate
model.

We take MMA method as an example to combine ICP
method with the model averaging method, as shown in
Algorithm 3.1.

Algorithm 3.1 ICP-MMA
Input Confidence level 1 − α ∈ (0, 1), training samples
{Yi,Xi}ni=1, target covariates Xn+1.
Output Prediction bands Cα (Xn+1) for the target response
variable Yn+1.
Step 1 Divide the sample into two subsets, D and D′, at
random.
Step 2 Train µ̂ŵ(y | x) using samples from the subset D:

µ̂ŵ(x) =
M∑

m=1

ŵmµ̂m(x).

Step 3 Calculate the conformity score S (Xi, Yi,D) for each
i ∈ D′ using Equation (9). Then, obtain the upper α quantile
U⌊α⌋.
Step 4 For the given Xn+1, traverse the grid points of y
values, and provide the prediction bands{

y : S (Xn+1, y,D) ≥ U⌊α⌋
}
.

This can be directly represented as a prediction interval

Cα (Xn+1) = [µ̂(Xn+1)− U⌊α⌋, µ̂(Xn+1) + U⌊α⌋]. (10)

C. Conformal prediction based on cross-validation model
averaging

When evaluating the validity of conformal prediction, we
also pay attention to the length of the prediction interval.
When the conditional density function presents multimodal
characteristics, conformal prediction methods should gener-
ate prediction bands rather than a prediction interval. Izbicki
et al. [53] proposed HPD conformal prediction, based on
inductive conformal prediction and the estimation of the
conditional density function, addresses the aforementioned
issues.

The basic idea of HPD conformal prediction can be
summarized as follows: Let the conformity score H(Z | X)
be the conditional cumulative distribution function of the
random variable Z = f(Y | X) given X . Then, the condi-
tional distribution of H(Z|X) given X obeys a uniform
distribution that is independent of X . If f̂(Y | X) is
sufficiently close to f(Y | X), then H(f̂(Y | X) | X)
is adequately approximate to a uniform distribution indepen-
dent of X . Finally, as long as the order of sample data is
interchangeable, the conformity score H(f̂(Y | X) | X) can
be guaranteed to be exchangeable, which ensures validity.
In addition to possessing marginal validity and asymptotic
conditional validity, this method also ensures theoretical
convergence to the highest predictive density set:

P (Yn+1 ∈ C∗
α (Xn+1)∆Cα (Xn+1)) = o(1),

where C∗
α(x) represents the highest predictive density set,

and ∆ represents the symmetric difference operation.
By combining the HPD conformal prediction with the two

previously mentioned model averaging methods, we obtain
the prediction bands corresponding to the model averaging
estimation of the conditional density function, as shown in
Algorithm 3.2.

Algorithm 3.2 HPDCP-MA
Input Confidence level 1 − α ∈ (0, 1), Training samples
{Yi,Xi}ni=1, target covariates Xn+1.
Output Prediction bands Cα (Xn+1) for the target response
variable Yn+1.
Step 1 Divide the sample into two subsets, D and D′, at
random.
Step 2 Train f̂ŵ(y | x) using samples from the subset D.
Step 3 Using samples from the subset D′, calculate the upper
α quantile U⌊α⌋ of the conformity score

{Ĥ
(
f̂ŵ (Yi | Xi) | Xi

)
=

∫
{y:f̂ŵ(y|Xi)≤f̂ŵ(Yi|Xi)}

f̂ŵ (y | Xi) dy}. (11)

Step 4 For the given Xn+1, traverse the grid points of y
values, and provide the prediction bands

{y : Ĥ
(
f̂ŵ (y | Xn+1) | Xn+1

)
≥ U⌊α⌋}.
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IV. SIMULATION

Throughout this section, we first study the predictive per-
formance of the ICP-MMA algorithm under different sample
sizes and different population R2. Then, we investigate the
prediction bands derived from the HPDCP-MA algorithm
under two different model settings. In both settings, we select
the simplest model and the full model from all candidate
models, along with the Equal-weighted model averaging
(EWMA) method as alternative methods, and compare them
with the KLMA and CDEMA methods.

