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Some Studies on Clique-free Sets of a Graph
Using Clique Degree Conditions
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Abstract—Cliques are maximal complete subgraphs of a
graph. A vertex v is said to vc-cover a clique C if v is in
the clique C. A set S of vertices of a graph G is called a vc-
covering set of GG if every clique of G is vc-covered by some
vertex in S. The cardinality of the smallest vc-covering set
of G is called the vc-covering number, denoted as a.,.(G). In
this paper, we define new parameters such as strong (weak) ve-
covering number and strong (weak) clique-free number, and we
establish a relationship between them. We present an algorithm
to find these numbers and obtain some bounds for the newly
defined parameters. In addition, we define a partial order on
the vertex set of a graph using clique degree conditions and
study some of its properties.

Index Terms—vc-degree, clique-free set, vc-covering set, ve-
poset.

I. INTRODUCTION

In this paper, by a graph G = (V, F) we mean a simple
and undirected graph of order |V| = p and size |E| = ¢,
where V' and E, respectively denote the vertex set and the
edge set of G. The terminologies and notations used here
are as in [4], [7]. A clique is a maximal complete subgraph
of a graph. If a vertex v is in the clique C, we say that
v is incident on C' or v vc-covers C. The vc-degree of a
vertex u denoted by d,.(u) is the number of cliques vc-
covered by u. Note that d,.(u) < d(u), for any u € V(G)
and if G is an acyclic graph, then d,.(u) = d(u), for all
u € V(G). We denote minimum and maximum vc-degree
of vertices of G by dye = 04c(G) and Ay = Aye(G),
respectively. A graph G is called vc-regular if every vertex
has the same vc-degree. S. G. Bhat [2] initiated the study of
ve-covering sets in graphs. A vc-covering set of a graph G
is a set S of vertices in G such that every clique of G is
ve-covered by some vertex in S and the vc-covering number
of G denoted by (@) is the minimum cardinality of a
ve-covering set of G. A set S of vertices in G is said to be a
clique-free set [[2] pp. 56-96] if the subgraph induced by S
does not induce any clique of G. The maximum cardinality
of a clique-free set of G is the clique-free number of G and
it is denoted by S,.(G). These two parameters satisfy the
following relationship: ,.(G) + Byc(G) = p. A vertex v
is said to be a polycliqual vertex if it is incident on more
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than one clique. A clique is a pendant clique if only one
polycliqual vertex is incident on it. A graph G is called a
clique star if every clique of G is a pendant clique. For a
survey on cliques refer to [6].

II. STRONG VC-COVERING SETS AND STRONG
CLIQUE-FREE SETS OF A GRAPH

Motivated by the study of strong (weak) vertex coverings
and independent sets of a graph by S. S. Kamath and R. S.
Bhat [5], we define the following.

Definition 1. Let G = (V, E) be a graph. A vertex u € V
strongly (weakly) vc-covers a cliqgue C of G if u vc-covers
C and dyc(u) > dyc(w) (dye(u) < dye(w)) for every vertex
w ve-covering C.

Definition 2. A set S C V is said to be a strong (weak) vc-
covering set of G if elements of S strongly (weakly) vc-cover
all the cliques of G. The strong (weak) vc-covering number
Qspe(G) (Quue(G)) is the minimum cardinality of a strong
(weak) vc-covering set of G.

Definition 3. A set W C V is said to be a strong (weak)
clique-free set of G if W is a clique-free set of G and for
any vertex u € W and for any clique C' incident on u, there
exists a vertex v € V. — W such that v weakly (strongly)
ve-covers C. The maximum cardinality of a strong (weak)
clique-free set of G is the strong (weak) clique-free number
denoted by Baue(G) (Bunwe(G)).

Remark 1. (i) For a null p-vertex graph Fp, we assume
that asvc(Fp) = Quue(Kp) = 0 and 55%(?1,) =
Bwvc(Kp) =p

(ii) Let G = (V,E) be a non-trivial and non-null graph
and upa,, and (ws,, ) be vertices of G of the maximum
and minimum vc-degrees, respectively. vc-degree. Then
V —{us,,} is a strong vc-covering set of G and V —
{ua,.} is a weak vc-covering set of G. Further, {ua,_}
is a strong clique-free set of G and {us,. } is a weak
clique-free set of G.

