Some Studies on Clique-free Sets of a Graph Using Clique Degree Conditions

Anusha Laxmana, Sayinath Udupa Nagara Vinayaka, Vinay Madhusudanan and Prathviraj Nagaraja

Abstract—Cliques are maximal complete subgraphs of a graph. A vertex v is said to vc-cover a clique C if v is in the clique C . A set S of vertices of a graph G is called a vccovering set of G if every clique of G is vc-covered by some vertex in S. The cardinality of the smallest vc-covering set of G is called the vc-covering number, denoted as $\alpha_{vc}(G)$. In this paper, we define new parameters such as strong (weak) vccovering number and strong (weak) clique-free number, and we establish a relationship between them. We present an algorithm to find these numbers and obtain some bounds for the newly defined parameters. In addition, we define a partial order on the vertex set of a graph using clique degree conditions and study some of its properties.

Index Terms—vc-degree, clique-free set, vc-covering set, vcposet.

I. INTRODUCTION

In this paper, by a graph $G = (V, E)$ we mean a simple and undirected graph of order $|V| = p$ and size $|E| = q$, where V and E , respectively denote the vertex set and the edge set of G. The terminologies and notations used here are as in [4], [7]. A clique is a maximal complete subgraph of a graph. If a vertex v is in the clique C , we say that v is incident on C or v vc-covers C . The vc-degree of a vertex u denoted by $d_{vc}(u)$ is the number of cliques vccovered by u. Note that $d_{vc}(u) \leq d(u)$, for any $u \in V(G)$ and if G is an acyclic graph, then $d_{vc}(u) = d(u)$, for all $u \in V(G)$. We denote minimum and maximum vc-degree of vertices of G by $\delta_{vc} = \delta_{vc}(G)$ and $\Delta_{vc} = \Delta_{vc}(G)$, respectively. A graph G is called vc-regular if every vertex has the same vc-degree. S. G. Bhat [2] initiated the study of vc-covering sets in graphs. A vc-covering set of a graph G is a set S of vertices in G such that every clique of G is vc-covered by some vertex in S and the vc-covering number of G denoted by $\alpha_{vc}(G)$ is the minimum cardinality of a vc-covering set of G . A set S of vertices in G is said to be a clique-free set $[2]$ pp. 56-96] if the subgraph induced by S does not induce any clique of G. The maximum cardinality of a clique-free set of G is the clique-free number of G and it is denoted by $\beta_{vc}(G)$. These two parameters satisfy the following relationship: $\alpha_{vc}(G) + \beta_{vc}(G) = p$. A vertex v is said to be a polycliqual vertex if it is incident on more

Manuscript received January 13, 2024; revised May 16, 2024.

Anusha Laxmana is a research scholar at the Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104, India (email: anusha.l@learner.manipal.edu).

Sayinath Udupa Nagara Vinayaka is an assistant professor at the Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104, India (Corresponding author, email: sayinath.udupa@manipal.edu).

Vinay Madhusudanan is an assistant professor at the Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal - 576104, India (email: vinay.m2000@gmail.com).

Prathviraj Nagaraja is an associate professor at the Manipal School of Information Sciences, Manipal Academy of Higher Education, Manipal - 576104, India (email: prathviraj.n@manipal.edu).

than one clique. A clique is a pendant clique if only one polycliqual vertex is incident on it. A graph G is called a clique star if every clique of G is a pendant clique. For a survey on cliques refer to [6].

II. STRONG VC-COVERING SETS AND STRONG CLIQUE-FREE SETS OF A GRAPH

Motivated by the study of strong (weak) vertex coverings and independent sets of a graph by S. S. Kamath and R. S. Bhat [5], we define the following.

Definition 1. Let $G = (V, E)$ be a graph. A vertex $u \in V$ *strongly (weakly) vc-covers a clique* C *of* G *if* u *vc-covers* C and $d_{vc}(u) \geq d_{vc}(w)$ $(d_{vc}(u) \leq d_{vc}(w))$ *for every vertex* w *vc-covering* C*.*

Definition 2. *A set* $S \subseteq V$ *is said to be a strong (weak) vccovering set of* G *if elements of* S *strongly (weakly) vc-cover all the cliques of G. The strong (weak) vc-covering number* $\alpha_{src}(G)$ ($\alpha_{wvc}(G)$) *is the minimum cardinality of a strong (weak) vc-covering set of* G*.*

Definition 3. *A set* $W \subseteq V$ *is said to be a strong (weak) clique-free set of* G *if* W *is a clique-free set of* G *and for* any vertex $u \in W$ *and for any clique* C *incident on* u, there *exists a vertex* $v \in V - W$ *such that* v *weakly (strongly) vc-covers* C*. The maximum cardinality of a strong (weak) clique-free set of* G *is the strong (weak) clique-free number denoted by* $\beta_{svc}(G)$ ($\beta_{wvc}(G)$).

