
Abstract:  This study examines the impact of the transfer of mass 

and heat characteristics on the magnetohydrodynamic natural 

convection travel over a slanted surface in an impermeable, 

electrically conductive fluid. The equations that govern can be 

transformed into standard differential equations through the 

use of nondimensional quantities, which can subsequently be 

solved through the ordinary perturbation method. Equations 

for temperature, concentration, and velocity were produced by 

using this method. Furthermore, MATLAB-generated graphics 

were used to analyse and illustrate the effects of several 

parameters on acceleration, concentration and temperature, 

including the Schmidt number, thermal Grashof, singular 

Grashof number and angle of inclination. 

Index Terms—Heat and mass transfer, MHD, inclined plane. 

I. INTRODUCTION 

T is the study of the movement of electrically conducting 

fluids in a magnetic field that is known as 

magnetohydrodynamics (MHD). There is no better 

illustration of the MHD principle than dynamos and motors. 

The flow dynamics of unsteady MHD-free convection in 

horizontal channels have been extensively researched. The 

scientifically motivated applications arising from the 

exploration of such flows led to these studies. Magnetic drug 

targeting, power generation, liquid metal cooling, and MHD 

pumps are a few of the practical applications of MHD. 

 

Many academics and writers have made critical contributions 

to the subject of the MHD inquiry. Chamkha [1] examined 

two viscous, incompressible, electrically conducting fluids 

that either produced or absorbed heat in longitudinal motion. 

This investigation packed a homogenous porous medium into 

an infinitely long, impermeable parallel-plate channel. To 

investigate the simultaneous transmission of heat and mass, 

Ganesan and Palani [2] numerically explored transient 

natural convection flows that originated from a tilted plate. 

We applied the Crank-Nicolson implicit minimal difference 

approach to more thoroughly assess their findings. Sivakami 

et al. [3] explored the effects of mass and heat transfer on the 

irregular, unrestrained turbulent flow of insoluble fluids in a 

horizontal channel, accounting for the effects of a magnetic 

field and chemical processes. Angel et al. [4] explored how 

heat and mass transfer could be combined through free 

convection adjacent to an inclined flat plate.  
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Antony Gnana Aravind et al. [5] studied the effects of a 

rotating fluid on a vibrating downward-pointing surface, 

taking into account variations in both temperature and mass 

dispersal. Malashetty et al. [6] examined the motion of two 

fluids in an inclined channel alongside porosity and fluid 

layers under a permeable stretched sheet. Shit and Haldar [7] 

investigated the effects of electromagnetic radiation, heat 

exchange, and the Hall effect on magnetohydrodynamic 

(MHD) dynamics in an angled channel. Daniel [8] addressed 

how it affected the atmospheric pressure gradient and 

deliberated on both convection and heat flow in a non-

mixable fluid. 

    Punnam Chandar Bitla and Fekadu Yemataw Sitotaw [9] 

examined the impact of an angled magnetic flux and slip 

circumstances on the flow of insoluble fluid in permeable 

passages. Hasan Nihal Zaidi and Naseem Ahmad [10] 

conducted a study on the circulation movement of two 

inseparable fluids in an inclination way, considering the 

existence of condensed warmth through emission or 

digestion. Sneha and Yadav [11] investigated the movement 

of non-mixing fluids, such as pair stress fluid and Jeffrey 

fluid, across porosity tubes. Their work deviated from the 

traditional no-slip boundary criteria by including slip 

boundaries and analyzing the impact of a directed field of 

magnets. 

    Malashetty and Umavathi [12] examined heat transfer an 

inclined plane with two-phase magnetohydrodynamic flow. 

Agarwal and Kumar [13] investigated pulsating 

magnetohydrodynamic (MHD) flow in an incompressible 

viscous porous medium bounded by horizontal plates of two 

immiscible fluids, one conducting the heat and the other non-

conducting. Ramana Murthy and Srinivas [14] investigated 

the impact of slip barriers and a voltage field on the 

movement of similar fluids in a sloping porous surface. They 

applied the Stokes model to a rectangular cage. Beckermann 

et al. [15] examined the process of heat exchange and 

transpiration flow in a fluid-filled and porous stratum. 

Mankinde and Mhone [16] investigated the interplay between 

optical transfer of energy and a longitudinal magnetic field in 

a saturated porous material. They focused on the dynamic 

flow of an optically thin fluid in a channel subjected to 

varying heating ranges. 