(iii) If G is a ve-regular graph, then aye(G) = e (G) =
awvc(G) and ﬁvc(G) = 6SUC(G) = Bwvc(G)-

Example 1. Consider the graph G given in the Fig-
ure 1. Note that dy.(v1) = dyc(va) = dye(vz) = 1,
dvc(v4) = dvc(”f}) = dvc(UG) =2 and dvc(”?) = dvc(US) =
dyc(v9) = 3. Then {v4,vs,vs,v7} Is a vc-covering set
of G1 of minimum cardinality, {v4,vs,ve,v7,v8} is a
strong vc-covering set of G1 of minimum cardinality and
{v1, va, V3,04, V5,06, 07} is a weak vc-covering set of Gy
of minimum cardinality Hence, aye(G1) = 4, Qgc(G1) =5
and uyyue(G1) = 7. Also, we observe that {vy,va, vs, Vs, Vg }
is a clique-free set of maximum cardinality, {vy,va,v3, Vg } is
a weak clique-free set of maximum cardinality and {vs, vy}
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is a strong clique-free set of maximum cardinality. Therefore,
ﬂvc(Gl) =5, ﬂsvc(Gl) =2 and Bw’uc(Gl) =4

U3

V4

v7 &

Us U6
Vg
V2 U1

Fig. 1. Graph G with strong vc-covering number=>5, weak vc-covering
number=7, strong clique-free number=2 and weak clique-free number=4

A. Gallai-type results
Lemma 1. Let G = (V, E) be a graph. For any set S C V,
(i) S is a strong vc-covering set of G if and only if V — S
is a weak clique-free set of G.
(ii) S is a weak vc-covering set of G if and only if V — S
is a strong clique-free set of G.

Proof: Let S be a strong vc-covering set of G. Since
every clique is vc-covered by some vertex in S, at least one
vertex of every clique is in S. Hence (V — S) cannot induce
any clique of G. Thus, W = V — S is a clique-free set
of G. Let u € W and C be a clique incident on u. Then,
there exists a vertex v € .S such that v strongly vc-covers C.
Hence, W is a weak clique-free set of G. On the other hand,
let W be a weak clique-free set of G. Suppose that V —W is
not a ve-covering set. Then there exists a clique C' in G which
is not ve-covered by any vertex in V' — W. This implies all
the vertices of C' are in W. Then (W) contains the clique C,
which is a contradiction. Thus, S =V — W is a vc-covering
set of G. Suppose there exists a clique C' in G which is
not strongly vc-covered by any vertex in S. Then there is
a vertex say u in the clique C such that dyc(u) > dyc(w),
for every vertex w € V(C) N S. This implies, v € W and
there is no vertex in S which strongly covers C, which is
a contradiction. Thus, S is a strong vc-covering set of G.
Hence (i) follows. With similar arguments, we can prove
(it). |

The following theorem depicts the relationship between
the newly defined parameters.

Theorem 2. For any graph G = (V, E) of order p,

(l) asvc(G) + Bwvc(G) =p
(ii) awvc(G) + ﬁsvc(G) =D

Proof: Let S be a strong vc-covering set of G such
that |S| = aspe(G). Then by Lemma 1, V — S is a weak
clique-free set of G. Hence, Sype(G) > |V — S| =p—|5|.
Therefore, syc(G) + Buwwve(G) > p. Again, if W is a weak
clique-free set of G such that |W| = S,4c(G). Then V —W
is a strong vc-covering set by Lemma 1. This implies that,
Aspe(G) < |[V=W| = p—|W|. Hence, aspe(G)+Bune(G) <

p. Then, from the above inequalities (7) follows. With similar
arguments, we can prove (i). [ |

Proposition 3. Let G = (V, E) be a graph of order p.

(i) If there exists a strong vc-covering set of G which is
also a strong clique-free set of G, then ag,.(G) +
awvc(G) < p-

(ii) If there exists a weak vc-covering set of G which is also
a weak clique-free set of G, then Bsye(G)+ Buwve(G) >
D.