- **Remark 1.** *(i) For a null p-vertex graph* $\overline{K_p}$ *, we assume that* $\alpha_{svc}(\overline{K_p}) = \alpha_{wvc}(\overline{K_p}) = 0$ *and* $\beta_{svc}(\overline{K_p}) = 0$ $\beta_{wvc}(\overline{K_p}) = p.$
- *(ii) Let* $G = (V, E)$ *be a non-trivial and non-null graph* and $u_{\Delta_{vc}}$ and $(w_{\delta_{vc}})$ be vertices of G of the maximum *and minimum vc-degrees, respectively. vc-degree. Then* $V - \{u_{\delta_{vc}}\}$ *is a strong vc-covering set of G and* $V {u_{\Delta_{vc}}}$ *is a weak vc-covering set of G. Further,* ${u_{\Delta_{vc}}}$ *is a strong clique-free set of G and* $\{u_{\delta_{vc}}\}$ *is a weak clique-free set of* G*.*
- *(iii) If G is a vc-regular graph, then* $\alpha_{vc}(G) = \alpha_{src}(G)$ $\alpha_{wvc}(G)$ *and* $\beta_{vc}(G) = \beta_{svc}(G) = \beta_{wvc}(G)$.

Example 1. *Consider the graph* G_1 given in the Fig*ure 1. Note that* $d_{vc}(v_1) = d_{vc}(v_2) = d_{vc}(v_3) = 1$, $d_{vc}(v_4) = d_{vc}(v_5) = d_{vc}(v_6) = 2$ and $d_{vc}(v_7) = d_{vc}(v_8) =$ $d_{vc}(v_9) = 3$. Then $\{v_4, v_5, v_6, v_7\}$ *is a vc-covering set of* G_1 *of minimum cardinality,* $\{v_4, v_5, v_6, v_7, v_8\}$ *is a strong vc-covering set of* G¹ *of minimum cardinality and* ${v_1, v_2, v_3, v_4, v_5, v_6, v_7}$ *is a weak vc-covering set of* G_1 *of minimum cardinality Hence,* $\alpha_{vc}(G_1) = 4$, $\alpha_{svc}(G_1) = 5$ *and* $\alpha_{wvc}(G_1) = 7$ *. Also, we observe that* $\{v_1, v_2, v_3, v_8, v_9\}$ *is a clique-free set of maximum cardinality,* $\{v_1, v_2, v_3, v_9\}$ *is a* weak clique-free set of maximum cardinality and $\{v_8, v_9\}$ *is a strong clique-free set of maximum cardinality. Therefore,* $\beta_{vc}(G_1) = 5$, $\beta_{svc}(G_1) = 2$ *and* $\beta_{wvc}(G_1) = 4$ *.*

Fig. 1. Graph G_1 with strong vc-covering number=5, weak vc-covering number=7, strong clique-free number=2 and weak clique-free number=4

A. Gallai-type results

Lemma 1. Let $G = (V, E)$ be a graph. For any set $S \subseteq V$,

- *(i)* S is a strong vc-covering set of G if and only if $V S$ *is a weak clique-free set of* G*.*
- *(ii)* S is a weak vc-covering set of G if and only if $V S$ *is a strong clique-free set of* G*.*

Proof: Let S be a strong vc-covering set of G. Since every clique is vc-covered by some vertex in S, at least one vertex of every clique is in S. Hence $\langle V - S \rangle$ cannot induce any clique of G. Thus, $W = V - S$ is a clique-free set of G. Let $u \in W$ and C be a clique incident on u. Then, there exists a vertex $v \in S$ such that v strongly vc-covers C. Hence, W is a weak clique-free set of G . On the other hand, let W be a weak clique-free set of G. Suppose that $V - W$ is not a vc-covering set. Then there exists a clique C in G which is not vc-covered by any vertex in $V - W$. This implies all the vertices of C are in W. Then $\langle W \rangle$ contains the clique C, which is a contradiction. Thus, $S = V - W$ is a vc-covering set of G . Suppose there exists a clique C in G which is not strongly vc-covered by any vertex in S. Then there is a vertex say u in the clique C such that $d_{vc}(u) > d_{vc}(w)$, for every vertex $w \in V(C) \cap S$. This implies, $u \in W$ and there is no vertex in S which strongly covers C , which is a contradiction. Thus, S is a strong vc-covering set of G . Hence (i) follows. With similar arguments, we can prove $(ii).$

The following theorem depicts the relationship between the newly defined parameters.