     Gbadeyan and Dada [17] investigated the impact of 

radiation and Hall electrical currents on the outermost layer 

of a periodic structure and a pulling surface that varied in 

stickiness. Mateen [18] examined the thermal conduction and 

magnetohydrodynamic flows of two non-mixing fluids in a 

horizontal conduit. Umavathi et al. [19] conducted a study on 

heat transmission and circulation of turbulent 

magnetohydrodynamic fluid in a parallel channel. Chen [20] 

employed the sixth-order Runge-Kutta approach in 

conjunction with the Nachtsheim-Swigert shot repetition 

technique to investigate the movement of mass and heat in 

Magnetohydrodynamic Free Convective Heat 

and Mass Transfer Effects Over an Inclined 

Plate  

A. Devi and L. Sivakami 

I 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 9, September 2024, Pages 1705-1710

 
______________________________________________________________________________________ 



magnetohydrodynamic (MHD) flow with fluctuating 

concentration and wall temperature. Vafai and Tien [21] 

investigated the impact of barriers and inertia on the transport 

of heat and flow in porous surfaces. While Moutsoglou and 

Chen [22] analyzed the buoyancy effects on inclined, 

continuous, moving sheets. In their study, Titilayo Morenike 

Agbaje et al. [23] looked into how MHD air flow behaves 

when it moves in one direction from a flat plate that lets air 

pass through it. They used a good broad spectrum clustering 

method to do this. The study examined numerous elements, 

including heat radiation, chemical processes, Soret and 

Dufour effects, and consistent surface temperature. In his 

work, Azis [24] tackled unstable state issues for many kinds 

of governing equations.  

This paper examines the consequences of 

magnetohydrodynamic unconstrained convective transfer of 

mass and heat towards an inclined plate, building on the 

previously mentioned study. 

II. THE PROBLEM FORMULATION 

Assume that inflexible viscous substance that is submerged 

in a clear liquid and streams gradually across a slanted plate 

at an acute angle 𝛷. The plate ensures a predetermined mass 

flux Tw while maintaining an equilibrium wall temperature 

Tw, which is greater than the surrounding surface 

temperature T. On a slanted plate that is semi-infinite, the 

flow proceeds along the x-axis and the y-axis are opposed to 

it. The above investigation implies that all fluid factors are 

constant and that the magnetic field that is generated is 

insignificant. Using boundaries as constraints and 

Boussinesq's estimation, construct the fundamental equations 

for acceleration, mass, energy, and tension for this steady 

flow.  

∂v′

∂y′ = 0                                                                                    (1) 

ρ (
∂U′

∂t′ + V′ ∂U′

∂y′ ) = μ
∂2U′

∂y′2 −
∂P′

∂x′ − σB0
2U′ 

+ρgβf(T − Tw
′ ) cos Φ + ρgβc

∗ (C − Cw
′ ) cos Φ

           
   (2)       

ρCp (
∂T′

∂t′ + V′ ∂T′

∂y′) = k
∂2T′

∂y′2 −
∂qr

∂y
                                       (3) 

∂C′

∂t′ + V′ ∂C′

∂y′ = D
∂2C′

∂y′2                                                            (4) 

Consequently, the liquid's outer boundary states are listed 

below:   t ≤ 0; u′ = 0,   T′ = Tw1
′ ,   C′ = Cw1

′   for all y 

 t′ > 0 ∶ {

u′ = U0,   T′ = Tw1
′ + (T − Tw1)At′ ,

C′ = Cw1
′ + (C − Cw1)AT′ at y = 0,

u′ = 0, T′ → Tw1
′ ,   C′ → Cw1

′  as y → ∞ 

            (5)          

In accordance with the continuity rule (1), V' and y' are separate 

from one another and may only be a function duration. Thus, 

we are able to compose sentences.  

   V′ = V0(1 + εAeiωt)                                                        (6) 

Let 𝑉1
′ = 𝑉′. Here ε is the smallest positive quantity and it 

has a value εA≪1. A constant, non-zero average speed is 

assumed here to be the transpiration velocity V'. 