A. ICP-MMA

The first simulation setting follows the setup of Hurvich
and Tsai [54] and adds an endogenous variable that is not
included in all candidate models. Therefore, the following
outlines the data generating process:

y = Xβ + e,

where

X ∼ N

05×1,


1 0 0 0 0.3
0 1 0 0 0.3
0 0 1 0 0.3
0 0 0 1 0.3
0.3 0.3 0.3 0.3 1


 ,

and e ∼ N (0, 1) .
Please be aware that the last variable in X is absent from

any candidate model. Thus, by setting the value of the last
coefficient to be zero or non-zero, we can determine if there
occur correctly specified models in the candidate model set.
Each candidate model is established by building a connection
between the response variable Y and a different subset of the
covariates X . Eventually, we obtain 15 non-nested candidate
models.

As the benchmark method, the LM represents the full
model without an intercept, whose prediction interval is
determined based on the t-statistics. The ICP-LM method
calculates the prediction interval by fitting the linear model
and utilizing inductive conformal prediction. Stock and Wat-
son [55] found that the ideal estimated weights may fall
short compared to the EWMA method in terms of mean
square prediction error. This phenomenon is referred to as
the ”forecast combination problem”. Moreover, Smith and
Wallis [56] confirmed that when the optimal weights are
nearly identical to equal weights, EWMA can outperform
the forecast combination with estimated weights. Therefore,
it is natural that we include the EWMA method by way of
comparison.

We separately generate n = 50, 100, 200 samples, of
which 50% are utilized to estimate the regression coeffi-
cients using the least squares method. The remaining 50%
are used to calculate the prediction interval with signifi-
cance level α = 0.1 according to Equation (10). When
β = (1, 2, 3, 0, 0)T, the population R2 = 14/

(
14 + σ2

)
is

controlled by the parameter σ2. In this study, we control
the population R2 at 0.1 to 0.9 grid points by varying
the variance σ2. We repeat the generation of 100 random
number seeds and conduct 100 simulation experiments. In
each trial, we provide 100 new test data with conformal
prediction bands and record the average coverage probability
and length. The results are shown in Figures 1 – 6.
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Fig. 1. Outcomes of the average coverage probability and average length
of the conformal prediction interval for n = 50, β = (1, 2, 3, 0, 0)T, with
varying R2 values.

In simulation experiments, the average length performance
of the ICP-EWMA method is poor. As the ICP-EWMA
method always incorrectly assigns the same weight to the
worst and the best models, a shortcoming that is ampli-
fied as the population R2 increases. Additionally, the ICP-
MMA method, which approximates other methods in aver-
age length, outperforms other methods in average coverage
probability, reflecting the stability of this method.

B. HPDCP-MA

1) The fixed number of covariates: Following the setup
from the previous section, we set σ2 = 1 and generate
1000 samples, of which 50% are utilized to estimate the
conditional density function using the FlexCode method.
The remaining 50% are used to calculate the conformity
score according to Equation (11). Additionally, we set the
significance level α = 0.1 and the number of folds J = 10.
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Fig. 2. Outcomes of the average coverage probability and average length
of the conformal prediction interval for n = 100, β = (1, 2, 3, 0, 0)T, with
varying R2 values.

Each candidate model is established by connecting X to
Y through different subsets of the covariates, ultimately
resulting in 15 non-nested candidate models.

As for the comparison methods, the simplest model rep-
resents a candidate model that only includes the coefficients
of the variables that are not zero in the true data generation
process (except for the unaccounted endogenous variable),
while the full model consists of all observed covariates. The
EWMA method assigns the equal weight to each candidate
model. We repeat the generation of 100 random number
seeds and conduct 100 simulation experiments. In each
trial, we provide 100 new test data points with conformal
prediction bands. The results are shown in Tables I – IX.

We observe from the result that both CDEMA and KLMA
methods exhibit higher average coverage probability com-
pared to the simplest model, while the average length is also
close to that of the simplest model. The EWMA approach,
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Fig. 3. Outcomes of the average coverage probability and average length
of the conformal prediction interval for n = 200, β = (1, 2, 3, 0, 0)T, with
varying R2 values.

