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Abstract—Cliques are maximal complete subgraphs of a
graph. A vertex v is said to vc-cover a clique C if v is in
the clique C. A set S of vertices of a graph G is called a vc-
covering set of G if every clique of G is vc-covered by some
vertex in S. The cardinality of the smallest vc-covering set
of G is called the vc-covering number, denoted as αvc(G). In
this paper, we define new parameters such as strong (weak) vc-
covering number and strong (weak) clique-free number, and we
establish a relationship between them. We present an algorithm
to find these numbers and obtain some bounds for the newly
defined parameters. In addition, we define a partial order on
the vertex set of a graph using clique degree conditions and
study some of its properties.

Index Terms—vc-degree, clique-free set, vc-covering set, vc-
poset.

I. INTRODUCTION

In this paper, by a graph G = (V,E) we mean a simple
and undirected graph of order |V | = p and size |E| = q,
where V and E, respectively denote the vertex set and the
edge set of G. The terminologies and notations used here
are as in [4], [7]. A clique is a maximal complete subgraph
of a graph. If a vertex v is in the clique C, we say that
v is incident on C or v vc-covers C. The vc-degree of a
vertex u denoted by dvc(u) is the number of cliques vc-
covered by u. Note that dvc(u) ≤ d(u), for any u ∈ V (G)
and if G is an acyclic graph, then dvc(u) = d(u), for all
u ∈ V (G). We denote minimum and maximum vc-degree
of vertices of G by δvc = δvc(G) and ∆vc = ∆vc(G),
respectively. A graph G is called vc-regular if every vertex
has the same vc-degree. S. G. Bhat [2] initiated the study of
vc-covering sets in graphs. A vc-covering set of a graph G
is a set S of vertices in G such that every clique of G is
vc-covered by some vertex in S and the vc-covering number
of G denoted by αvc(G) is the minimum cardinality of a
vc-covering set of G. A set S of vertices in G is said to be a
clique-free set [[2] pp. 56-96] if the subgraph induced by S
does not induce any clique of G. The maximum cardinality
of a clique-free set of G is the clique-free number of G and
it is denoted by βvc(G). These two parameters satisfy the
following relationship: αvc(G) + βvc(G) = p. A vertex v
is said to be a polycliqual vertex if it is incident on more
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than one clique. A clique is a pendant clique if only one
polycliqual vertex is incident on it. A graph G is called a
clique star if every clique of G is a pendant clique. For a
survey on cliques refer to [6].

II. STRONG VC-COVERING SETS AND STRONG
CLIQUE-FREE SETS OF A GRAPH

Motivated by the study of strong (weak) vertex coverings
and independent sets of a graph by S. S. Kamath and R. S.
Bhat [5], we define the following.

Definition 1. Let G = (V,E) be a graph. A vertex u ∈ V
strongly (weakly) vc-covers a clique C of G if u vc-covers
C and dvc(u) ≥ dvc(w) (dvc(u) ≤ dvc(w)) for every vertex
w vc-covering C.

Definition 2. A set S ⊆ V is said to be a strong (weak) vc-
covering set of G if elements of S strongly (weakly) vc-cover
all the cliques of G. The strong (weak) vc-covering number
αsvc(G) (αwvc(G)) is the minimum cardinality of a strong
(weak) vc-covering set of G.

Definition 3. A set W ⊆ V is said to be a strong (weak)
clique-free set of G if W is a clique-free set of G and for
any vertex u ∈W and for any clique C incident on u, there
exists a vertex v ∈ V − W such that v weakly (strongly)
vc-covers C. The maximum cardinality of a strong (weak)
clique-free set of G is the strong (weak) clique-free number
denoted by βsvc(G) (βwvc(G)).

Remark 1. (i) For a null p-vertex graph Kp, we assume
that αsvc(Kp) = αwvc(Kp) = 0 and βsvc(Kp) =
βwvc(Kp) = p.