Proof: Let S be a strong vc-covering set of G which
is also a strong clique-free set of G. Then, by Lemma 1,
V — S is a weak vc-covering set of G. Hence, quyye(G) <
|V — S| = p — |S|. Also, since strong vc-covering set of
G, we have a4,.(G) < |S]. By adding the two results we
get, Aspe(G) + uue(G) < p. By, similar argument, we get
5SUC(G) + Bwvc(G) > p. n

Remark 2. From the Remark I and Theorem 2, the following
holds: if G is a non-trivial and non-null graph, then 1 <
asvc(G) S p_l’ 1 S awvc(G> S p_lr 1 S stc(G) S p_l
and 1 < ﬁwvc(G) < p—= L

Theorem 4. For any graph G,
(l) aSUC(G) S a’lJJ’UC(G)
(ii) Bsve(G) < Buwe(G).

Proof: Let S = {vy,va, ..., v; } be a strong vc-covering
set of G such that dy.(v1) < dye(v2) < -+ < dye(vg).
Let C be the collection of all cliques in G. If there is
w € Nlvy] such that d,.(w) = 1, then we name w by
uy. Otherwise, we choose u; € N[vi] such that d,.(u;)
is minimum and u; weakly vc-covers maximum number of
elements of C. If vy itself satisfies the above condition, then
we take u; = vy. Let D1 = {u1}. We remove the cliques
which are weakly vc-covered by u; from the set C. Now
for i, 2 < i < k, choose u; € N[v;] — D;—1 such that
either dye(u;) = 1 or dye(u;) is minimum and u; weakly
vc-covers maximum number of elements of C. If v; itself
satisfies the above condition, then we take u; = v;. Let
D; = D;_1U{u;}. We remove the cliques which are weakly
ve-covered by u; from the set C. By continuing this process,
we get Dy, = {uy,us, ..., ux} such that Dy C W, for some
weak vc-covering set W of minimum cardinality. Hence,
aspe(G) = |S| = |Dg| < |W| = uoe. Thus, (i) holds.
With similar arguments, we can prove (7). [ |

B. Algorithm to find the strong vc-covering number and weak
clique-free number of a graph

In this section we present algorithms to find the strong
(weak) clique-free number and vc-covering number of a
graph. We make use of vcdeg() function which gives the
number of cliques incident on the given vertex at that
moment and sort() function which sorts the vertices of GG in
the descending order of the vc-degree.

Input: The vertex set V' and the set of all cliques

C= {Ol,Cg,...,Ck} of G
Output: «,.(G) and Bype(G)
Algorithm:
C={Cy,Cy...,Cr}

o[ ] = [v1,v2,...,0p]

V = sort(V)
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dyev] | = [vedeg(vy), vedeg(va), . . .,
8 = {ol1)}
for i=1;i<kji=i+1)
if v[1] € C; then
¢=Cc-{C}
end if
end for
for (=20 <pji=1i+1)
if vedeg(v[i]) > 1 then
(] = [vli]]
for (j=3j<pj=j+1)

vedeg(vy)]

if (dyev[i] = dyev]j]) then
=2 U[j]
end if
end for

if © # [v[i]] then
x = sort(x)
if (vedeg(x[1]) > vedeg(v[i])) then

temp = vli]
vfi] = z[1]
z[1] = temp
end if
end if
S =SuU{v[i}
end if

for 1=1;1<hk:l=1+1)
if v[i] € C; then

e=c—{C}
end if
end for
end for
aspe(G) = 19|
/Bwvc(G) = |V - S‘

Note: In a similar manner, we can construct an algorithm
to find e (G) and Bsye(G).

Remark 3. The time complexity of the algorithm 2.1. in
worst case scenario is O(n(2n + 1)).

C. Construction of a graph with arbitrarily large difference
between ou,.(G) and ag,.(Q)

Consider the graph G; as given in the Figure 1. We have
pe(G1) — gpe(G1) = 1. Let G4 Y = G, = GV = ¢4
and we rename v; by v;; (1), foralli,5,1 <i < 3,1 < j <09.
Let G2 be the graph obtained by joining the
vertices v; of Gy and v M of G W for all
3,1 < 4 < 3, as shown in the Figure 2. Note that
{1)771)87@11(1) V21, w31 W 017D w1 05D g6