TABLE I
β = (1, 0, 0, 0, 0)T

Simp Full EWMA CDEMA KLMA

Coverage 0.895 0.894 0.900 0.898 0.896
Length 3.869 3.914 3.573 3.430 3.341

TABLE II
β = (1, 2, 0, 0, 0)T

Simp Full EWMA CDEMA KLMA

Coverage 0.892 0.888 0.900 0.895 0.894
Length 4.306 3.848 4.023 3.575 3.610

which serves as the benchmark in this setting, is relatively
poor. Compared to the KLMA method, the CDEMA method
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Fig. 4. Outcomes of the average coverage probability and average length
of the conformal prediction interval for n = 50, β = (1, 2, 3, 0, 1)T, with
varying R2 values.

TABLE III
β = (1, 2, 3, 0, 0)T

Simp Full EWMA CDEMA KLMA

Coverage 0.881 0.890 0.898 0.897 0.896
Length 4.039 4.351 4.868 4.005 4.048

TABLE IV
β = (1, 2, 3, 4, 0)T

Simp Full EWMA CDEMA KLMA

Coverage 0.887 0.887 0.899 0.898 0.899
Length 4.854 4.854 6.547 4.802 4.887

shows a slight advantage.
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Fig. 5. Outcomes of the average coverage probability and average length
of the conformal prediction interval for n = 100, β = (1, 2, 3, 0, 1)T, with
varying R2 values.

TABLE V
β = (1, 0, 0, 0, 1)T

Simp Full EWMA CDEMA KLMA

Coverage 0.901 0.891 0.899 0.899 0.898
Length 5.519 5.090 4.663 4.484 4.508

TABLE VI
β = (1, 2, 0, 0, 1)T

Simp Full EWMA CDEMA KLMA

Coverage 0.891 0.882 0.894 0.895 0.895
Length 5.269 4.901 5.215 4.639 4.701

2) Synthetic procedure: We adopt another simulation set-
ting from Lei and Wasserman [45] and Izbicki et al. [53].
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Fig. 6. Outcomes of the average coverage probability and average length
of the conformal prediction interval for n = 200, β = (1, 2, 3, 0, 1)T, with
varying R2 values.

TABLE VII
β = (1, 2, 3, 0, 1)T

Simp Full EWMA CDEMA KLMA

Coverage 0.884 0.884 0.894 0.899 0.895
Length 5.184 5.323 6.165 5.115 5.283

TABLE VIII
β = (1, 2, 3, 4, 1)T

Simp Full EWMA CDEMA KLMA

Coverage 0.889 0.889 0.892 0.896 0.895
Length 5.902 5.902 7.799 5.998 5.984

The details about the data generating process are as follows:

X = (X1, . . . , X4) ,

TABLE IX
β = (1, 2, 3, 4, 2)T

Simp Full EWMA CDEMA KLMA

Coverage 0.885 0.885 0.897 0.892 0.893
Length 7.942 7.942 10.108 8.048 8.063

TABLE X
SYNTHETIC PROCEDURE

Simp Full EWMA CDEMA KLMA

Coverage 0.854 0.912 0.965 0.886 0.888
Length 5.967 7.282 5.881 5.479 5.546

Y | X = x ∼0.5N
(
f(x)− g(x), σ2(x)

)
+ 0.5N

(
f(x) + g(x), σ2(x)

)
,

where
Xi

i.i.d.∼ Unif[−1.5, 1.5],

f(x) = (x1 − 1)2(x1 + 1),

g(x) = 2
√
x1 + 0.51(x1 ⩾ −0.5),

σ2(x) = 1/4 + |x1| .

When x1 ⩽ −0.5, (Y | X = x) is a Gaussian distribution
with expectation f(x) and variance σ2(x). However, when
x1 ⩾ −0.5, the distribution of (Y | X = x) is a
mixture of two Gaussian distributions. When x1 increases,
the overlap between the two Gaussian distributions decreases.
Other simulation experiments remain the same as the former
experiment, and the results are shown in Table X.

Compared to the previous simulation settings, CDEMA
and KLMA methods have better average coverage probability
as well as shorter average lengths than the simplest model.
Furthermore, the CDEMA method shows a slight advantage
compared to the KLMA method.

V. PHOTOMETRIC REDSHIFT ESTIMATION

In this section, we first introduce the measurement meth-
ods for photometric and spectroscopic data, thereby intro-
ducing the dataset used in this study. Then we demonstrate
the superiority of the model averaging estimation of the
conditional density function and the prediction algorithm
through actual data analysis.