(ii) Let G = (V,E) be a non-trivial and non-null graph
and u∆vc

and (wδvc
) be vertices of G of the maximum

and minimum vc-degrees, respectively. vc-degree. Then
V − {uδvc} is a strong vc-covering set of G and V −
{u∆vc} is a weak vc-covering set of G. Further, {u∆vc}
is a strong clique-free set of G and {uδvc

} is a weak
clique-free set of G.

(iii) If G is a vc-regular graph, then αvc(G) = αsvc(G) =
αwvc(G) and βvc(G) = βsvc(G) = βwvc(G).

Example 1. Consider the graph G1 given in the Fig-
ure 1. Note that dvc(v1) = dvc(v2) = dvc(v3) = 1,
dvc(v4) = dvc(v5) = dvc(v6) = 2 and dvc(v7) = dvc(v8) =
dvc(v9) = 3. Then {v4, v5, v6, v7} is a vc-covering set
of G1 of minimum cardinality, {v4, v5, v6, v7, v8} is a
strong vc-covering set of G1 of minimum cardinality and
{v1, v2, v3, v4, v5, v6, v7} is a weak vc-covering set of G1

of minimum cardinality Hence, αvc(G1) = 4, αsvc(G1) = 5
and αwvc(G1) = 7. Also, we observe that {v1, v2, v3, v8, v9}
is a clique-free set of maximum cardinality, {v1, v2, v3, v9} is
a weak clique-free set of maximum cardinality and {v8, v9}

IAENG International Journal of Applied Mathematics

Volume 54, Issue 8, August 2024, Pages 1689-1693

 
______________________________________________________________________________________ 



is a strong clique-free set of maximum cardinality. Therefore,
βvc(G1) = 5, βsvc(G1) = 2 and βwvc(G1) = 4.

b

b b

bb b

b

b b

v1v2

v3

v4

v5 v6

v7 v8

v9

Fig. 1. Graph G1 with strong vc-covering number=5, weak vc-covering
number=7, strong clique-free number=2 and weak clique-free number=4

A. Gallai-type results

Lemma 1. Let G = (V,E) be a graph. For any set S ⊆ V ,
(i) S is a strong vc-covering set of G if and only if V −S

is a weak clique-free set of G.
(ii) S is a weak vc-covering set of G if and only if V − S

is a strong clique-free set of G.

Proof: Let S be a strong vc-covering set of G. Since
every clique is vc-covered by some vertex in S, at least one
vertex of every clique is in S. Hence 〈V −S〉 cannot induce
any clique of G. Thus, W = V − S is a clique-free set
of G. Let u ∈ W and C be a clique incident on u. Then,
there exists a vertex v ∈ S such that v strongly vc-covers C.
Hence, W is a weak clique-free set of G. On the other hand,
let W be a weak clique-free set of G. Suppose that V −W is
not a vc-covering set. Then there exists a clique C in G which
is not vc-covered by any vertex in V −W . This implies all
the vertices of C are in W . Then 〈W 〉 contains the clique C,
which is a contradiction. Thus, S = V −W is a vc-covering
set of G. Suppose there exists a clique C in G which is
not strongly vc-covered by any vertex in S. Then there is
a vertex say u in the clique C such that dvc(u) > dvc(w),
for every vertex w ∈ V (C) ∩ S. This implies, u ∈ W and
there is no vertex in S which strongly covers C, which is
a contradiction. Thus, S is a strong vc-covering set of G.
Hence (i) follows. With similar arguments, we can prove
(ii).

The following theorem depicts the relationship between
the newly defined parameters.

Theorem 2. For any graph G = (V,E) of order p,
(i) αsvc(G) + βwvc(G) = p

(ii) αwvc(G) + βsvc(G) = p.