Theorem 2. For any graph $G = (V, E)$ of order p,

- *(i)* $\alpha_{svc}(G) + \beta_{wvc}(G) = p$
- *(ii)* $\alpha_{wvc}(G) + \beta_{svc}(G) = p$.

Proof: Let S be a strong vc-covering set of G such that $|S| = \alpha_{src}(G)$. Then by Lemma 1, $V - S$ is a weak clique-free set of G. Hence, $\beta_{wvc}(G) \ge |V - S| = p - |S|$. Therefore, $\alpha_{\text{syc}}(G) + \beta_{\text{wvc}}(G) \geq p$. Again, if W is a weak clique-free set of G such that $|W| = \beta_{wvc}(G)$. Then $V - W$ is a strong vc-covering set by Lemma 1. This implies that, $\alpha_{svc}(G) \leq |V-W| = p-|W|$. Hence, $\alpha_{svc}(G) + \beta_{wvc}(G) \leq$

p. Then, from the above inequalities (i) follows. With similar arguments, we can prove (ii) .

Proposition 3. Let $G = (V, E)$ be a graph of order p.

- *(i) If there exists a strong vc-covering set of* G *which is also a strong clique-free set of G, then* $\alpha_{svc}(G)$ + $\alpha_{wvc}(G) \leq p$.
- *(ii) If there exists a weak vc-covering set of* G *which is also a* weak clique-free set of G, then $\beta_{\text{svc}}(G) + \beta_{\text{wvc}}(G) \ge$ p*.*

Proof: Let S be a strong vc-covering set of G which is also a strong clique-free set of G . Then, by Lemma 1, $V - S$ is a weak vc-covering set of G. Hence, $\alpha_{wvc}(G) \leq$ $|V - S| = p - |S|$. Also, since strong vc-covering set of G, we have $\alpha_{\text{syc}}(G) \leq |S|$. By adding the two results we get, $\alpha_{\text{src}}(G) + \alpha_{\text{wvc}}(G) \leq p$. By, similar argument, we get $\beta_{svc}(G) + \beta_{wvc}(G) \geq p.$

Remark 2. *From the Remark 1 and Theorem 2, the following holds: if* G *is a non-trivial and non-null graph, then* 1 ≤ $\alpha_{\text{src}}(G) \leq p-1, \ 1 \leq \alpha_{\text{wvc}}(G) \leq p-1, \ 1 \leq \beta_{\text{src}}(G) \leq p-1$ *and* $1 \leq \beta_{wvc}(G) \leq p-1$ *.*

Theorem 4. *For any graph* G*,*

(i) $\alpha_{svc}(G) \leq \alpha_{wvc}(G)$

$$
(ii) \ \beta_{svc}(G) \leq \beta_{wvc}(G).
$$

Proof: Let $S = \{v_1, v_2, ..., v_k\}$ be a strong vc-covering set of G such that $d_{vc}(v_1) \leq d_{vc}(v_2) \leq \cdots \leq d_{vc}(v_k)$. Let C be the collection of all cliques in G . If there is $w \in N[v_1]$ such that $d_{vc}(w) = 1$, then we name w by u_1 . Otherwise, we choose $u_1 \in N[v_1]$ such that $d_{vc}(u_1)$ is minimum and u_1 weakly vc-covers maximum number of elements of C . If v_1 itself satisfies the above condition, then we take $u_1 = v_1$. Let $D_1 = \{u_1\}$. We remove the cliques which are weakly vc-covered by u_1 from the set C . Now for $i, 2 \le i \le k$, choose $u_i \in N[v_i] - D_{i-1}$ such that either $d_{vc}(u_i) = 1$ or $d_{vc}(u_i)$ is minimum and u_i weakly vc-covers maximum number of elements of C . If v_i itself satisfies the above condition, then we take $u_i = v_i$. Let $D_i = D_{i-1} \cup \{u_i\}$. We remove the cliques which are weakly vc-covered by u_i from the set \mathcal{C} . By continuing this process, we get $D_k = \{u_1, u_2, \dots, u_k\}$ such that $D_k \subseteq W$, for some weak vc-covering set W of minimum cardinality. Hence, $\alpha_{\text{syc}}(G) = |S| = |D_k| \leq |W| = \alpha_{\text{wvc}}$. Thus, (i) holds. With similar arguments, we can prove (ii) .

