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Abstract—Generally, insurance companies face challenges in
determining the Capital Requirement (CR) which is essen-
tial for business continuity. This situation could worsen if
substantial number and amount of claims are requested by
policyholders due to losses from catastrophic events such as
floods, tsunamis, and earthquakes. In this paper, we propose a
structured model to determine the CR for non-life insurance
companies through loss ratios. Firstly, dependence structure
among the business lines is modelled using copulas from both
Elliptical and Archimedean copulas family with loss ratios from
four business lines as the risk factors. The loss ratios are derived
from incurred claims and earned premiums data of Malaysia’s
non-life insurance businesses, such as Fire insurance, Motor
insurance, Marine, Aviation and Transport (MAT) insurance,
and Miscellaneous insurance. Subsequently, a combination of
popular risk measures such as Value-at-Risk (VaR) and Tail-
Value-at-Risk (TVaR) with a Drawable Vine (D-Vine) copulas
model known as hybrid model is developed to estimate insur-
ance companies’ risk capital. Finally, a simulation of Monte
Carlo is commanded by calibrating data with our selected
model to project the CR. This study contributes to the literature
by addressing the problem of determining the appropriate CR
for non-life insurance companies, proposing an empirical model
based on real non-life insurance company data with a hybrid
model built from risk measures and D-Vine copula.

Index Terms—non-life insurance, risk capital, risk measures,
copula, D-vine copula.

I. INTRODUCTION

THE model to determine the right amount of cash needed
to support businesses is crucial, especially for insurance

companies. It is widely known as Capital Requirement
(CR) for insurance companies. Generally, life and non-
life insurance are the two well-known types of insurance.
However, since the main issue in determining the CR is
involving high dimensional variables, therefore this paper
focuses primarily on non-life insurance because its insurance
nature comprises variety of business lines such as motor
insurance, transport insurance and fire insurance which are
suitable for modeling high dimensional data. Furthermore,
this required cash determination issue could worsen if there
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are many claims from the policyholders due to catastrophes
including floods, tsunamis, and earthquakes. This will cause
the non-life insurance companies at risk of inability to paying
out claims from policyholders. This study looks into how
the CR for non-life insurance loss ratios in Malaysia is
affected by explicit dependence models. The CR is the sum
of funds an insurance company needs to achieve its goals. It
refers to the amount of money companies need to start and
maintain their businesses. Other than that, the CR planning
is connected with all other parts within the business plan of
the company. This is given that it includes all the costs that
must be considered in the planning such as inventory, payroll
and rent costs.

Insurance industry is a regulated industry. All insurance
companies are obligated to be solvent and this means its
policyholders are protected by law from biases and discrim-
inatory treatments. In Malaysia, the insurance industry is
regulated under the Ministry of Finance (MoF) which is the
central bank, Bank Negara Malaysia (BNM). The Financial
Service Act’s (FSA’s) provisions, which went into effect on
June 30, 2013, govern Malaysia’s non-life insurance industry.
According to the BNM, the minimum CR for an insurer
ranges from RM20 million to RM100 million, conditional
on the type of insurance business. The BNM prescribed
minimum CR is empowered by the Insurance Act 1996 (Act)
to be maintained by an insurer. It is expected to build up the
financial strength of insurers to assist them in making an
enthusiastic approach to the country’s insurance service and
eventually compete with the other countries.

However, there are lack of standardized framework for
calculating the minimum CR prescribed by the BNM. There-
fore, this study can be served as an alternative framework to
calculate the CR. Furthermore, multiple risk concerns from
the asset and liability-related parts of the financial statement
must be combined when assessing the insurers’ overall risk
and the CR. In this scenario, a particular asset or one line of
insurance company is a risk factor. This risk factor is then
aggregated by considering the aggregated distribution of sole
risk originating within both liabilities and asset perspectives.
Then, to emulate the distributional function of every risk
factor, each marginal distribution must be parametrically
described at this aggregation stage.

The copula methods, which are based on Sklar’s theorem
[1], are commonly utilized to aggregate heterogeneous mar-
gins into orderly distributions. The idea of copula was first
established in the 1950s, with its discovery linked to Sklar
[1], Fréchet [2], and Féron [3]. However, due to lack of proof
of Sklar’s theorem, Kimeldori & Sampson [4] and Whitt [5]
rediscovered copula, while Scheweizer & Sklar [6] provided
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creative evidence of the two-dimensional (2D) distribution
copulas in their publication. Moreover, the academic work
that Schweizer & Wolff [7] authored is the first to use the
idea of a copula to examine how random variables relate
to one another. As such, the fundamental concept of a
copula relies on a mechanism consisting the dependence
structure for capturing a set of random variables. A form
of multivariate distribution function that links together all
individual marginal distributions is known as the copula
function [8].

Although numerous bivariate copula families exist com-
parable to a broad area of complex dependencies, the di-
mensional restriction prevents them from describing the re-
lationship between multivariate vectors. Despite the problem,
an approach for high-dimensional copula models that tends
to hierarchical frameworks according to building blocks was
established. In numerous fields of study, high-dimensional
dependence models such as the Pair Copula Construction
(PCC) and the Hierarchical Archimedean Copula (HAC)
have been implemented. The HAC also known as nested
Archimedean, is a multivariate dependence framework gen-
erated by a multi- level hierarchical setting generators of
Archimedean family. The purpose of this is to subdue the
Archimedean copula basic methods versatility [9].

In addition, by associating the variable set as well as
generating a configurable dependence framework, the PCC
which also known as vine copula is frequently applied to
lessen dimension [10], [11]. Note that the PCC is more
adaptable than the HAC concerning the amount of copula
functions that can be utilized for construction, but it has extra
parameters to determine [12]. An algorithmic theoretical
framework for the PCC has been established and then applied
to a financial portfolio [13]. It also was employed by Brech-
mann et al. [14], Min & Czado [15], and Righi et al. [16]
in calibrating problems related to interest rates. However,
empirical research on combination of the insurance input
with the high-dimensional asset modelling is inadequate.