Proof: Let S be a strong vc-covering set of G such
that |S| = αsvc(G). Then by Lemma 1, V − S is a weak
clique-free set of G. Hence, βwvc(G) ≥ |V − S| = p− |S|.
Therefore, αsvc(G) + βwvc(G) ≥ p. Again, if W is a weak
clique-free set of G such that |W | = βwvc(G). Then V −W
is a strong vc-covering set by Lemma 1. This implies that,
αsvc(G) ≤ |V−W | = p−|W |. Hence, αsvc(G)+βwvc(G) ≤

p. Then, from the above inequalities (i) follows. With similar
arguments, we can prove (ii).

Proposition 3. Let G = (V,E) be a graph of order p.
(i) If there exists a strong vc-covering set of G which is

also a strong clique-free set of G, then αsvc(G) +
αwvc(G) ≤ p.

(ii) If there exists a weak vc-covering set of G which is also
a weak clique-free set of G, then βsvc(G)+βwvc(G) ≥
p.

Proof: Let S be a strong vc-covering set of G which
is also a strong clique-free set of G. Then, by Lemma 1,
V − S is a weak vc-covering set of G. Hence, αwvc(G) ≤
|V − S| = p − |S|. Also, since strong vc-covering set of
G, we have αsvc(G) ≤ |S|. By adding the two results we
get, αsvc(G) + αwvc(G) ≤ p. By, similar argument, we get
βsvc(G) + βwvc(G) ≥ p.

Remark 2. From the Remark 1 and Theorem 2, the following
holds: if G is a non-trivial and non-null graph, then 1 ≤
αsvc(G) ≤ p−1, 1 ≤ αwvc(G) ≤ p−1, 1 ≤ βsvc(G) ≤ p−1
and 1 ≤ βwvc(G) ≤ p− 1.

Theorem 4. For any graph G,
(i) αsvc(G) ≤ αwvc(G)

(ii) βsvc(G) ≤ βwvc(G).

Proof: Let S = {v1, v2, ..., vk} be a strong vc-covering
set of G such that dvc(v1) ≤ dvc(v2) ≤ · · · ≤ dvc(vk).
Let C be the collection of all cliques in G. If there is
w ∈ N [v1] such that dvc(w) = 1, then we name w by
u1. Otherwise, we choose u1 ∈ N [v1] such that dvc(u1)
is minimum and u1 weakly vc-covers maximum number of
elements of C. If v1 itself satisfies the above condition, then
we take u1 = v1. Let D1 = {u1}. We remove the cliques
which are weakly vc-covered by u1 from the set C. Now
for i, 2 ≤ i ≤ k, choose ui ∈ N [vi] − Di−1 such that
either dvc(ui) = 1 or dvc(ui) is minimum and ui weakly
vc-covers maximum number of elements of C. If vi itself
satisfies the above condition, then we take ui = vi. Let
Di = Di−1∪{ui}. We remove the cliques which are weakly
vc-covered by ui from the set C. By continuing this process,
we get Dk = {u1, u2, . . . , uk} such that Dk ⊆W , for some
weak vc-covering set W of minimum cardinality. Hence,
αsvc(G) = |S| = |Dk| ≤ |W | = αwvc. Thus, (i) holds.
With similar arguments, we can prove (ii).

B. Algorithm to find the strong vc-covering number and weak
clique-free number of a graph

In this section we present algorithms to find the strong
(weak) clique-free number and vc-covering number of a
graph. We make use of vcdeg() function which gives the
number of cliques incident on the given vertex at that
moment and sort() function which sorts the vertices of G in
the descending order of the vc-degree.
Input: The vertex set V and the set of all cliques
C = {C1, C2, . . . , Ck} of G
Output: αsvc(G) and βwvc(G)
Algorithm:
C = {C1, C2, . . . , Ck}
v[ ] = [v1, v2, . . . , vp]
V = sort(V )
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dvcv[ ] = [vcdeg(v1), vcdeg(v2), . . . , vcdeg(vp)]
S = {v[1]}
for (i = 1; i ≤ k; i = i+ 1)