A. Background introduction

Redshift is a concept in physics and astronomy, describing
the phenomenon of frequency decrease in electromagnetic
radiation emitted by an object due to its movement away
from the observer. The change in frequency gives rise to
a change in color, with spectral lines shifting. By compar-
ing the positions of absorption lines under laboratory light
sources, we can understand the movement of the star relative
to the Earth. Therefore, redshift is a crucial role in inferring
parameters of cosmological models.

Currently, astronomical data can be categorized into two
types: photometric and spectroscopic. Although spectroscopy
can accurately estimate redshift, more than 99% of galaxy
observations currently rely on photometric techniques due
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TABLE XI
PHOTOMETRIC REDSHIFT ESTIMATION

Full EWMA CDEMA KLMA

Coverage 0.897 0.893 0.896 0.895
Length 0.150 0.153 0.140 0.144

to cost and time constraints. Photometry is an efficient low-
resolution measurement method [57], which roughly records
the radiation of an astronomical object through 5 − 10
broadband filters. Only the covariates X are available, as the
exact measurement of redshift Z is not obtainable. However,
in spectroscopy, both the covariates X and redshift Z can
be measured with negligible error.

Photometric redshift estimation is achieved by using
galaxy samples with confirmed redshifts from spectroscopic
data. The galaxy’s redshift Z can be inferred from the
observed photometric characteristics X . However, due to the
lack of spectroscopic data for galaxies with more extreme
colors and weaker brightness in the SDSS-DR12 [58], we
use the Happy A and B datasets [59] to construct conformal
prediction bands for redshift. These two datasets provide
more comprehensive spectroscopic data, aimed at evaluating
the applicability of photometric redshift estimation methods
in more realistic scenarios. In this case, all photometric data
comes from DR12, while the spectroscopic data is extended
from the DR12 photometric data by Bayesian cross-matching
with other sources, respectively containing 74950 galaxies
and 74900 galaxies.

B. Experimental results

This paper uses the same covariates X as Sheldon et al.
[4], namely r-magnitude and four color magnitudes. In this
case, the simplest model is also the full model. We use the
samples in Happy A as the training set, taking out 1000
samples each time, of which 50% are employed in estimating
the conditional density function using the FlexCode method.
The remaining 50% are used to calculate the conformity
score according to Equation (11) and set the significance
level α = 0.1. Finally, we evaluate a total of 31 non-nested
candidate models and set the number of cross-validation folds
J = 5 for the weight choice in model averaging. We repeat
the generation of 100 random number seeds, conducting 100
simulation experiments. In each trial, we provide conformal
prediction bands for 100 samples from the test set Happy B.
The results are shown in Table XI.

The results show that, despite all methods achieving sim-
ilar average coverage probability close to the nominal level,
the two model averaging methods proposed in this paper
can achieve smaller average length. It is noteworthy that, by
using HPD conformal prediction with conditional density es-
timation, the prediction bands can ensure conditional validity
for a single new sample. Given that the density function of
dark galaxies redshift usually has multimodal characteristics
[33], [60], [61], [62], and the results of conformal prediction
are highly sensitive to density estimation, this further con-
firms the superiority of the cross-validation model averaging
method in this paper.

VI. CONCLUSION

Throughout this study, we develop two methods for model
averaging based on KL divergence and CDE loss, taking
FlexCode as an example. The cross-validation model aver-
aging method considers different combinations of covariates
as candidate models to address the issue of information loss
in variable selection, thereby reducing estimation risk and
enhancing estimation stability. To our understanding, this
paper is the inaugural work to develop a model averaging
method using cross-validation to select weights based on KL
divergence and CDE loss in the field of conditional den-
sity estimation. Additionally, due to the limited information
provided by point estimation, we combine model averaging
estimation with HPD conformal prediction for simulation
studies for the first time. We also conduct real data analysis
for photometric redshift estimation, and discover that the
conformal prediction bands generated by the two methods
significantly outperform those produced by several other
methods. This provides more support for using our proposed
model averaging methods for conditional density estimation
in real-world examples.

While we have demonstrated the superiority of our meth-
ods through simulation experiments, it remains challenging
to prove the asymptotic optimality of the proposed model
averaging estimators. Moreover, further studies on how to
shorten the length of prediction bands are of great impor-
tance.
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