A graphical model of the PCC system, known as the
Regular Vine (R-Vine) was introduced [17], [11]. This struc-
ture links risk factors based on their dependency levels.
Brechmann et. al [14] taken into account the characteristics
of similar distribution to insurance claims which is the R-
Vine coupla. The R-Vine copula is then used in modelling
the dependence framework of operational risk losses. Peng et
al. [18] demonstrated the relationship between market risk,
credit risk and insurance risk using the utilization of R-Vine
copula model in their study on integrated risk for insurance
companies. Two specific examples for R-Vine models are
copulas of Drawable Vine (D-Vine) and Canonical Vine (C-
Vine). Both of them are frequently applied in finance and
insurance. For each of the copulas, they provides a unique
approach to density decomposition [19].

In tree structures, a features of a star configuration is
shown by the C-Vine. It dedicates a primary risk factor is
connected to all other factors. On the other hand, the D-
Vine adopts a path configuration, establishing a hierarchical
relationship with the primary risk factor linking the other
factors [20]. Figures 1 and 2 demonstrate the stuctures of the
of the C-Vine and D-Vine trees, respectively. These methods
provide a straightforward graphical approach to efficiently
produced a bivariate copula desities product decomposed

Fig. 1. The Star Structure of C-Vine Copula Tree in 4-dimensions

Fig. 2. The Path Structure of D-Vine Copula Tree in 4-dimensions

from the copula density functionv[21]. An enhanced pre-
dictive capabilities if offered by the C-Vine copula in com-
parison to the other copulas and especially the multivariate
normal distribution.

Additionally, it effectively captures the interdependencies
within collateral return data. Financial providers can integrate
the C-Vine copula into their portfolio strategies for inventory
management to lower default risks and overcome the overall
profile’s risk [22]. Sun & Wang [23] employed one of
the R-Vine copulas which is the C-Vine copula model in
performance evaluation of risk measurements. Their empir-
ical findings indicated that the the C-Vine copula model in
yielding dependencies is particularly suitable for measuring
potential losses in portfolios with significant tail risks.

Conversely, the C-Vine structure is less versatile in com-
parison to the D-Vine structure because the D-Vine struc-
ture exhibits a superior flexibility. It demonstrates greater
effectiveness when sequentially analyzing all the observed
random variables mutual intercorrelations, which are the
focus of this study [24]. In a separate application related to
credit risk, utilization of D-Vine copula to model in equity
dynamics is established by Dalla Valle et al. [25]. Therefore,
the D-Vine copula adeptly captures various asymmetries and
tail dependencies for different variable pairs. Additionally, a
two-part D-Vine copula model was established by Yang &
Czado [26]. The aim of the model is to analyze longitudinal
mixed insurance claim data. The time dependence of binary
outcomes is one of the part for this model. It is indicates
the condition of the claim either it has been made or not.
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The other part examines the condition of the occurrence
in the claim size of the dependence. This model facilitates
straightforward predictions for the quantiles of severity and
the probability of claims once a claim has occurred.

Moreover, D-Vine copula model is chosen due to its simple
path structure. The structure shows that in any tree, there is
no node is linked to more than two edges. The order of
the sequence in the first tree defined the entire structure.
It is solely by the order of the sequence in the first tree,
simplifying the calculations and enhancing flexibility. In
contrast, the C-Vine copula resembles factor models, with
a specific variable acting as a pivot (or factor) in each tree
[27]. As this study does not aim to investigate any factor
structures within the data sets, the model of D-Vine copula
was deemed more appropriate.

The purpose of multivariate modeling in this study is
to estimate risk capital for the non-life insurance company
effectively. The risk capital is the financial security needed
to ensure a company’s survival in the worst-case scenario
[28]. According to Bandt & Overton [28], they highlighted
the significance of effective risk management by revealing
that, during the crisis of financial in 2007-2008, 48% of oc-
currances derived from questionnaire surveys of 31 national
supervisory authorities represented instances of failed insur-
ance companies attributed to inadequate risk management
practices.

As stated by Gayareta et al. [29], inadequate risk capital
management results in compromised corporate governance
and incurs penalties in the form of elevated the CR. Insuffi-
cient understanding and incompetence in addressing solvency
within the CR framework contribute to the downfall of
insurance companies, posing a potential threat to the financial
industry as a whole. This situation increases systemic risk
and has unfortunate consequences on the overall economy.
Other than that, the calculation of risk capital can be obtained
from the process of risk aggregation under different copula
constraints.

The risk capital model presented in this study focuses on a
risk aggregation-specific methodology which is dependent to
the D-Vine copula. This aim of this study is to regulate the
CR of non-life insurance companies and the appropriate risk
measures for risk capital. Furthermore, this study also aims to
analyze if the difference in types and values of risk measures
as the independent variable affects the CR as the dependent
variable. It is helpful for the non-life insurance companies
and regulators to determine better risk management and
solvency decision-making.

In this study, the data used in the determination of the CR
is obtained from the non-life insurance company in Malaysia
which includes the total of 17 non-life insurance companies.
The data are extracted from four business lines’ loss ratios
which are Fire insurance, Motor insurance, Marine, Aviation
and Transport (MAT) insurance and Miscellaneous insurance.
Next, we established the D-Vine copula model to resolve the
CR problem of the non-life insurance companies. Throughout
the process, we explored the appropriate risk measures for
the insurance risk capital. Finally, we conducted Monte Carlo
simulation analysis to achieve the minimum CR of this
study. Therefore, in Section II, methodology of our selected
method is discussed. Results and discussion of our analysis
is discussed in Section III and lastly, Section IV presents the

conclusion.