if v[1] ∈ Ci then
C = C− {Ci}

end if
end for
for (i = 2; i ≤ p; i = i+ 1)

if vcdeg(v[i]) ≥ 1 then
x[ ] = [v[i]]
for (j = 3; j ≤ p; j = j + 1)

if (dvcv[i] = dvcv[j]) then
x = x ∪ [v[j]]

end if
end for
if x 6= [v[i]] then
x = sort(x)
if (vcdeg(x[1]) > vcdeg(v[i])) then
temp = v[i]
v[i] = x[1]
x[1] = temp

end if
end if
S = S ∪ {v[i]}

end if
for (l = 1; l ≤ k; l = l + 1)

if v[i] ∈ Cl then
C = C− {Cl}

end if
end for

end for
αsvc(G) = |S|
βwvc(G) = |V − S|

Note: In a similar manner, we can construct an algorithm
to find αwvc(G) and βsvc(G).

Remark 3. The time complexity of the algorithm 2.1. in
worst case scenario is O(n(2n+ 1)).

C. Construction of a graph with arbitrarily large difference
between αvc(G) and αsvc(G)

Consider the graph G1 as given in the Figure 1. We have
αvc(G1)−αsvc(G1) = 1. Let G1

(1) = G2
(1) = G3

(1) = G1

and we rename vj by vij(1), for all i, j, 1 ≤ i ≤ 3, 1 ≤ j ≤ 9.
Let G2 be the graph obtained by joining the
vertices vi of G1 and vi1

(1) of Gi
(1) for all

i, 1 ≤ i ≤ 3, as shown in the Figure 2. Note that
{v7, v8, v11

(1), v21
(1), v31

(1), v17
(1), v18

(1), v15
(1), v16

(1),
v27

(1), v28
(1), v25

(1), v26
(1), v37

(1), v38
(1), v35

(1), v36
(1)} is

a strong vc-covering set of G2 of minimum cardinality and
{v7, v6, v11

(1), v21
(1), v31

(1), v17
(1), v15

(1), v16
(1), v27

(1),
v25

(1), v26
(1), v37

(1), v35
(1), v36

(1)} is a vc-covering set of
G2 of minimum cardinality. Hence, sn0(G2)−n0(G2) = 3.
Similarly, for n ≥ 1, let Gi

(n) = G1, for all
i, 1 ≤ i ≤ 3 × 2n−1 and rename vj by vij

(n), for all
i, j, 1 ≤ i ≤ 3× 2n−1, 1 ≤ j ≤ 9. Consider the graph Gn+1

obtained by joining the vertex vi1(n) of Gi(n) and a pendant
vertex of Gn, for all i, 1 ≤ i ≤ 3 × 2n−1. Then {v7, v8} ∪(

n⋃
j=1

j⋃
i=1

{v1k
(i), v2k

(i), . . . , v(3×2i−1)k
(i)}k=1,7,8

)
∪

b

b

b b
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Fig. 2. Graph G2 obtained by joining the vertices vi of G1 and vi1(1)
of Gi

(1) for all i, 1 ≤ i ≤ 3.

3×2n−1⋃
i=1

{vik(n)}k=5,6 is a strong vc-covering set

of minimum cardinality of Gn+1 and {v7, v6} ∪(
n⋃
j=1

j⋃
i=1

{v1k
(i), v2k

(i), . . . , v(3×2i−1)k
(i)}k=1,6,7

)
∪

3×2n−1⋃
i=1

{vi6(n)} is a vc-covering set of minimum cardinality

of Gn+1. Therefore, αsvc(G) − αvc(G) = 3 × 2n−1.
Hence, it is possible to find a graph G with arbitrarily large
difference between αvc(G) and αsvc(G).