97 (D) 09g (D) gy (1) U%(l) vg7 (D 'U3S(1)7'U35(1)’U36(1)} is
a strong ve-covering set of G of minimum cardinality and
{U7706,U11(1>,U21(1)7U31(1),U17(1),U15(1)7U16(1)7U27(1),
v25(1),v%(l),v37(1),035(1),v36(1)} is a vc-covering set of
G4 of minimum cardinality. Hence, sng(G2) —no(G2) = 3.
Similarly, for n > 1, let G,™ = Gy, for all
i,1 < i < 3 x 2" ! and rename v; by vij(”), for all
i,5,1<i<3x2n711<5<0. Con51der the graph G, 41
obtained by joining the vertex v;1 (™ of G;(™ and a pendant
vertex of Gy, for all 4,1 < i < 3 x 2”1, Then {v7,v3} U

(U U {vx®, 02,

j=1li=1

02D, vaei D i=1s U

1
Uézs)

Fig. 2. Graph G2 obtained by joining the vertices v; of G and v;3 (V)
of G;() forall 4,1 < i < 3.

strong  vc-covering  set

X2
U {vie™}i=se6 is a
i—1

of minimum cardinality of G,y1 and {v7,u6} U

<U U{'Ulk ROACH av(3x2i*1)k(i)}k=l,6,7 U
j=1li=1
3x2m !

U {vi™} is a ve-covering set of minimum cardinality
ofiGnH. Therefore, gpe(G) — ape(G) = 3 x 2771

Hence, it is possible to find a graph G with arbitrarily large
difference between cv,.(G) and agpe(G).

Remark 4. Consider a clique star graph G with n cliques.
Then, there exists a unique vertex u (say) in G with d,.(u) =
n and d,.(w) = 1, for any vertex w other than u in G. We
observe that the difference between a,.(G) = gpe(G) =1
and cuype(G) = n is n — 1, which can be made arbitrarily
large.

D. Bounds on strong vc-covering number and weak vc-
covering number of a graph

Proposition 5. Let ¢ be the number of cliques in a graph G
and c,, be the number of pendant cliques in G. Then c, <
Qe < ¢ and equality holds if and only if G is a clique star.

Proof: Clearly, e < c. Suppose there is a pendant
clique K of G. Then, there exists a vertex u € K such
that dy.(u) > 1 and dy.(v) = 1, for all v € K such that
v # wu. Then, every minimal weak vc-covering set of GG
contains exactly one vertex of K with vc-degree 1. Hence,
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¢p < Qype. Note that G is a clique star if and only if every
clique of G is a pendant clique if and only if ¢ = yye = Cp.
|

Definition 4. A polycliqual vertex uw of a graph G is a
support polycliqual vertex if it is incident on a pendant clique
of G. Otherwise, it is called a non-support polycliqual vertex.

Definition 5. A polycliqual vertex u is said to be a weak non-
support polycliqual vertex if it is a non-support polycliqual
vertex and d,.(u) < dy.(w) for every polycliqual vertex w
adjacent to u.

Proposition 6. Let G be a connected graph which is not
complete. Let p. be the number of polycliqual vertices in G.
Then, aspe(G) < p. and equality holds if and only if G is a
weak non-support polycliqual vertex free graph.

Proof: Suppose there is a vertex v in G which is not
polycliqual. Let C' be a clique incident on w. Since G
is connected graph which is not complete, there exists a
polycliqual vertex say v incident on C. Note that d,.(u) <
dyc(v). Choose a polycliqual vertex w incident on C' with
the maximum vc-degree. Then C' is strongly covered by w.
This implies that u does not belong to any minimal strong
ve-covering set of G. Hence, agyc(G) < p.. Now, assume
that «s,(G) = p.. Suppose there exists a weak non-support
polycliqual vertex say w in G. Then d,.(u) < dy(v), for all
polycliqual vertex v adjacent to u. Then u does not uniquely
strongly vc-cover any clique of G. Hence, for any minimal
strong vc-covering set S of G, there exists a polycliqual
vertex in the closed neighbourhood of w which does not
belong to S. This implies that c,.(G) < p. — 1, which
is a contradiction. Conversely, let G be a weak non-support
polycliqual vertex free graph. Then every polycliqual vertex
of G uniquely strongly vc-covers a clique of G. Hence, the
set of all polycliqual vertices of G is the minimum strong
ve-covering set of G. Therefore, agye(G) = pe. [ |

III. PARTIAL ORDERING RELATION ON THE VERTEX SET
OF A GRAPH USING VC-DEGREE

A partial order on a set P is a binary relation on P which
is reflexive, antisymmetric and transitive. A set on which
a partial order is defined is called a partially ordered set or
briefly a poset. The length of a poset (P, <) denoted by I(P)
is defined as [(P) = max{|C|—1 : C is a maximal subchain
of P}. A lattice is a poset in which every pair of elements
has a greatest lower bound and a least upper bound. For a
survey refer to [3].