Dimensionless quantities can be calculated as follows:  

U =
U′

u
,  y =

y′

h
,  t =

t′v

h2 ,   V =
h

v1
V′ =

V

V0
,  P =

−h2

μu
(

∂P′

∂x′),  

θ =
T′−T∞

′

Tw
′ −T∞

′ ,  Pr =
μcp

k
,  K2 =

h2

K′ ,  Sc =
v

D
 ,  C =

C′−C∞
′

Cw
′ −C∞

′  

M2 =
σh2B0

2

μ
,  F =

4I′h2

k
 ,  

∂qr

∂y
= 4(Tw

′ − T∞
′ )I′ , 

 Gc =
ρgh2βc

∗(Cw
′ −C∞

′ )

μu
 ,  Gr =

ρgh2βf(Tw
′ −T∞

′ )

μu
 . 

Equation (2), (3), (4) becomes  
∂U

∂t
+ (1 + εeiωt)

∂U

∂y
=

∂2U

∂y2 + P − M2U + Grθ cos Φ +

Gc C cos Φ                                                                            (7)               
∂θ

∂t
+ (1 + εeiωt)

∂θ

∂y
=

1

Pr

∂2θ

∂y2 −
Fθ

Pr
                                        (8)  

∂C

∂t
+ (1 + εeiωt)

∂C

∂y
=

1

Sc

∂2C

∂y2                                              (9) 

The boundary values in dimensionless forms are given: 
u0 = 1,   θ0 = t,   C0 = t,   at  y = 0

u1 = 0,   θ1 = 0,   C1 = 0,   at  y → ∞
}                                  (10) 

III. METHODOLOGY / SOLUTION 

Using our boundary restrictions (10), we can solve the 

aforementioned equations (7-9) by expanding 𝑈01(y, t), …. 

as a power of the series in the perturbative parameter ε. This 

suggests that is peak to trough amplitude is restricted (ϵ≪1),  

         U01(y, t) = U10(y) + εeiωtU11(y) 

         θ01(y, t) = θ10(y) + εeiωtθ11(y) 
         C01(y, t) = C10(y) + εeiωtC11(y) 

Non-Periodic Terms:    
∂2U10

∂y2 −
∂U10

∂y
− M2U10 = −P − Grθ10 cos Φ − GcC10 cos Φ       

                                                                                          (11)                  
∂2θ10

∂y2 − Pr
∂θ10

∂y
− Fθ10 = 0                                              (12)  

∂2C10

∂y2 − Sc
∂C10

∂y
= 0                                                           (13) 

Periodic terms: 
∂2U11

∂y2 −
∂U11

∂y
− (M2 + iω)U11 =

∂U10

∂y
− Grθ11 cos Φ −

GcC11 cos Φ                                                                       (14)      
∂2θ11

∂y2 − Pr
∂θ11

∂y
− (F + iωPr)θ11 = Pr

∂θ10

∂y
                       (15)  

∂2C11

∂y2 − Sc
∂C11

∂y
− iωScC11 = Sc

∂C10

∂y
                                    (16) 

Even though equations (11) and (16) have constant 

coefficients, they can still be classified as normal linear 

differential equations. As a result, the boundary conditions 

are, 

U10 = 01 , U11 = 0, θ10 = te−ωt, θ11 = 0, C10 = te−ωt,   
C11 = 00   at  y = 00

U10 = 00 , U11 = 0, θ10 = 0, θ11 = 0, C10 = 00, C11 = 00     
      at  y → ∞

}    

                                                                                                    (17) 

According to the boundary conditions (17), the analytical 

solutions of differential equations (11) to (16) are as follows: 

U10(y) = C5em05y + C6em06y + K1 + K2em01y +
K3em02y + K4em03y + K5em04y                                        (18)                             

θ10(y) = C1em1y + C2em2y                                                  (19) 

C10(y) = C3em3y + C4em4y                                                  (20) 

U11(y) = C11em11y + C12em12y + K10em1y + K11em2y +
K12em03y + K13em04y + K14em05y + K15em06y +
K16em07y + K17em08y + K18em09y                                    (21)                                 

θ11(y) = C7em7y + C8em8y + K6em1y + K7em2y            (22) 

C11(y) = C9em9y + C10em10y + K8em3y + K9em4y         (23) 