II. METHODOLOGY

Our empirical analysis refers to the multiple business lines
focusing on the second type insurance which is the non-life.
This study utilized two types of data: incurred claims and
earned premiums. All data analyzed in this study were issued
by the BNM and extracted from an online data platform,
CEIC. The CEIC is a data company provider and helps in
navigate the world of macroeconomic data. Note that the
data frequency are semi-annually collected from June 2009
to June 2022. For simplicity, this study taken into account
four business lines of the non-life insurance industry. These
four lines are sufficient for our analysis without involves the
unwanted complications along the process. In this context,
we focuses on the following four non-life business lines:
the Fire insurance (Fire), the Motor insurance (Motor), the
Marine, Aviation and Transport insurance (MAT), and the
Miscellaneous insurance (Miscellaneous). These four busi-
ness lines are the top four highest claims by the earned
premium. Therefore, this section consists of related concepts
and theories used for our model which is the D-Vine copula.

A. Copula Functions

For the copula utilization process, the marginal distribution
functions and their joint distributions must be separated
when modeling the dependence structure among insurance
loss ratios. The copula is essential in explaining asymmetric
dependence structures without making assumptions about the
marginal distributions’ parametric nature [30]. Sklar [1] was
the first scholar to introduced the concept of copula to the
literature, while McNeil et al [31] were among the first
to introduce its application in finance. A copula, in Math-
ematical definition, is a multivariate distribution function
with uniformly distributed margins, defined on the unit cube
[0, 1]n. For instance, we take into account (x1, ..., xn)

T as a
random vector and F is the joint distribution function.

Sklar [1] stated that a particular copula function C occurs
when:

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)), (1)

which n-dimensional distribution function with margins
(F1, . . . , Fn) is denoted by F . Consequently, from Eq. 1,
the expression of C is as written below:

C(u1, ..., un) = F{F−1
1 (u1), ..., F

−1
n (un)}, (2)

in which the inverse distribution functions is represents by
F−1
1 (ui) with respect to the marginal. The joint probability

density function f of a copula C concerning an absolutely
continuous F having rigorously rising continuous marginal
F1, . . . , Fn is expressed as below:

f(x1, ..., xn) = C(F1(x1), ..., Fn(xn))× [
n∏

i=1

fi(xi)], (3)

in which the product with respect to the copula density and
the univariate marginal densities is conveyed by f , whereas
c(.) represents the density of copula given by

c(u1, ..., un) =
ϑnc(u1, ..., un)

ϑu1 · ϑu2...ϑun
.
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There are several different types of copula families. We
focus especially on Archimedean and Elliptical copulas in
this particular study. Student-t and Gaussian copulas are
the two types of Elliptical copulas, originate from Elliptical
multivariate distributions. They take the linear dependence
into consideration. On the other hand, the Archimedean
copulas thoroughly describe various dependence structures,
including asymmetric dependencies where the coefficients
values of the upper and lower tails are contrary. In this study,
four distinct families of Archimedean copulas are utilized.
A positive dependence with an upper tail is shows by the
Gumbel copula, while positive dependence but with a lower
tail is demonstrates by the Clayton copula. Both positive and
negative dependence and tail independence is characterized
by the Frank copula. Lastly, positive dependence with an
upper bound is exhibits by the Joe copula.

Furthermore, the concept of a rotating copula function
is also taken into account. A rotating copula function only
applies for copula functions with an asymmetric dependence
structure. From a practical standpoint, if two variables u and
v are modeled using a Gumbel copula, it can be observed
that the variables 1− u and 1− v exhibit a rotated Gumbel
copula. This rotated copula signifies a shift in the nature
of dependency, with a high dependence in the lower tail
instead of the upper tail. The rotated copulas are also known
as the respective family’s survival copulas. Note that an
Archimedean copula’s survival copula is not an Archimedean
copula. Mixtures of two or more copulas, which simply
represent a convex combination of the copula functions under
consideration, can also be taken into account, in addition
to the aforementioned copula families. This allows for the
creation of any desired dependent structure [32].

B. Pair Copula Construction (PCC) Model

In high-dimensional copula modeling, hierarchies based
on the PCC model, popularly referred to as vine copulas,
have recently gained popularity. Aas et al. [13] introduced
the D-Vine copula and the C-Vine copula which are the two
distinct R-Vine copulas. A n-dimensional vine is depicts as
below:

1) Trees (T ) of (n− 1);
2) The tree j has (n− j) edges and (n− 1 + j) nodes;
3) A bivariate copula density corresponds with each edge;
4) The nodes of the tree j + 1 is the borders of the tree

j;
5) The concept of complete decomposition is charac-

terised by the presence of n(n−1)/2 edges and the inclusion
of marginal densities for each variable. Specifically, this
entails the consideration of n(n − 1)/2 bivariate copula
densities and N marginal.

The PCC as a product of several bivariate pair-copulas can
be use to articulates the joint copula density c. Consider a col-
lection of n independent random variable X = (X1, ..., Xn);
the joint density function is represent by f ,

f(X1, . . . , Xn) = f(Xn) · f(Xn−1 | Xn)

· f(Xn−2 | Xn−1, Xn)f(X1 | X1, ..., Xn),
(4)

where conditional density is denotes by f(.|.). Furthermore,
since the database does not consists any pivot variables, the

D-Vine copula model is relevant in this study. There is n!
known as a possible sequence in the D-Vine structure with
n dimensions to the root of the tree. f(u1, . . . , un) which is
a density is given by:

n∏
k=1

f(uk)
n−1∏
j=1

n−j∏
i=1

Cij |F (u1|ui+1, ..., ui+j−1),

F (ui+j |ui+1, ..., ui+j−1)|,

(5)

in which the trees is identified by index j, whereas i runs
over the edges of each tree.