Definition 6. We define a partial order < on the vertex set
V of a graph G as follows: for any two vertices u and w,
u < w if either uw = w or there exists a path between u
and w say u = v1,V9,...,0, = w such that d,.(vy) <
dype(v2) < -+ < dyc(vy). We call the poset (V,<) as the
ve-poset of G.

Example 2. Consider the graph G given in the Figure
3. Then dy.(v1) = 4, dye(v2) = dye(vs) = dye(vip) =
duc(vll) =3, d?)c(v?)) =2, dvc(v4) = dvc(”{i) = d?)c(”?) =
dvc(US) = dvc(”&)) = dvc(UIZ) = dvc(v13) = 1. Then
Ve < V3 < Vg < vV, U5 < V2 < VU, Vg < U9 < V3,
v < vg < V1, vg < Vg < U1, Vg < vg < v1 and vi3 < v11.

The Hasse diagram of the vc-poset (V, <) is given in the
Figure 4.

U5 (%4 U8
V2
v
Vg 1
Ve Vg
U3
V10 V11
V12 V13
Fig. 3. Graph G with Ayc(G) =4 and 6,c(G) =1

Quy1

V13

(%

Fig. 4.

ve-poset (V, <) of the graph G

Proposition 7. For a connected graph G = (V,E), the
Hasse diagram of the vc-poset (V, <) is connected if and only
if for any u,w € V, there exists a path u = v1,vs,...,v, =
w in G such that dy.(v;) # dyc(vig1), for all i, 1 < i <
n—1.

Proof: Assume that the Hasse diagram of the vc-poset
(V,<) is connected. Suppose there are two vertices u and
w such that every u-w path in G contains some adjacent
vertices of same vc-degree. Then v and w are not comparable
in the poset (V,<). We shall show that lowerbound and
upperbound of u and w do not exist in (V,<). In fact,
suppose that a lowerbound of w and w exists in V. We
choose a lowerbound [ of w and w such that [ is a maximal
element of the set {v € V : v is a lowerbound of «
and w}. Then, I < w and | < w. This implies that there
exist paths | = wuy,uz,...,ur = u such that dy.(u1) <
dype(uz) < -+ < dyc(ug) and I = wvy,v9,...,0, = w
such that dy.(v1) < dye(v2) < < dyc(vy). Then
U = Uk, Uk_1,..-,U2,U = | = V1,V2,...,0, = w IS A
u-w path in G such that adjacent vertices have the distinct
vc-degrees, which is not possible. Similarly, we can prove
that no upperbound u and w exists in V. This implies
that ¥ and w do not lie in the same component of the
Hasse diagram of (V, <), which is a contradiction to our
assumption. Thus, there exists a path u = vy, vs,...,v, = w
in G such that d,.(v;) # dye(vig1), forall i, 1 <i<n-—1.
Conversely, assume that for any u, w € V, there exists a path
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U = v1,V2,...,0, =w in G such that dyc(v;) # dye(Vig1),
for all 4, 1 <7 < n — 1. Consider v; and v;41. Then either
dye(V;) > dye(vip1) or dye(v;) < dye(vit1). This implies
that either v; > v;41 or v; < v;41 in (V, <). Then v; and
v;41 lie in the same component of the Hasse diagram of
(V,<), for all ¢, 1 < i < n — 1. Therefore, v and w lie in
the same component of the Hasse diagram of (V, <). Hence,
the Hasse diagram of the vc-poset (V, <) is connected. M

Definition 7. Let G = (V, E) be a graph. Then a vertex v €
V is called a ve-strong (ve-weak) vertex if dye(v) > dye(u)
(dye(v) < dye(uw)), for all u adjacent to v. A vertex v € V
is ve-regular if dye(v) = dy.(u), for all w adjacent to v, and
v is ve-balanced if there exist vertices u and w adjacent to

v such that dyc(u) < dye(v) < dye(w).