Remark 4. Consider a clique star graph G with n cliques.
Then, there exists a unique vertex u (say) in G with dvc(u) =
n and dvc(w) = 1, for any vertex w other than u in G. We
observe that the difference between αvc(G) = αsvc(G) = 1
and αwvc(G) = n is n − 1, which can be made arbitrarily
large.

D. Bounds on strong vc-covering number and weak vc-
covering number of a graph

Proposition 5. Let c be the number of cliques in a graph G
and cp be the number of pendant cliques in G. Then cp ≤
αwvc ≤ c and equality holds if and only if G is a clique star.

Proof: Clearly, αwvc ≤ c. Suppose there is a pendant
clique K of G. Then, there exists a vertex u ∈ K such
that dvc(u) > 1 and dvc(v) = 1, for all v ∈ K such that
v 6= u. Then, every minimal weak vc-covering set of G
contains exactly one vertex of K with vc-degree 1. Hence,
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cp ≤ αwvc. Note that G is a clique star if and only if every
clique of G is a pendant clique if and only if c = αwvc = cp.

Definition 4. A polycliqual vertex u of a graph G is a
support polycliqual vertex if it is incident on a pendant clique
of G. Otherwise, it is called a non-support polycliqual vertex.

Definition 5. A polycliqual vertex u is said to be a weak non-
support polycliqual vertex if it is a non-support polycliqual
vertex and dvc(u) ≤ dvc(w) for every polycliqual vertex w
adjacent to u.

Proposition 6. Let G be a connected graph which is not
complete. Let pc be the number of polycliqual vertices in G.
Then, αsvc(G) ≤ pc and equality holds if and only if G is a
weak non-support polycliqual vertex free graph.

Proof: Suppose there is a vertex u in G which is not
polycliqual. Let C be a clique incident on u. Since G
is connected graph which is not complete, there exists a
polycliqual vertex say v incident on C. Note that dvc(u) <
dvc(v). Choose a polycliqual vertex w incident on C with
the maximum vc-degree. Then C is strongly covered by w.
This implies that u does not belong to any minimal strong
vc-covering set of G. Hence, αsvc(G) ≤ pc. Now, assume
that αsvc(G) = pc. Suppose there exists a weak non-support
polycliqual vertex say u in G. Then dvc(u) ≤ dvc(v), for all
polycliqual vertex v adjacent to u. Then u does not uniquely
strongly vc-cover any clique of G. Hence, for any minimal
strong vc-covering set S of G, there exists a polycliqual
vertex in the closed neighbourhood of u which does not
belong to S. This implies that αsvc(G) ≤ pc − 1, which
is a contradiction. Conversely, let G be a weak non-support
polycliqual vertex free graph. Then every polycliqual vertex
of G uniquely strongly vc-covers a clique of G. Hence, the
set of all polycliqual vertices of G is the minimum strong
vc-covering set of G. Therefore, αsvc(G) = pc.

III. PARTIAL ORDERING RELATION ON THE VERTEX SET
OF A GRAPH USING VC-DEGREE

A partial order on a set P is a binary relation on P which
is reflexive, antisymmetric and transitive. A set on which
a partial order is defined is called a partially ordered set or
briefly a poset. The length of a poset (P,≤) denoted by l(P )
is defined as l(P ) = max{|C|−1 : C is a maximal subchain
of P}. A lattice is a poset in which every pair of elements
has a greatest lower bound and a least upper bound. For a
survey refer to [3].

Definition 6. We define a partial order ≤ on the vertex set
V of a graph G as follows: for any two vertices u and w,
u ≤ w if either u = w or there exists a path between u
and w say u = v1, v2, . . . , vn = w such that dvc(v1) <
dvc(v2) < · · · < dvc(vn). We call the poset (V,≤) as the
vc-poset of G.