B. Algorithm to find the strong vc-covering number and weak clique-free number of a graph

In this section we present algorithms to find the strong (weak) clique-free number and vc-covering number of a graph. We make use of vcdeg() function which gives the number of cliques incident on the given vertex at that moment and sort() function which sorts the vertices of G in the descending order of the vc-degree.

Input: The vertex set V and the set of all cliques $C = \{C_1, C_2, \ldots, C_k\}$ of G

Output: $\alpha_{\text{syc}}(G)$ and $\beta_{\text{wyc}}(G)$ Algorithm: $C = \{C_1, C_2, \ldots, C_k\}$ $v[] = [v_1, v_2, \ldots, v_p]$ $V = sort(V)$

$$
d_{vc}v[] = [vcdeg(v_1), vcdeg(v_2), \dots, vcdeg(v_p)]
$$

\n
$$
S = \{v[1] \}
$$

\nfor $(i = 1; i \leq k; i = i + 1)$
\nif $v[1] \in C_i$ then
\n $C = C - \{C_i\}$
\nend if
\nend for
\nfor $(i = 2; i \leq p; i = i + 1)$
\nif $vdeg(v[i]) \geq 1$ then
\n $x[] = [v[i]]$
\nfor $(j = 3; j \leq p; j = j + 1)$
\nif $(d_{vc}v[i] = d_{vc}v[j])$ then
\n $x = x \cup [v[j]]$
\nend if
\nend for
\nif $x \neq [v[i]]$ then
\n $x = sort(x)$
\nif $(vcdeg(x[1]) > vcdeg(v[i]))$ then
\n $temp = v[i]$
\n $v[i] = x[1]$
\n $x[1] = temp$
\nend if
\n $S = S \cup \{v[i]\}$
\nend if
\nfor $(l = 1; l \leq k; l = l + 1)$
\nif $v[i] \in C_l$ then
\n $C = C - \{C_l\}$
\nend if
\nend for
\n $\alpha_{svc}(G) = |S|$
\n $\beta_{wvc}(G) = |V - S|$

Note: In a similar manner, we can construct an algorithm to find $\alpha_{wvc}(G)$ and $\beta_{svc}(G)$.

Remark 3. *The time complexity of the algorithm 2.1. in worst case scenario is* $O(n(2n + 1))$ *.*

C. Construction of a graph with arbitrarily large difference between $\alpha_{vc}(G)$ *and* $\alpha_{svc}(G)$

Consider the graph G_1 as given in the Figure 1. We have $\alpha_{vc}(G_1) - \alpha_{svc}(G_1) = 1$. Let $G_1^{(1)} = G_2^{(1)} = G_3^{(1)} = G_1$ and we rename v_j by $v_{ij}^{(1)}$, for all $i, j, 1 \le i \le 3, 1 \le j \le 9$. Let G_2 be the graph obtained by joining the vertices v_i of G_1 and $v_{i1}^{(1)}$ of $G_i^{(1)}$ for all $i, 1 \leq i \leq 3$, as shown in the Figure 2. Note that $\{v_7, v_8, v_{11}^{(1)}, v_{21}^{(1)}, v_{31}^{(1)}, v_{17}^{(1)}, v_{18}^{(1)}, v_{15}^{(1)}, v_{16}^{(1)},\}$ $v_{27}^{(1)}, v_{28}^{(1)}, v_{25}^{(1)}, v_{26}^{(1)}, v_{37}^{(1)}, v_{38}^{(1)}, v_{35}^{(1)}, v_{36}^{(1)}\}$ is a strong vc-covering set of G_2 of minimum cardinality and $\{v_7, v_6, v_{11}^{(1)}, v_{21}^{(1)}, v_{31}^{(1)}, v_{17}^{(1)}, v_{15}^{(1)}, v_{16}^{(1)}, v_{27}^{(1)},$ $v_{25}^{(1)}$, $v_{26}^{(1)}$, $v_{37}^{(1)}$, $v_{35}^{(1)}$, $v_{36}^{(1)}$ } is a vc-covering set of G_2 of minimum cardinality. Hence, $sn_0(G_2) - n_0(G_2) = 3$. Similarly, for $n \geq 1$, let $G_i^{(n)} = G_1$, for all $i, 1 \leq i \leq 3 \times 2^{n-1}$ and rename v_j by $v_{ij}^{(n)}$, for all $i, j, 1 \le i \le 3 \times 2^{n-1}, 1 \le j \le 9$. Consider the graph G_{n+1} obtained by joining the vertex $v_{i1}^{(n)}$ of $G_i^{(n)}$ and a pendant vertex of G_n , for all $i, 1 \leq i \leq 3 \times 2^{n-1}$. Then $\{v_7, v_8\} \cup$ $\begin{pmatrix} n \\ 1 \end{pmatrix}$ \bigcup^j $\bigcup_{i=1}^{\tilde{v}} \{v_{1k}^{(i)}, v_{2k}^{(i)}, \ldots, v_{(3 \times 2^{i-1})k}^{(i)}\}_{k=1,7,8}$! ∪