Definition 8. The vc-strong number of a graph G denoted by
Sve(@G) is the number of ve-strong vertices in G. Similarly,
ve-weak number (Wyo(G)), ve-regular number (R,.(Q))
and ve-balanced number (By.(G)) of G are defined.

Observation 1. Let G be a graph of order p. Then Sy.(G)+
Wye(G) — Rye(G) + Bye(G) = p.

Proposition 8. Ler G = (V, E) be a graph and (V,<) be

the vc-poset of G. Then

(i) v is a ve-strong vertex of G if and only if v is a maximal
element of (V, <).

(ii) v is a ve-weak vertex of G if and only if v is a minimal

element of (V, <).

v is a vc-regular vertex of G if and only if v is not

related to any element w € V such that u # v with

respect to <.

v is a ve-balanced vertex of G if and only if v is neither

a minimal nor a maximal element of (V, <).

(iii)

(v)

Proof: (i) Assume that v is a vc-strong vertex of G.
Suppose v is not a maximal element of (V, <). Then there
exists v € V such that v < w. This implies that there is
a v-u path in G say v = wv1,v2,...,v, = u such that
dpe(V) < dye(va) < -+ < dye(u). We observe that vy is
adjacent to v and d,.(v) < dyc(v2), which is a contradiction
to our assumption. Conversely, assume that v is a maximal
element of V. Suppose there exists a vertex u adjacent to v
in G such that dy.(u) > dyc(v). Then, v, u is a v-u pathin G
with the property d,.(v) < dyc(u). This implies that v < u
in V, which is a contradiction to our assumption. Hence, v
is a vc-strong vertex of G. By similar argument (ii) can be
proved.

(iii) A vertex v of GG is ve-regular if and only if v is both
ve-strong and ve-weak vertex of G if and only if v is both
maximal and minimal element of (V, <) if and only if there
is no u,w € V such that v > v and w < v if and only if v
is not related to any element of V' — {v} with respect to <.
(iv) Let v be a vc-balanced vertex of (. Then there ex-
ist vertices w and w adjacent to v such that d,.(u) <
dye(v) < dyc(w). This implies that v < v < w in V.
Hence, v is neither a minimal nor a maximal element of
(V,<). Conversely, suppose there is v € V such that u
is neither a minimal nor a maximal element. Then there
exists u,w € V such that u < v < w. Then there is
a u-v path in G say v = wvy,v9,...,v, = v such that
dype(u) < dye(v2) < -+ < dye(Vn—1) < dype(v) and a v-

w path in G say v = uq, us, . .., ur = w such that d,.(v) <
dye(ug) < -+ < dye(w) . We observe that v,—1 and us
are adjacent to v such that dy.(vy,—1) < dye(V) < dye(ug).
Hence, v is a vc-balanced vertex of G. [ |

Remark 5. (i) Let Ayo(G) and 6,.(G) denote the max-
imum vc-degree and minimum vc-degree of a graph
G. Then any vertex v of G with dy.(v) = Ay
(dye(v) = dye) is a maximal (minimal) element of the
ve-poset of G. But, the converse need not be true.

(ii) Let G = (V,E) be a graph and (V) be the length
of the ve-poset (V,<) of G. Then, l(V) < Ay(G) —
dve(G).

(iii) If two graphs G and H are isomorphic then their vc-
posets are order isomorphic. But the converse need not
be true. For example, consider the graphs G = (V1, E1)

and H = (Va, Ey) given in the Figure 5.
Graph G
Graph H
Fig. 5. Non isomorphic graphs G' and H

Note that the graphs G and H are not isomorphic, but
their vc-posets are order isomorphic. Then, the Hasse
diagrams of the vc-posets (V1, <) and (Va, <) are same
and it is given in the Figure 6.

AWA

Fig. 6. Hasse diagram of the vc-posets (Vi, <) and (Va, <)

(iv) If the ve-poset of a graph G is a lattice, then S,.(G) =
1L, Woe(G) =1, Rye(G) = 0 and B,o(G) =p — 2.
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