The D-Vine simulation techniques are very straightforward
to apply [13]. A method advanced by Genest et al. [33] which
is the maximum likelihood estimation (MLE) is employed for
the D-Vine copula parameterization. This approach is chosen
since it makes no assumptions about the margins’ parametric
form. Indeed, a poorly specified marginal parameter copula
may affect estimation [33], [30]. According to Genest et al.
[33], the MLE approach employs the empirical probability
integral transform [0,1] to obtain uniform margins. This
approach can be broken down into two steps:

1) Transform margins {(xt
1, ..., x

t
n)}Tt=1 into uniform vari-

ables {(ut
1, ..., u

t
n)}Tt=1 using the empirical Cumulative Dis-

tribution Functions (CDF).
2) Determine the copula parameters:

θ̂ = argmax

T∑
t=1

lnC
(
ût
1, ..., û

n
1

)
.

C. Goodness-of-fit Analysis

In order to assess the accuracy of the test that is being used
in a standard situation, a bivariate reference analysis need to
be performed to confirm the selection of the best suitable
D-Vine copula. Correspondingly, a fit test will be conducted
to analyze the reliability of the diverse copula selection tests
based on Genest et al. [34]. An alternative test is suggested by
the authors by depending on the Cramer-Von Mises statistic,
Ŝn [35]. Assuming the copula-underlying candidate, C0 to
be tested and let C be the optimum multivariate copula
for empirical data modelling. Meanwhile, the parameter
connected to the copula C is θ. The hypothesis that will
be evaluated is as described in the following:

H0 : c ∈ C = C0 : θ ∈ Θ.

We employed the Cramer-von-Mises statistic, Sn to calcu-
late the distance between the prospective parametric copula
Cn and the empirical copula Ĉn. It is provided by

Sn =

∫
[0,1]d

Cn(u)
2dCn(u), (6)

in which the Kendall process is Cn represented by
√
n(Cn−

Ĉn). Ĉn as the empirical copula of the uniform data
U1, ..., Ud can be written as follows:

Ĉn(u) =
1

n

n∑
i−1

1(Ui1
≤U1,...,Uid

≤Ud).

The letter U denoted the empirical n-dimensional marginal
distributions. A methodology from Genest et al. [35] which
is the bootstrap method is then used to determine p-values,
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ignoring the distribution of Sn. If the observed value Sn is
bigger than the distribution’s (1−α)th percentile, we rejected
the null hypothesis. After fitting the vine copula modeling
into our database, we usually look for the best model based
on one or more parameters.

Following that, a multivariate framework is then imple-
mented in the second step of the process in order to choose
the most effective D-Vine copula. Two types of knowledge
criteria are taken into account which are the Bayesian in-
formation criterion (BIC)[36] and the Akaike’s information
criterion (AIC) [37]. In estimation of the regression function,
AIC indicates minimax-rate optimal rules. On the other hand,
a consistent model selection rules is represent by the BIC.

In a research paper by Fang et al. [38] , they explored
the viability of utilizing the AIC in a copula model selection
between a range of potential candidate copula models. Their
results demonstrated that the AIC approach is generally more
effective and precise than the multiplier goodness-of-fit test.
Additionally, both AIC and BIC criteria are characterized by
loglikelihoods combined with a fixed penalty.

D. Risk Measures and Simulation Procedure

One of the primary aims of multivariate modelling is to
accurately assess risk capital for a conventional insurance
company. The risk capital is the term used to describe the
financial security that must be maintained by a business in
order to guarantee its continued existence even in the most
adverse of circumstances [30]. For a certain risk tolerance
threshold α and time period T , it is the amount of money kept
on hand to cover losses. Using the probability space (Ω,F ,P ),
a non-life insurance company can develop a comprehensive
model for evaluating the CR in relation to non-life insurance
risk for long-term care. Indeed, the model allows for calcu-
lating risk capital, which is obtained from risk aggregation
under different copula constraints [31].

The risk capital model presented in this study focuses on a
risk aggregation-specific methodology based on the D-Vine
copula. In addition, the copula theory provides some of the
terminology that we used in this study [13]. Data collected
is aggregated and sorted into risk categories (different lines
of businesses) and a time span of T . The risk category is
denoted as

Cn = (F1, ..., Fn) = X1 + ...+Xn : X1 ∼ Fi, i = 1, ..., n,
(7)

when the distributions of marginal risk Fi are known. In
this context, the variables Xi denote non-negative random
variables that represent individual risks over a certain time
period T . Furthermore, we made assumption that the aggre-
gate loss ratio, S is greater than or equal to zero, where
S is derived from a multivariate random vector of variables
that are dependent on each other. Consequently, the aggregate
loss ratio is determined by the manner in which various risks
overlap. In the subsequent context, the variable X denotes
the vector that reflects the claims for an insurance business
or the aggregate loss ratios incurred by an organisation.

In contrast, Tang & Valdez [39] argues that the aggregate
distribution at the business level can be determined by
utilising the weighted average of each line’s loss ratio, based
on a predetermined proportion of earned premium. The total

loss ratio is then calculated as follows:

S =
n∑
i

λitSit, (8)

where λit =
EPi,t∑n
i=1 EPi,t

is the weight of the line i in the
portfolio that is weighted on the earned premium in the
period t in comparison to premium amounts of risk i. Note
that the total of their portions is one. Consequently, the risk
measure is practised to this presumption in the non-linear
dependence model for risk capital evaluation. As an outcome,
the CR is calculated using a statistical determination of
capability prospect losses and quantile-based risk controls
[30]. Significantly, the VaR is the greatest achievable loss
that a corporation can sustain at a particular confidence level
κ over a time horizon T . The α-VaR at a level α ∈ [0, 1] is
defined as follows:

V aR1−α(X) = inf{x ∈ R : P (X ≤ x) ≥ 1− α}. (9)

When the continuous and rigorously growing cdf F (x) of
the random variable X is satisfied, V aR(X) is the sole x
fulfilling F (X) = P (X ≤ x) = 1− α, and V aR1−α(X) =
F−1
x (1−α). The VaR is the k-th quantile of the loss random

variable X distribution.
Additionally, the Tail-Value-at-Risk (TVaR) measure pro-

vides insight into the characteristics of the upper tail of
a distribution. The expression for the TVaR is given at a
confidence level α within the range of 0 to 1 as below:

TV aRα(X) =
1

1− α

∫ P

1

V aR(X) · dp. (10)

For a continuous loss distribution function Fx, the assurance
loss beyond the VaR is denoted by the TVaR:

TV aRα(X) = Eα[X|X ≥ V aRP (X)] (11)

Otherwise, the TVaR can be expressed as follows:

TV aRα(X) = V aRα(X) +
1

1− α
E[(X − V aRα(X))+]

(12)

Correspondingly, we forecast the N loss ratios using
a multivariate model to generate the VaR and the TVaR
measures of aggregated loss ratio, S at a confidence level
α incorporating copulas. The steps are as follows:

1) For each individual loss ratio, fit a marginal distribu-
tion. Estimation of parameters is obtained.

2) Using the estimated cumulative distribution function,
convert every parameter into uniformity ui ∈ (0; 1). For i =
1, . . . , n, we write ui = F̂1(X1), ..., un = F̂n(Xn).

3) For every pair of modified input variables, the corre-
sponding copula Ĉ is fitted. Maximize the likelihood function
to obtain at estimated variables θ̂.

4) To construct N iterations, replicate N times from the
approximated copula. Estimating predicted aggregate loss
ratios Ŝj =

∑
λŜij from N weighted portfolios to arrive

at the CR.
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III. RESULTS AND DISCUSSION

This study used two different tools to assist with data
analysis and visualization. We used Microsoft Excel and R
programming. Specifically, Microsoft Excel was used in uti-
lizing the preliminary data of earned premiums and incurred
claims. It helps in the calculation of loss ratios for our data
which is the four business lines of the non-life insurance
companies. Meanwhile, R programming was mainly used
in parameters estimation and structures visualization for the
best D-Vine copula selection. It also assisted in risk measures
calculation of the VaR and the TVaR.

A. Data Statistics

After analyzing the data presented in Section II, we
compute the loss ratios by dividing the total insurance claims
paid by the sum of earned premiums for each business line.
As our investigation focuses on time series datasets, we opt
to assess the stationarity of the data. Stationarity, a crucial
concept in time series research, significantly influences the
interpretation and forecasting of data. It asserts that the
variable’s value does not vary over time, indicating not a
constant series but a consistent pattern of change within the
series. Key summary statistics, such as the mean or variance,
remain consistent throughout the time series.

Beyond its descriptive aspect, stationarity is fundamental
for various analytical tools, statistical tests, and models.
In the realm of time series modeling, the assumption of
independence among individual data points is common for
forecasting future points. The stability or stationarity of a
dataset, where past cases remain constant, facilitates more
straightforward time series modeling. Statistical modeling
methods often rely on this assumption of stationarity, as
deviations from it may lead to inaccurate and unreliable
results, undermining both understanding and forecasting.

To address this issue, we utilized two types of tests. The
first is the KPSS test, developed by Kwiatkowski et al. [40],
and the second is the PP test, developed by Phillips & Perron
[41]. To test the null hypothesis that an observed time series
is stationary around a deterministic trend (trend stationary)
versus the alternative hypothesis of a unit root, the KPSS in
used. Conversely, to examine the null hypothesis that a time
series is integrated of order against the alternative hypothesis
of a unit root, the PP test is used.

The R programming software is employed to perform
stationarity tests using the PP and KPSS tests. For the
PP tests, the p-values consistently fall below 0.01, which
strongly supports the rejection of the null hypothesis. This
shows that the time series is integrated of order, in favor of
the alternative hypothesis indicating a unit root. Conversely,
the KPSS test p-values exceed 0.05, showing weak evidence
against the null hypothesis that the observed time series
around a deterministic trend is stationary. Therefore, the null
hypothesis is accepted. Table I shows the detailed results. In
conclusion, the dataset is considered stationary at all levels.

Fig. 3. Stationary Time Series of Fire, Motor, MAT and Miscellaneous
Insurances Obtained from R Programming Software

TABLE I
STATIONARY TEST FOR EACH BUSINESS LINES’ LOSS RATIOS

Fire Motor MAT Miscellaneous
PP test 0.006 0.009 0.008 0.001
KPSS test 0.426 0.052 0.184 0.161

PP test is significant at 1%, KPSS test is significant at 5%

Moreover, Figure 3 depicts the time series of each in-
surance once it has reached its stationary state. The Fire
insurance time series in the figure illustrates that the time
series does not involve any trends or seasonality. By trends
meaning, it does not execute a long-term change in a time
series level. For example, there exists an upward, which is
an increase in level, or a downward, which is a decrease in
level in terms of the changes.

Moreover, seasonality denotes a characteristic of a time
series characterized by predictable or regular fluctuations in
the data. Consequently, we infer that the Fire insurance time
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series exhibits stationarity, a conclusion that also holds for
other insurance time series, with all data series acknowledged
to be stationary at standard levels. Having established the
stationarity of all data series, our analysis proceeded to
calculate the CR for this study.

Next, Table II displays the four business lines descriptive
statistics. From the table, we observed some degree of dis-
persion across all four variables. We noticed that the acquired
data does not appear to be symmetrical. The presence of a
positive coefficient of asymmetry supports this finding, which
is the skewness that is more than 0 for three risk insurances:
Fire, MAT, and Miscellaneous, and it falls somewhere in
the range of 1.49, 0.12 and 0.92, respectively. A right-sided
distribution asymmetry has been confirmed.

Conversely, Motor insurance shows -0.71 which is a neg-
ative skewness coefficient, indicating a leftward asymmetry
in the distribution. The kurtosis coefficients for Motor and
MAT insurances are both negative, specifically -0.03 and -
0.78, respectively. In contrast, the kurtosis coefficients for
the variables Fire and Miscellaneous are positive, specifically
1.87 and 0.13, respectively. The data reveals a departure from
a normal distribution, underscoring the suitability of applying
copula functions. The presence of diverse risks contributes
to the observed variability in marginal distributions, resulting
in distinct tail behavior variations.