Example 2. Consider the graph G given in the Figure
3. Then dvc(v1) = 4, dvc(v2) = dvc(v6) = dvc(v10) =
dvc(v11) = 3, dvc(v3) = 2, dvc(v4) = dvc(v5) = dvc(v7) =
dvc(v8) = dvc(v9) = dvc(v12) = dvc(v13) = 1. Then
v4 < v3 < v2 < v1, v5 < v2 < v1, v12 < v10 < v1,
v7 < v6 < v1, v8 < v6 < v1, v9 < v6 < v1 and v13 < v11.

The Hasse diagram of the vc-poset (V,≤) is given in the
Figure 4.
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Fig. 3. Graph G with ∆vc(G) = 4 and δvc(G) = 1
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Fig. 4. vc-poset (V,≤) of the graph G

Proposition 7. For a connected graph G = (V,E), the
Hasse diagram of the vc-poset (V,≤) is connected if and only
if for any u,w ∈ V , there exists a path u = v1, v2, . . . , vn =
w in G such that dvc(vi) 6= dvc(vi+1), for all i, 1 ≤ i ≤
n− 1.

Proof: Assume that the Hasse diagram of the vc-poset
(V,≤) is connected. Suppose there are two vertices u and
w such that every u-w path in G contains some adjacent
vertices of same vc-degree. Then u and w are not comparable
in the poset (V,≤). We shall show that lowerbound and
upperbound of u and w do not exist in (V,≤). In fact,
suppose that a lowerbound of u and w exists in V . We
choose a lowerbound l of u and w such that l is a maximal
element of the set {v ∈ V : v is a lowerbound of u
and w}. Then, l < u and l < w. This implies that there
exist paths l = u1, u2, . . . , uk = u such that dvc(u1) <
dvc(u2) < · · · < dvc(uk) and l = v1, v2, . . . , vn = w
such that dvc(v1) < dvc(v2) < · · · < dvc(vn). Then
u = uk, uk−1, . . . , u2, u1 = l = v1, v2, . . . , vn = w is a
u-w path in G such that adjacent vertices have the distinct
vc-degrees, which is not possible. Similarly, we can prove
that no upperbound u and w exists in V . This implies
that u and w do not lie in the same component of the
Hasse diagram of (V,≤), which is a contradiction to our
assumption. Thus, there exists a path u = v1, v2, . . . , vn = w
in G such that dvc(vi) 6= dvc(vi+1), for all i, 1 ≤ i ≤ n− 1.
Conversely, assume that for any u,w ∈ V , there exists a path
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u = v1, v2, . . . , vn = w in G such that dvc(vi) 6= dvc(vi+1),
for all i, 1 ≤ i ≤ n − 1. Consider vi and vi+1. Then either
dvc(vi) > dvc(vi+1) or dvc(vi) < dvc(vi+1). This implies
that either vi > vi+1 or vi < vi+1 in (V,≤). Then vi and
vi+1 lie in the same component of the Hasse diagram of
(V,≤), for all i, 1 ≤ i ≤ n − 1. Therefore, u and w lie in
the same component of the Hasse diagram of (V,≤). Hence,
the Hasse diagram of the vc-poset (V,≤) is connected.

Definition 7. Let G = (V,E) be a graph. Then a vertex v ∈
V is called a vc-strong (vc-weak) vertex if dvc(v) ≥ dvc(u)
(dvc(v) ≤ dvc(u)), for all u adjacent to v. A vertex v ∈ V
is vc-regular if dvc(v) = dvc(u), for all u adjacent to v, and
v is vc-balanced if there exist vertices u and w adjacent to
v such that dvc(u) < dvc(v) < dvc(w).

Definition 8. The vc-strong number of a graph G denoted by
Svc(G) is the number of vc-strong vertices in G. Similarly,
vc-weak number (Wvc(G)), vc-regular number (Rvc(G))
and vc-balanced number (Bvc(G)) of G are defined.

Observation 1. Let G be a graph of order p. Then Svc(G)+
Wvc(G)−Rvc(G) +Bvc(G) = p.