 $j=1$

Fig. 2. Graph G_2 obtained by joining the vertices v_i of G_1 and $v_{i1}^{(1)}$ of $G_i^{(1)}$ for all $i, 1 \leq i \leq 3$.

 $3 \times 2^{n-1}$ $\bigcup \{v_{ik}^{(n)}\}_{k=5,6}$ is a strong vc-covering set of minimum cardinality of G_{n+1} and $\{v_7, v_6\}$ ∪ $\left(\begin{array}{c}n\\u\end{array}\right)$ $j=1$ \bigcup^j $\bigcup_{i=1}^{\tilde{v}} \{v_{1k}^{(i)}, v_{2k}^{(i)}, \ldots, v_{(3 \times 2^{i-1})k}^{(i)}\}_{k=1,6,7}$ λ ∪ $3 \times 2^{n-1}$

 $\bigcup \{v_{i6}(n)\}\$ is a vc-covering set of minimum cardinality $\mathfrak{o}^{i=1}_{{\rm of}} G_{n+1}.$ Therefore, $\alpha_{svc}(G) - \alpha_{vc}(G) = 3 \times 2^{n-1}.$ Hence, it is possible to find a graph G with arbitrarily large difference between $\alpha_{vc}(G)$ and $\alpha_{svc}(G)$.

Remark 4. *Consider a clique star graph* G *with* n *cliques. Then, there exists a unique vertex* u *(say)* in G with $d_{vc}(u) =$ *n* and $d_{vc}(w) = 1$, for any vertex w other than u in G. We *observe that the difference between* $\alpha_{vc}(G) = \alpha_{svc}(G) = 1$ *and* $\alpha_{wvc}(G) = n$ *is* $n-1$ *, which can be made arbitrarily large.*

D. Bounds on strong vc-covering number and weak vccovering number of a graph

Proposition 5. *Let* c *be the number of cliques in a graph* G *and* c_p *be the number of pendant cliques in G. Then* $c_p \leq$ $\alpha_{wvc} \leq c$ *and equality holds if and only if G is a clique star.*

Proof: Clearly, $\alpha_{wvc} \leq c$. Suppose there is a pendant clique K of G. Then, there exists a vertex $u \in K$ such that $d_{vc}(u) > 1$ and $d_{vc}(v) = 1$, for all $v \in K$ such that $v \neq u$. Then, every minimal weak vc-covering set of G contains exactly one vertex of K with vc-degree 1. Hence, $c_p \leq \alpha_{wvc}$. Note that G is a clique star if and only if every clique of G is a pendant clique if and only if $c = \alpha_{wvc} = c_p$.