Where,  V1 = F + iωPr,  V2 = iωSc,  V3 = M2 + iω, m01 =
𝑃𝑟+√𝑃𝑟2+4𝐹

2
,   m02 =

𝑃𝑟−√𝑃𝑟2+4𝐹

2
,  m03 = 0,  m04 = 𝑆𝑐, 

m05 =
1+√1+4𝑀2

2
,  m06 =

1−√1+4𝑀2

2
,  m07 =

𝑃𝑟+√𝑃𝑟2+4𝑉1

2
, 
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m08 =
𝑃𝑟−√𝑃𝑟2+4𝑉1

2
,  m09 =

𝑆𝑐+√𝑆𝑐2+4𝑉2

2
,  m10 =

𝑆𝑐−√𝑆𝑐2+4𝑉3

2
, 𝑚11 =

1+√1+4𝑉3

2
,  𝑚12 =

1−√1+4𝑉3

2
,  𝑟01 = 𝑒−𝑚2, 

r02 = 1 − e(m1−m2),  r03 = e−m4 ,  r4 = 1 − e(m3−m4), r05 =

m4e−m4,  r6 = m4e(m3−m4) − m3,  r7 = m2e−m2 , r8 =

m2e(m1−m2) − m1  , r9 = m6e(m5−m6) − m5, r10 =

m12e(m11−m12) − m11,  r11 = m8e(m7−m8) − m7,  

r12 = m10e(m9−m10) − m9, K1 =
P

M2 ,  K2 = −
GcC1 cos Φ

m1
2−m1−M2 , 

K3 = −
GrC2 cos Φ

m2
2−m2−M2, K4 = −

GcC3 cos Φ

m3
2−m3−M2 ,  K5 = −

GcC4 cos Φ

m4
2−m4−M2,  

K6 =
PrC1m1

m1
2−Prm1−V1

, K7 =
PrC2m2

m2
2−Prm2−V1

, K8 =
ScC3m3

m3
2−Scm3−V2

, 

K9 =
ScC4m4

m4
2−Scm4−V2

 ,  K10 =
K2m1−GcK6

m1
2−m1−V3

 , K11 =
K3m2−GrK7

m2
2−m2−V3

 , 

K12 =
K4m3−GcK8

m3
2−m3−V3

 ,  K13 =
K5m4−GcK9

m4
2−m4−V3

 ,   K14 =
C5m5

m5
2−m5−V3

 ,  

K15 =
C6m6

m6
2−m6−V3

 ,  K16 =
N1C7

m7
2−m7−V3

, K17 =
N1C8

m8
2−m8−V3

  ,  

K18 =
N2C9

m9
2−m9−V3

 ,  K19 =
N2C10

m10
2 −m10−V3

 , N1 = −Gr cos Φ,  

N2 = −Gc cos Φ,  A1 = K2m1em1 + K3m2em2 +
K4m3em3 + K5m4em4  ,  A2 = K1 + K2em1 + K3em2 +
K4em3 + K5em4  ,  A3 = K2m1 + K3m2 + K4m3 + K5m4 , 

A6 = 1 − (K6em1 + K7em2), A7 = K6m1 + K7m2  , A9 =

K8m3 + K9m4 ,  A8 = 1 − (K8em3 + K9em4) , C1 =
r7

r8
, 

A4 = K10em01 + K11em02 + K12em03 + K13em04 + K14em05  
      +K15em06 + K16em07 + K17em08 + K18em09 + K19em10 

A5 = K10m01 + K11m02 + K12m03 + K13m04 + K14m05   

          +K15m06 + K16m07 + K17m08 + K18m09 + K19m10 

Q1 = A3 − A2m6e−m6 , Q2 = A5 − A4m12e−m12 ,  C3 =
r5

r6
 , 

Q3 = A7 + A6m8e−m8 ,  Q4 = A9 + A8m10e−m10, C5 =
Q1

r9
 , 

C4 = e−m4 − C3e(m3−m4), C2 = e−m2 − C1e(m1−m2), C7 =
Q3

r11
 , C9 =

Q4

r12
 ,  C6 = −A2e−m6 − C5e(m5−m6),  C8 =

A6e−m8 − C7e(m7−m8),  C11 =
Q2

r10
 , C10 = A8e−m10 −

C9e(m9−m10),  C12 = −A1e−m12 − C11e(m11−m12). 

 

IV. RESULTS AND DISCUSSIONS 

This paper examines the movement of a viscous, 

impermeable, electrically conductive fluid interacting with 

the semi-infinite slanted plate. By modifying variables like 

the Grashof amount (Gr = 4), concentration Grashof value 

(Gc = 4), Prandtl quantity (Pr = 0.68), Schmidt volume (Sc = 

0.78), Froude number (F = 03), K = 05, P = 01, M = 01, ω = 

10, and the cosine of the inclination angle (cos 𝛷 = 40), it 

investigates the concentration, velocity, and temperature 

identities. MATLAB was used to gather and analyse the data. 