TABLE II
SUMMARY OF DESCRIPTIVE STATISTICS FOR BUSINESS LINES’

LOSS RATIOS

Fire Motor MAT Miscellaneous
Mean 0.37 0.71 0.40 0.45
Sd 0.12 0.07 0.06 0.08
Max 0.71 0.81 0.51 0.66
Min 0.19 0.55 0.28 0.34
Median 0.34 0.71 0.40 0.45
Kurtosis 1.87 -0.03 -0.78 0.13
Skewness 1.49 -0.71 0.12 0.92

When utilizing the copula, one of the crucial inputs to
be considered is the correlation matrix. Table III describes
the linear correlation matrix. In this study, the Pearson
correlation was utilized in the datasets to analyze the linear
relationship. It has come to our attention that the pair
of business lines consisting of MAT and Fire insurances
possesses the highest positive linear correlation coefficient,
equal to 0.62 of all relationships.

Subsequently, the finding demonstrates that there exist
a strongest linear relationship between these two variables
among other variables. It tells us that if the coefficient of
MAT insurance increases, the coefficient of Fire insurance
will also increase, and vice versa. Since these two variables
move in the same direction, and theoretically, they are
influenced by the same external forces. In addition, it is
abundantly evident that the relationship of Fire and Motor
insurances displays the highest negative coefficient, a value
of -0.62. This informs us that Fire and Motor insurances have
the weakest linear relationship among the other pairs.

In addition to that, we investigate the non-linear relation
by employing the non-linear correlation matrix, commonly
known as Kendall’s tau. The degree and direction of the
relationship between two variables can be determined with
the help of Kendall’s tau. Its correlation matrix is laid up

TABLE III
LINEAR CORRELATION PEARSON MATRIX

Fire Motor MAT Miscellaneous
Fire 1.0000 -0.6209 0.6235 -0.1764

Motor -0.6209 1.0000 -0.5196 0.5583
MAT 0.6235 -0.5196 1.0000 0.1270

Miscellaneous -0.1764 0.1270 0.55835 1.0000

Notes: The sign of the correlation coefficient (positive or negative)
indicates the direction of the relationship. The absolute value defines the
strength of the correlation.

∗The p-values in table are at a significance level of 5%.

similarly in Table IV. According to the findings, the pair
consisting of Motor and MAT insurances has the highest
negative correlation matrix. This signifies that the variables
are inversely related to one another or that as one variable
increases, the other variable drops. On the other hand,
the pair consisting of Motor and Miscellaneous insurances
displays the largest positive correlation, which is 0.4, and
suggests that when one variable increases, so does the other
variable.

TABLE IV
NON-LINEAR CORRELATION KENDALL’S TAU MATRIX

Fire Motor MAT Miscellaneous
Fire 1.0000 -0.1743 0.3286 -0.1114

Motor -0.1743 1.0000 -0.2593 0.4017
MAT 0.3286 -0.2593 1.0000 0.1567

Miscellaneous -0.1114 0.4017 0.1567 1.0000
∗The p-values in table are at a significance level of 5%.

B. Fitting Marginal Distribution

To utilize the copulas simulation technique, having access
to the marginal distributions of the loss ratios for each
business line is crucial. This section examines the challenges
arising from this requirement, estimates the required param-
eters, and presents the selected distributions. We focus on
the loss ratios of individual business lines, assuming they
conform to a predefined distribution. Therefore, we expect
the behavior of loss ratio distributions to mirror that of claim
severity distributions. The loss ratio represents the proportion
of each business line’s contribution to the total underwriting
loss.

In this regard, we proposed four common distributions that
are commonly advocated in actuarial science so that they
can be examined. The first one is the lognormal distribution,
which is the most frequently utilized in actual practice. This
distribution has been included as a hypothesis in the form of
distributions that adjust to the degree of the loss. The second
distribution is the Gamma distribution, known for its heavy
tail weight. Following that is the Weibull distribution, char-
acterized by a thin tail. Lastly, the log-logistic distribution, a
variant approaching normal distribution, is considered. Each
of these distributions has distinct tail thicknesses, defined by
two parameters. Various statistical methods can be used to
determine these distribution values. Consequently, we opted
for the Maximum Likelihood Estimation (MLE) method due
to its direct numerical analysis approach.

Table V presents the findings obtained by performing MLE
on the theoretical distributions. The values chosen for each
distribution’s parameters are considered to be reasonable.
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TABLE V
ESTIMATED MARGINAL DISTRIBUTION OBTAINED FROM FOUR DISTRIBUTION TEST

Distribution Parameter 1 Parameter 2 KS AD
Fire Log-logistic Shape: 7.9645 Scale: 0.3401 0.1328 0.4631
Motor Weibull Shape: 13.6121 Scale: 0.7371 0.1627 0.3911
MAT Gamma Shape: 46.8938 Rate: 116.9769 0.0820 0.1365
Miscellaneous Log-logistic Shape: 10.2214 Scale: 0.4418 0.0933 0.3958

Fig. 4. QQ Plot of Selected Marginal Distributions for Four Business
Lines’ Loss Ratio Retrieved from R Programming Software

One of the most common challenges is figuring out how to
choose the distribution that will provide the best match with
our data set. In the statistical literature, we come across a few
different graphic tests or visual comparisons. Our options are
narrowed down based on the graphical representation of the
probability QQ plot for each variable. According to the QQ
plot depicted in Figure 4, the fitted distributions of the four
variables have thicker tails at their endpoints. This denotes
that appropriate distributions have been chosen for all of the

variables. Subsequently, we evaluated the goodness-of-fit test
utilizing the Kolmogorov-Smirnov and the Anderson-Darling
tests.