Definition 4. *A polycliqual vertex* u *of a graph* G *is a support polycliqual vertex if it is incident on a pendant clique of* G*. Otherwise, it is called a non-support polycliqual vertex.*

Definition 5. *A polycliqual vertex* u *is said to be a weak nonsupport polycliqual vertex if it is a non-support polycliqual vertex and* $d_{vc}(u) \leq d_{vc}(w)$ *for every polycliqual vertex w adjacent to* u*.*

Proposition 6. *Let* G *be a connected graph which is not complete. Let* p_c *be the number of polycliqual vertices in G. Then,* $\alpha_{src}(G) \leq p_c$ *and equality holds if and only if* G *is a weak non-support polycliqual vertex free graph.*

Proof: Suppose there is a vertex u in G which is not polycliqual. Let C be a clique incident on u . Since G is connected graph which is not complete, there exists a polycliqual vertex say v incident on C. Note that $d_{vc}(u)$ < $d_{vc}(v)$. Choose a polycliqual vertex w incident on C with the maximum vc-degree. Then C is strongly covered by w . This implies that u does not belong to any minimal strong vc-covering set of G. Hence, $\alpha_{src}(G) \leq p_c$. Now, assume that $\alpha_{\text{succ}}(G) = p_c$. Suppose there exists a weak non-support polycliqual vertex say u in G. Then $d_{vc}(u) \leq d_{vc}(v)$, for all polycliqual vertex v adjacent to u . Then u does not uniquely strongly vc-cover any clique of G . Hence, for any minimal strong vc-covering set S of G , there exists a polycliqual vertex in the closed neighbourhood of u which does not belong to S. This implies that $\alpha_{\text{src}}(G) \leq p_c - 1$, which is a contradiction. Conversely, let G be a weak non-support polycliqual vertex free graph. Then every polycliqual vertex of G uniquely strongly vc-covers a clique of G . Hence, the set of all polycliqual vertices of G is the minimum strong vc-covering set of G. Therefore, $\alpha_{\text{src}}(G) = p_c$.

III. PARTIAL ORDERING RELATION ON THE VERTEX SET OF A GRAPH USING VC-DEGREE

A partial order on a set P is a binary relation on P which is reflexive, antisymmetric and transitive. A set on which a partial order is defined is called a partially ordered set or briefly a poset. The length of a poset (P, \leq) denoted by $l(P)$ is defined as $l(P) = \max\{|C| - 1 : C$ is a maximal subchain of P . A lattice is a poset in which every pair of elements has a greatest lower bound and a least upper bound. For a survey refer to [3].

Definition 6. We define a partial order \leq on the vertex set V *of a graph* G *as follows: for any two vertices* u *and* w*,* $u \leq w$ *if either* $u = w$ *or there exists a path between* u *and* w *say* $u = v_1, v_2, \ldots, v_n = w$ *such that* $d_{vc}(v_1)$ < $d_{vc}(v_2) < \cdots < d_{vc}(v_n)$. We call the poset (V, \leq) as the *vc-poset of* G*.*

Example 2. *Consider the graph* G *given in the Figure* 3. Then $d_{vc}(v_1) = 4$, $d_{vc}(v_2) = d_{vc}(v_6) = d_{vc}(v_{10}) =$ $d_{vc}(v_{11}) = 3, d_{vc}(v_3) = 2, d_{vc}(v_4) = d_{vc}(v_5) = d_{vc}(v_7) =$ $d_{vc}(v_8) = d_{vc}(v_9) = d_{vc}(v_{12}) = d_{vc}(v_{13}) = 1$. Then $v_4 \; < \; v_3 \; < \; v_2 \; < \; v_1, \; v_5 \; < \; v_2 \; < \; v_1, \; v_{12} \; < \; v_{10} \; < \; v_1,$ $v_7 < v_6 < v_1, v_8 < v_6 < v_1, v_9 < v_6 < v_1$ and $v_{13} < v_{11}$.

The Hasse diagram of the vc-poset (V, \leq) *is given in the Figure 4.*

Fig. 3. Graph G with $\Delta_{vc}(G) = 4$ and $\delta_{vc}(G) = 1$

Fig. 4. vc-poset (V, \leq) of the graph G

Proposition 7. For a connected graph $G = (V, E)$, the *Hasse diagram of the vc-poset* (V, \leq) *is connected if and only if for any* $u, w \in V$ *, there exists a path* $u = v_1, v_2, \ldots, v_n =$ *w* in G such that $d_{vc}(v_i) \neq d_{vc}(v_{i+1})$ *, for all* $i, 1 \leq i \leq$ $n - 1$.