 

Fig.1 shows the velocity profile for the thermal Grashof 

number which are expressed in different ways. Thermal 

Grashof number Gr, will quantify thermal buoyancy forces, 

which are relative to viscous hydrodynamic forces within the 

boundary layers. Due to the increased thermal buoyancy 

force, we observe an increase in velocity. Furthermore, with 

higher Gr values, the peak velocity within the region rapidly 

increases. The velocity profiles for solutal Grashof numbers 

are expressed in different ways. In Fig.2 the Grashof number 

(Gc) governs the relation between a buoyancy and viscous 

hydrodynamic force. When the buoyancy force of a species 

increases, fluid velocity increase, and its peak value becomes 

more distinct. Before gradually decreasing to the value of the 

free stream, the velocity distribution reaches its peak near the 

plate. Notably, the velocity demonstrates a direct correlation 

with rising solutal Grashof number values. 

Fig.3 shows how surface inclination affects velocity. With 

increasing angle of inclination (𝛷), velocity increases. As the 

plate moves vertically, the speed reaches its highest point. 

Compared to an inclined surface, fluid velocity is higher on a 

vertical one. During an inclined plate, gravity (cos(𝛷)) 

reduces buoyancy effects, which shows the resulting 

difference in the fluid flow. Fig.4 illustrates the rise in a 

measure of magnetic attraction (M) across different values, 

demonstrating a corresponding decrease in the velocity field 

for each M value. This effect is observed due to the 

introduction of a transverse magnetic field into an electrically 

conducting fluid, where the Lorentz force induces the 

magnetic field. Fig.5 depicts the influence of the Prandtl 

number on the velocity field, highlighting how momentum 

diffusivity progressively outweighs thermal diffusivity. 

Fig.6 and Fig.7 exemplify precisely how the exposure 

attribute plus the pressure disparity harm the rate at which the 

flow proceeds. It transpires that, equipped with a wider rate 

edge phase, the rate declines and the viscous fraction hikes. 

Moreover, as the powerful electromagnetic force gains a 

stronger hold beyond its motion, the subject, as shown in 

Fig.7 is glaring.Fig.8 illustrates the positive impact of the 

Schmidt value on the particle concentration characteristic, 

which diminishes as Sc increases. The buoyancy value 

suggests that the Schmidt number is the explanation for such 

actions. The depicted reductions in speed and quantity result 

from a combined drop in depth in both the inertia and 

concentration boundaries. Because a spike in Sc produces an 

erosion in particle diffusivity (D), the concentration boundary 

layer retreats as Sc declines. Therefore, higher species 

density correlates with higher Sc beliefs, while lower species 

density correlates with lower Sc rates.  

Fig.9 and Fig.10 illustrate the significance of the radiation 

parameter F and the Prandtl number Pr in the temperature 

description, which aligns with the narrowing of the 

temperature range. Pr causes this phenomenon by increasing 

the dimension on the outer wall of heat. The temperature 

profiles' radiation parameter (F) exhibits a slight reduction in 

correlation with the thermal conductivity ratio, which rises 

with radiation parameter extents. 

     
Fig 1: The Grashof number (Gr) and their impact on Velocity. 
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Fig 2. The Grashof number (Gc) and their impact on 

Velocity. 

 

 

 

Fig 3. The angle (Φ) and their impact on Velocity profile. 

 

Fig 4. The Hartmann number (M) and their impact on the 

Velocity profile. 

     
  Fig 5. The Prandtl (Pr) and their impact on Velocity 

profile. 

 

Fig 6. Impact of the Pressure Gradient (P) on the Velocity. 

 

Fig 7. The Radiation parameter (F) and their impact of the 

Velocity profile. 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 9, September 2024, Pages 1705-1710

 
______________________________________________________________________________________ 



Fig 8. Schmidt number (Sc) and its effect on concentration. 

 

Fig 9. Prandtl number (Pr) and its effects on Temperature. 

 

     
   Fig 10. Radiative parameter (F) and its effects on 

Temperature profile. 

V. CONCLUSION 

We explored the theory of MHD unrestricted turbulent 

insoluble circulation of fluid comprising bulk and heat 

conveyance inside an elevated track.  

1. The elevation ratio, viscous proportion, Grashof 

quantity, direction of orientation, and heating factor 

all enhance the pattern's motion. 