The empirical and calculated parametric distributions are
compared in this series of tests to determine how closely
they correspond to one another. As a result, Table V is
presented, which confirms the distribution estimates that
were chosen for each variable. Notably, the absence of a
significant difference between the two distributions is pointed
out by a large p-value. According to the findings, the p-values
indicate that the two insurances, Fire and Miscellaneous,
have the distribution of the log-logistic. On the other hand,
the Weibull distribution seems to be well fitted with the
Motor insurance and it appeared that the gamma distribution
is sufficient for altering the MAT insurance.

C. The Empirical Result

We aimed to utilize the multivariate copula to explore
the interrelationships among variables and their dependent
structure. To accurately gauge the effectiveness of the optimal
D-Vine, it is essential to carefully choose six ideal combina-
tions of bivariate copulas or n(n−1)/2 pairings of bivariate
copulas. The selection of these bivariate copulas plays a
crucial role in interpreting the results. To identify the best D-
Vine copula, we estimated the bivariate copulas parameters.
The initial step involves choosing which bivariate copula
pairs will be positioned at level 1 of the tree. The optimal D-
Vine combination is determined by establishing connections
between pairings with the highest level of dependence in the
initial tree. In this study, the specification tree of the D-Vine
is progressively fine-tuned.

Moreover, the criteria for determining the tree structure
involve assessing the AIC and BIC values for copula pairs.
To simplify, we assigned numerical labels (1, 2, 3, and
4) to represent the types of insurance business lines: Fire,
Motor, MAT, and Miscellaneous, respectively. As a result,
we deem the permutation (1, 2, 3, 4) = (Fire, Motor, MAT,
Miscellaneous) to be the most pertinent for the initial level
of the D-Vine tree structure. This choice is based on the
inclusion of the highest number of potential dependencies.
The next step includes specifying the parametric structure of
each copula within the model. The initial examination of the
vine plot demonstrates the arrangement of different unique
bivariate copula families, confirming the versatility of the
copula D-Vine structure.

The initial lavel of the tree diagram incorporates three
distinct pairs of copulas, each linking loss ratio variables
according to their dependency levels. The D-Vine model is
known to combine Elliptical and Archimedean copulas, both
characterized by a single parameter. Our analysis indicates
that the final D-Vine copula consists of specific copulas,
including one Frank copula, two Gaussian copulas, two
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TABLE VI
ESTIMATED PAIR-COPULAS AT EACH D-VINE COPULA MODEL TREE STRUCTURES (TREE 1, TREE 2 AND TREE 3)

Copulas Θ1 Θ2 Pair AIC Pair BIC Ŝn

Tree 1
MAT,Fire (1,3) Survival Gumbel 5.28 - -46.5266 -45.2307 0.0574
Motor,MAT (2,3) Gaussian -0.94 - -34.8548 -33.5589 0.1385
Miscellaneous,Motor (2,4) Gaussian -0.83 - -11.4176 -10.1218 0.2831
Tree 2
(12,3) Gumbel -4.98 - -13.7663 -12.4704
(34,2) Frank -3.23 - -41.6653 -40.3694
Tree 3
(14,23) Gumbel 1.28 - -1.67746 -0.3816
AIC [D-Vine] -149.91
BIC [D-Vine] -142.13
Log-likelihood 80.95

*The p-values in table are at a significance level of 10%.

Gumbel copulas, and one Survival Gumbel copula. The
crucial step in the final phase of the procedure is to estimate
the parameters of the bivariate copulas within the D-Vine
structure.

The parameters of the D-Vine specification tree can be
estimated step by step using the algorithm proposed by Aas
et al. [13], as explained in Section II. The results of these
estimations for the pair copulas chosen to create the resulting
D-Vine copula are presented in Table VI. The empirical
findings of the study indicate that four distinct bivariate
copulas have negative parameters, which include the two
Gaussian copulas, the Gumbel copula, and the Frank copula.
Conversely, positive parameter values are observed in the
other copulas, specifically the Survival Gumbel and Gumbel
copulas.

Our findings reveal the presence of three distinct copulas
at the first level of the tree, each characterized by a unique
tail: the Survival Gumbel copula (5.28), and two Gaussian
copulas (-0.94, -0.83). At the second level of the tree, the
Gumbel copula (-4.98) and the Frank copula (-3.23) are
utilized. Finally, the Gumbel copula (1.28) is employed at
the third level of the tree. To validate the selection of the
bivariate copulas in the initial level of the D-Vine tree, a
robustness test based on Cramer-von Mises, denoted as Ŝn,
is conducted. The empirical results of the Ŝn statistics are
summarized in VI. The p-values of Ŝn for the bivariate
copulas do not reject the Survival Gumbel and two Gaussian
copulas in the first tree.

Based on the data provided in the same table, the log-
likelihood of the D-Vine model is 80.95. Additionally, it is
crucial to evaluate the AIC and BIC criteria for the chosen
copula pairs and identify the values that minimize these
criteria to achieve the best D-Vine model. The AIC and BIC
selection criteria were computed based on the fitted model
to assess the accuracy of the vine copula structure for risk
analysis, aiming for optimal results. Aas et al. [13] posit in
their research that the goodness-of-fit test for vine copulas
is reliable, and consequently, they apply these procedures to
the bivariate blocks. The values of the AIC and BIC criteria
are likewise displayed in Table VI.

Figure 5 illustrates the tree structure derived from the
parametric D-Vine models. It is crucial to highlight that
this tree reflects the best structure, demonstrating superior
goodness-of-fit compared to other copulas examined. The
flexibility of the D-Vine copula is evident in its ability

to blend Elliptical and Archimedean copulas, even when
handling low-frequency data.