Proof: Assume that the Hasse diagram of the vc-poset (V, \leq) is connected. Suppose there are two vertices u and w such that every $u-w$ path in G contains some adjacent vertices of same vc-degree. Then u and w are not comparable in the poset (V, \leq) . We shall show that lowerbound and upperbound of u and w do not exist in (V, \leq) . In fact, suppose that a lowerbound of u and w exists in V . We choose a lowerbound l of u and w such that l is a maximal element of the set $\{v \in V : v \text{ is a lowerbound of } u\}$ and w. Then, $l \leq u$ and $l \leq w$. This implies that there exist paths $l = u_1, u_2, \dots, u_k = u$ such that $d_{vc}(u_1)$ < $d_{vc}(u_2) \leq \cdots \leq d_{vc}(u_k)$ and $l = v_1, v_2, \ldots, v_n = w$ such that $d_{vc}(v_1) < d_{vc}(v_2) < \cdots < d_{vc}(v_n)$. Then $u = u_k, u_{k-1}, \ldots, u_2, u_1 = l = v_1, v_2, \ldots, v_n = w$ is a $u-w$ path in G such that adjacent vertices have the distinct vc-degrees, which is not possible. Similarly, we can prove that no upperbound u and w exists in V . This implies that u and w do not lie in the same component of the Hasse diagram of (V, \leq) , which is a contradiction to our assumption. Thus, there exists a path $u = v_1, v_2, \dots, v_n = w$ in G such that $d_{vc}(v_i) \neq d_{vc}(v_{i+1})$, for all $i, 1 \leq i \leq n-1$. Conversely, assume that for any $u, w \in V$, there exists a path $u = v_1, v_2, \dots, v_n = w$ in G such that $d_{vc}(v_i) \neq d_{vc}(v_{i+1}),$ for all $i, 1 \le i \le n-1$. Consider v_i and v_{i+1} . Then either $d_{vc}(v_i) > d_{vc}(v_{i+1})$ or $d_{vc}(v_i) < d_{vc}(v_{i+1})$. This implies that either $v_i > v_{i+1}$ or $v_i < v_{i+1}$ in (V, \leq) . Then v_i and v_{i+1} lie in the same component of the Hasse diagram of (V, \leq) , for all i, $1 \leq i \leq n-1$. Therefore, u and w lie in the same component of the Hasse diagram of (V, \leq) . Hence, the Hasse diagram of the vc-poset (V, \leq) is connected. \mathbf{r}

Definition 7. *Let* $G = (V, E)$ *be a graph. Then a vertex* $v \in$ V is called a vc-strong (vc-weak) vertex if $d_{vc}(v) \geq d_{vc}(u)$ $(d_{vc}(v) \leq d_{vc}(u))$, for all *u* adjacent to *v*. A vertex $v \in V$ *is vc-regular if* $d_{vc}(v) = d_{vc}(u)$ *, for all u adjacent to v, and* v *is vc-balanced if there exist vertices* u *and* w *adjacent to* v such that $d_{vc}(u) < d_{vc}(v) < d_{vc}(w)$.

Definition 8. *The vc-strong number of a graph* G *denoted by* $S_{vc}(G)$ *is the number of vc-strong vertices in G. Similarly, vc-weak number* $(W_{vc}(G))$ *, vc-regular number* $(R_{vc}(G))$ *and vc-balanced number* $(B_{vc}(G))$ *of G are defined.*

Observation 1. Let G be a graph of order p. Then $S_{vc}(G)$ + $W_{vc}(G) - R_{vc}(G) + B_{vc}(G) = p.$

Proposition 8. *Let* $G = (V, E)$ *be a graph and* (V, \leq) *be the vc-poset of* G*. Then*

- *(i)* v *is a vc-strong vertex of* G *if and only if* v *is a maximal element of* (V, \leq) *.*
- *(ii)* v *is a vc-weak vertex of* G *if and only if* v *is a minimal element of* (V, \leq) *.*
- *(iii)* v *is a vc-regular vertex of* G *if and only if* v *is not related to any element* $u \in V$ *such that* $u \neq v$ *with respect to* \leq *.*
- *(iv)* v *is a vc-balanced vertex of* G *if and only if* v *is neither a minimal nor a maximal element of* (V, \leq) *.*

Proof: (i) Assume that v is a vc-strong vertex of G . Suppose v is not a maximal element of (V, \leq) . Then there exists $u \in V$ such that $v < u$. This implies that there is a v-u path in G say $v = v_1, v_2, \ldots, v_n = u$ such that $d_{vc}(v) < d_{vc}(v_2) < \cdots < d_{vc}(u)$. We observe that v_2 is adjacent to v and $d_{vc}(v) < d_{vc}(v_2)$, which is a contradiction to our assumption. Conversely, assume that v is a maximal element of V . Suppose there exists a vertex u adjacent to v in G such that $d_{vc}(u) > d_{vc}(v)$. Then, v, u is a v-u path in G with the property $d_{vc}(v) < d_{vc}(u)$. This implies that $v < u$ in V , which is a contradiction to our assumption. Hence, v is a vc-strong vertex of G. By similar argument *(ii)* can be proved.