2. As Sc moves forward, intent rises to the top. 

3. The thermodynamic interview increases with 

fluctuations in peak proportions, thermal efficiency, 

Grashof quantity, and heat index creation. 

REFERENCES 

[1] A. J. Chamkha, “Flow of two-immiscible fluids in porous and 

nonporous channels,” Journal of Fluids Engineering, vol. 122, no. 1, 
pp. 117–124, 1999. https://doi.org/10.1115/1.483233 

[2] P. Ganesan and G. Palani, “Natural convection effects on impulsively 

started inclined plate with heat and mass transfer,” Heat and Mass 
Transfer, vol. 39, no. 4, pp. 277–283, 2003. 

https://doi.org/10.1007/s00231-002-0380-1  

[3] L. Sivakami, A. Govindarajan, E.P. Siva, “Effect of heat and mass 
transfer on the Unsteady Free Convective Immiscible Fluid Flow 

through a Horizontal Channel under the influence of magnetic field and 
Chemical Reaction”. International Journal of Pure and Applied 

Mathematics, Vol. 113 no. 13, pp. 65 – 74, 2017.  

[4] M. Anghel, M.A. Hossain, S. Zeb, “Combined heat and mass transfer 
by free convection past an inclined flat plate”, International Journal of 

Applied Mechanics and Engineering, vol.6. no.2, pp. 473-497, 2001. 

[5] A. Antony Gnana Aravind, J. Ravikumar, “Effects of Thermal 
Radiation in a Rotating Fluid on an Oscillating Vertical Plate with 

Variable Temperature and Mass Diffusion” IAENG International 

Journal of Applied Mathematics, vol. 54, no. 1, pp. 128-139. 2024. 
[6] M. S. Malashetty, J. C. Umavathi, J. Prathap Kumar “Two fluid flow 

and heat transfer in an inclined channel containing porous and fluid 

layer”. Heat and Mass Transfer, vol. 40, no. 11, pp. 871–876, 2004. 

https://doi.org/10.1007/s00231-003-0492-2 

[7] G.C. Shit, R. Haldar, “Thermal radiation and hall effect on MHD flow, 

heat and mass transfer over an inclined permeable stretching sheet”, 
Thermal Science, vol. 15, no. 2, pp. S195-S204, 2011. 

https://doi.org/10.2298/TSCI101115029S 

[8] Daniel, Simon, and Y.S. Daniel, “Convective Flow of Two Immiscible 
Fluids and Heat Transfer with Porous Along an Inclined Channel with 

Pressure Gradient”, Research Inventy: International Journal of 

Engineering and Science. Vol. 2, no. 4, pp. 12-18, 2013. 
https://doi.org/10.9790/5728-0531824 

[9] Hasan Nihal Zaidi, Naseem Ahmad, “MHD Convection Flow of Two 

Immiscible Fluids in an Inclined Channel with Heat Generation / 
Absorption” American Journal of Applied Mathematics, vol. 4, no 2, 

pp. 80-91, 2016. https://doi.org/10.11648/j.ajam.20160402.13 

[10] Punnamchandar Bitla, Fekadu Yemataw Sitotaw, “Effects of Slip and 
Inclined Magnetic Field on the Flow of Immiscible Fluids (Couple 

Stress Fluid and Jeffrey Fluid) in a Porous Channel”, Journal of 

Applied Mathematics, Vol. 2022, no. 1, 2022.       
https://doi.org/10.1155/2022/2799773 

[11] P. K. Yadav and J. Sneha, “Influence of magnetic field on the Poiseuille 

flow of immiscible Newtonian fluids through highly porous medium,” 
Journal of the Brazilian Society of Mechanical Science and 

Engineering, vol. 42, no. 188, pp. 1-15, 2020. 

[12] M.S. Malashetty, J.C. Umavathi, “Two-phase magnetohydrodynamic 
flow and heat       transfer in an inclined channel,” International Journal 

of Multiphase Flow, vol. 23, no. 3, pp. 545–560, 1997. 

https://doi.org/10.1016/S0301-9322(96)00068-7  
[13] D. Kumar and M. Agarwal, “Flow of two immiscible viscous fluids in 

porous medium between two parallel plates,” Ganita, vol. 67, no. 1, 

pp. 61–71, 2017.  
[14] J. V. Ramana Murthy and J. Srinivas, “Thermal analysis of a flow of 

immiscible couple stress fluids in a channel,” Journal of Applied 

Mechanics and Technical Physics, vol. 57, no. 6, pp. 997–1005, 2016. 
https://doi.org/10.1134/S0021894416060067  

[15] C. Beckermann, S. Ramadhyani,R. Viskanta “Natural convection flow 

and heat transfer between a fluid layer and a porous layer inside a 
rectangular enclosure”, ASME Journal of  Heat Transfer, vol. 109, pp. 