Fig. 5. The Optimal D-Vine Copula Tree in 4-dimensions Visualized by R
Programming Software

D. Capital Requirements for the Non-life Insurance Industry
The application of our carefully chosen set of five copulas

is instrumental in generating a dataset comprising 1,000
observations of loss ratios spanning across diverse business
lines. Employing the risk aggregation model delineated in
Subsection II-D, we construct a distribution for the aggregate
loss ratio under the influence of the multivariate copula. The
synthesis of simulated loss ratios involves the application
of industry weights derived from earned premiums. This in-
depth analysis of aggregate loss ratio data pertains specifi-
cally to an insurance company that aligns its business lines
with industry standards, allowing for the creation of distinct
distributions for the aggregate loss ratio under each copula.

Risk measures derived from the distribution of a random
variable for total loss ratios are used to fine-tune the CR. As
a result, the VaR and the TVaR portfolio forecasts are chosen
based on each risk’s relative weights at a given probability
level. The CR is determined by applying the VaR and the
TVaR risk measures at 95.5%, 97.5%, 98%, 99%, and 99.5%,
respectively. These risk measures are computed empirically
throughout the rest of this section by taking the simulated
loss ratios and doing so in a relatively basic manner. Note
that we computed the sample quantiles to obtain the VaR
measure. Meanwhile, to achieve the TVaR measure, we
computed the sample mean for the observed values higher
than the corresponding quantile.
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TABLE VII
ESTIMATED VaR AND TVaR DERIVED FROM D-VINE COPULA AND INDEPENDENT COPULA

95.5% 97.5% 98% 99% 99.5%
D-Vine VaR 10.8808 11.16109 11.24498 11.7083 12.0337

TVaR 10.8909 11.1780 11.2836 11.7485 12.0919
Indep VaR 10.9022 11.2146 11.3121 11.6610 11.8751

TVaR 10.9115 11.2332 11.3333 11.68510 11.91428

In most cases, the distributions are based on a 1,000-
simulated loss ratio. Hence, the VaR of 95.5 % corresponds
to the 955th value. For the TVaR, we select the arithmetic
average, or predicted value, of the values that come after
the value that the VaR measure is based on. This means
that the TVaR of 95.5% determined by taking the mean of
the loss ratios distribution, specifically from the 956th to
the 1000th ranked values. Therefore, Table VII presents data
regarding the calculation of the CR using the VaR and the
TVaR estimations incorporated by the D-Vine copula across
different confidence levels.

Continuing with the previously described process, an al-
ternate method of determining the amount of the the CR is
proposed. The methodology employed in this study, which
utilises a Monte Carlo simulation, neglects the underlying
non-linear relationships among the risks. In order to enhance
precision, the industry weights, which are established by the
earned premium, are used to aggregate the simulated loss
ratios for each business line. This is due to the construct of
an aggregate loss ratio distribution based on the assumption
of counter-monotony. Using this strategy, we analyzed the
variation in the total amount of funds needed to maintain
the same confidence levels while assuming that the results
are independent. This analyses’ findings are provided in the
same table.

The D-Vine distribution is computed to be 10.8808 for
the VaR of 95.5%. This indicates that for the value of
10.8808, we need to multiply it by the total earned premium,
which is RM14,237,200. This value is obtained from the
CEIC database of the total earned premium for the year
2021. After doing so, we accomplished the amount of
RM154,912,552.90, which we may summarize into the figure
RM154 million. The amount of RM154 million is our re-
quired CR for the insurance company to continue maintaining
and operating its current business line. To conclude, we have
a confidence level of 95.5% and are certain that if the capital
of the insurance company is as much as RM154 million,
the insurance company will be able to keep its business
running. They will have no trouble handling the situation of
many insurers claiming insurance simultaneously if a natural
disaster occurs by chance, such as an earthquake or flood.

Nevertheless, the size of the influence can change de-
pending on the risk measure that was utilized as well as
the copula that was selected. In addition, the computation
is conducted on the TVaR, which results in the amount of
RM155 million. The TVaR will, as was to be expected, be
slightly greater than the VaR. This is due to the fact that the
TVaR describes the highest potential level of market risk. It
is evident that the TVaR is always higher than the VaR and
that the TVaR produces outcomes that are more appropriate
than the VaR. As a result of this analysis, we realized that
different values and types of risk measures would eventually

affect the forecasting of CR using real-life data.
Moreover, the computation for the scenario of indepen-

dence mirrors precisely that of the D-Vine calculation.
The sole distinction lies in the multiplication by the total
earned premium for the individual business line in the case
of independence. This stems from the autonomy of the
business lines, resulting in elevated VaR and TVaR figures
—specifically, RM155.2 million and RM155.3 million, re-
spectively —at a confidence level of 95.5%. Remarkably,
it was observed that both VaR and TVaR are higher in
the independence model compared to the D-Vine dependent
scenario.

This observation holds significance, given that, to uphold
tail dependence, a D-Vine copula is typically favored over a
counter-monotonicity instance. Furthermore, the prescribed
CR ranges between RM20 million to RM100 million, in
accordance with Section I of the Insurance Act of 1996. In
line with our computations, the CR derived from our D-Vine
modeling amounts to RM154 million, surpassing the required
minimum CR. Consequently, we can infer that the obtained
amount from the D-Vine model aligns with the specified
requirements.

IV. CONCLUSION

In this paper, we introduce a hybrid model that combines
the D-Vine copula with the risk measures of Value at Risk
(VaR) and Tail Value at Risk (TVaR). This model is used to
calculate the capital requirement (CR) for four business lines
within the non-life insurance, focusing on empirical evidence
from the Malaysian insurance industry in Malaysia.

In essence, we consider up to four dimensions. However,
expanding the scope is feasible by incorporating a larger
dimension. Through the combination of associated risks, the
potential insurer’s portfolio risks could be reduced. There-
fore, the results will be very useful for a more structured
risk management.
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données,” Ann. Univ. Lyon, 3ˆ e serie, Sciences, Sect. A, vol. 14,
pp. 53–77, 1951.
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