(iii) A vertex v of G is vc-regular if and only if v is both vc-strong and vc-weak vertex of G if and only if v is both maximal and minimal element of (V, \leq) if and only if there is no $u, w \in V$ such that $u > v$ and $w < v$ if and only if v is not related to any element of $V - \{v\}$ with respect to \leq . (iv) Let v be a vc-balanced vertex of G . Then there exist vertices u and w adjacent to v such that $d_{vc}(u)$ < $d_{vc}(v) < d_{vc}(w)$. This implies that $u < v < w$ in V. Hence, v is neither a minimal nor a maximal element of (V, \leq) . Conversely, suppose there is $v \in V$ such that u is neither a minimal nor a maximal element. Then there exists $u, w \in V$ such that $u < v < w$. Then there is a u-v path in G say $u = v_1, v_2, \ldots, v_n = v$ such that $d_{vc}(u) < d_{vc}(v_2) < \cdots < d_{vc}(v_{n-1}) < d_{vc}(v)$ and a vw path in G say $v = u_1, u_2, \dots, u_k = w$ such that $d_{vc}(v)$ < $d_{vc}(u_2) < \cdots < d_{vc}(w)$. We observe that v_{n-1} and u_2 are adjacent to v such that $d_{vc}(v_{n-1}) < d_{vc}(v) < d_{vc}(u_2)$. Hence, v is a vc-balanced vertex of G .

- **Remark 5.** *(i)* Let $\Delta_{vc}(G)$ and $\delta_{vc}(G)$ denote the max*imum vc-degree and minimum vc-degree of a graph G. Then any vertex* v of *G* with $d_{vc}(v) = \Delta_{vc}$ $(d_{vc}(v) = \delta_{vc})$ *is a maximal (minimal) element of the vc-poset of* G*. But, the converse need not be true.*
- *(ii)* Let $G = (V, E)$ be a graph and $l(V)$ be the length *of the vc-poset* (V, \leq) *of G. Then,* $l(V) \leq \Delta_{vc}(G)$ – $\delta_{vc}(G)$.
- *(iii) If two graphs* G *and* H *are isomorphic then their vcposets are order isomorphic. But the converse need not be true. For example, consider the graphs* $G = (V_1, E_1)$ *and* $H = (V_2, E_2)$ *given in the Figure 5.*

Fig. 5. Non isomorphic graphs G and H

Note that the graphs G *and* H *are not isomorphic, but their vc-posets are order isomorphic. Then, the Hasse diagrams of the vc-posets* (V_1, \leq) *and* (V_2, \leq) *are same and it is given in the Figure 6.*

Fig. 6. Hasse diagram of the vc-posets (V_1, \leq) and (V_2, \leq)

(iv) If the vc-poset of a graph G is a lattice, then $S_{vc}(G)$ = 1*,* $W_{vc}(G) = 1$, $R_{vc}(G) = 0$ and $B_{vc}(G) = p - 2$.

REFERENCES

- [1] R. S. Bhat, *A Study of strong (weak) domination and related concepts in graphs*, National Institute of Technology, Surathkal (Doctoral Thesis), 2006.
- [2] S. G. Bhat, *Some new aspects of independent sets and clique related parameters of a graph*, Manipal Academy of Higher Education, Manipal (Doctoral Thesis), 2019.
- [3] G. Grätzer, *General Lattice Theory*, New York: Academic Press, 1978.
- [4] F. Harary, *Graph Theory*, Massachusetts: Addison Wesley, 1972.
- [5] S. S. Kamath and R. S. Bhat, "On strong (weak) independent sets and vertex coverings of a graph", *Discrete Mathematics*, vol. 307, no. 9-10, pp. 1136-1145, 2007.
- [6] J. W. Moon and L. Moser, "On cliques in graphs", *Israel Journal of Mathematics*, vol. 3, pp. 23-28, 1965.
- [7] D. B. West, *Introduction to Graph Theory*, Upper Saddle River: Prentice Hall, 2001.