363-370, 1987. https://doi.org/10.1115/1.3248089 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 9, September 2024, Pages 1705-1710

 
______________________________________________________________________________________ 

https://doi.org/10.1115/1.483233
https://doi.org/10.1007/s00231-002-0380-1
https://doi.org/10.1007/s00231-003-0492-2
https://doi.org/10.2298/TSCI101115029S
https://doi.org/10.9790/5728-0531824
https://doi.org/10.11648/j.ajam.20160402.13
https://doi.org/10.1155/2022/2799773
https://doi.org/10.1016/S0301-9322(96)00068-7
https://doi.org/10.1134/S0021894416060067
https://doi.org/10.1115/1.3248089


[16] O.D. Makinde and P.Y. Mhone “Heat Transfer to MHD Oscillatory 
Flow in a Channel Filled with Porous Medium”, Romanian Journal of 

Physics, vol. 50, no. 9/10, pp. 931 – 938, 2005. 

[17] J.A. Gbadeyan and M.S. Dada, “On the Influence of Radiation and 
Heat Transfer on an Unsteady MHD non – Newtonian Fluid Flow with 

Slip in a Porous medium”, Journal of Mathematics Research, Vol. 5, 

no. 3, pp. 40 – 50, 2013. https://doi.org/10.5539/jmr.v5n3p40 
[18] A. Mateen, “Magnetohydrodynamic Flow and heat Transfer of two 

Immiscible Fluids Through a Horizontal Channel”, International 

Journal of Current Engineering and Technology. [Online], Vol.3, no. 
5, pp. 1952-1956, 2013.  https://doi.org/10.17950/ijer/v3s1/104 

[19] J.C. Umavathi, A.J. Chamkha, A. Mateen and J.P. Kumar, “Unsteady 

Magnetohydrodynamic Two Fluid Flow and Heat Transfer in a 
Horizontal Channel”, International Journal of Heat and Technology. 

[Online], Vol. 26, no. 2, pp. 121-133. 2008. 

[20] C.H. Chen, “Heat and mass transfer in MHD flow with variable wall 
temperature and concentration”, Acta Mechanica, vol. 172, no. 3, pp. 

219-235, 2004. https://doi.org/10.1007/s00707-004-0155-5 

[21] K. Vafai and C.L. Tien, “Boundary and Inertia Effects on Flow and 
Heat Transfer in Porous Media”, International Journal of Heat Mass 

Transfer, vol. 24, no. 2, pp. 195-203, 1981. 

[22] A. Moutsoglou, T.S. Chen, “Buoyancy effects in the boundary layers 
on inclined, continuous, moving sheets”, ASME Journal of Heat 

Transfer, vol.102, no.2, pp. 371–373, 1980. 

https://doi.org/10.1115/1.3244292 

[23] Titilayo Morenike Agbaje, Sandile Sydney Motsa, Peter Leach, and 

Precious Sibanda, “Efficient Large Spectral Collocation Method for 
MHD Laminar Natural Convection Flow from a Vertical Permeable 

Flat Plate with Uniform Surface Temperature, Soret, Dufour, Chemical 

Reaction and Thermal Radiation,” IAENG International Journal of 
Applied Mathematics, vol. 50, no.3, pp. 490-504, 2020. 

[24] M. I. Azis, “Numerical Solution for Unsteady Diffusion Convection 

Problems of Anisotropic Trigonometrically Graded Materials with 
Incompressible Flow”, IAENG International Journal of Applied 

Mathematics, vol. 51, no.3, pp 811-819, 2021. 

 
 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

   

 

 
 

 

 

 

 

 

 

 

  

 

 

 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 9, September 2024, Pages 1705-1710

 
______________________________________________________________________________________ 

https://doi.org/10.5539/jmr.v5n3p40
https://doi.org/10.17950/ijer/v3s1/104
https://doi.org/10.1007/s00707-004-0155-5
https://doi.org/10.1115/1.3244292