Proposition 8. Let G = (V,E) be a graph and (V,≤) be
the vc-poset of G. Then

(i) v is a vc-strong vertex of G if and only if v is a maximal
element of (V,≤).

(ii) v is a vc-weak vertex of G if and only if v is a minimal
element of (V,≤).

(iii) v is a vc-regular vertex of G if and only if v is not
related to any element u ∈ V such that u 6= v with
respect to ≤.

(iv) v is a vc-balanced vertex of G if and only if v is neither
a minimal nor a maximal element of (V,≤).

Proof: (i) Assume that v is a vc-strong vertex of G.
Suppose v is not a maximal element of (V,≤). Then there
exists u ∈ V such that v < u. This implies that there is
a v-u path in G say v = v1, v2, . . . , vn = u such that
dvc(v) < dvc(v2) < · · · < dvc(u). We observe that v2 is
adjacent to v and dvc(v) < dvc(v2), which is a contradiction
to our assumption. Conversely, assume that v is a maximal
element of V . Suppose there exists a vertex u adjacent to v
in G such that dvc(u) > dvc(v). Then, v, u is a v-u path in G
with the property dvc(v) < dvc(u). This implies that v < u
in V , which is a contradiction to our assumption. Hence, v
is a vc-strong vertex of G. By similar argument (ii) can be
proved.
(iii) A vertex v of G is vc-regular if and only if v is both
vc-strong and vc-weak vertex of G if and only if v is both
maximal and minimal element of (V,≤) if and only if there
is no u,w ∈ V such that u > v and w < v if and only if v
is not related to any element of V − {v} with respect to ≤.
(iv) Let v be a vc-balanced vertex of G. Then there ex-
ist vertices u and w adjacent to v such that dvc(u) <
dvc(v) < dvc(w). This implies that u < v < w in V .
Hence, v is neither a minimal nor a maximal element of
(V,≤). Conversely, suppose there is v ∈ V such that u
is neither a minimal nor a maximal element. Then there
exists u,w ∈ V such that u < v < w. Then there is
a u-v path in G say u = v1, v2, . . . , vn = v such that
dvc(u) < dvc(v2) < · · · < dvc(vn−1) < dvc(v) and a v-

w path in G say v = u1, u2, . . . , uk = w such that dvc(v) <
dvc(u2) < · · · < dvc(w) . We observe that vn−1 and u2

are adjacent to v such that dvc(vn−1) < dvc(v) < dvc(u2).
Hence, v is a vc-balanced vertex of G.

Remark 5. (i) Let ∆vc(G) and δvc(G) denote the max-
imum vc-degree and minimum vc-degree of a graph
G. Then any vertex v of G with dvc(v) = ∆vc

(dvc(v) = δvc) is a maximal (minimal) element of the
vc-poset of G. But, the converse need not be true.

(ii) Let G = (V,E) be a graph and l(V ) be the length
of the vc-poset (V,≤) of G. Then, l(V ) ≤ ∆vc(G) −
δvc(G).

(iii) If two graphs G and H are isomorphic then their vc-
posets are order isomorphic. But the converse need not
be true. For example, consider the graphs G = (V1, E1)
and H = (V2, E2) given in the Figure 5.

b b

b

b

b b

b b

b

b

b

b

Graph G

Graph H

Fig. 5. Non isomorphic graphs G and H

Note that the graphs G and H are not isomorphic, but
their vc-posets are order isomorphic. Then, the Hasse
diagrams of the vc-posets (V1,≤) and (V2,≤) are same
and it is given in the Figure 6.

bc bc

bc bc bc bc

Fig. 6. Hasse diagram of the vc-posets (V1,≤) and (V2,≤)

(iv) If the vc-poset of a graph G is a lattice, then Svc(G) =
1, Wvc(G) = 1, Rvc(G) = 0 and Bvc(G) = p− 2.
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