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Abstract—This study investigated an n-species cooperative
Lotka-Volterra system with impulsive controls and time delays.
In the case of constructing appropriate Lyapunov functionals
and using inequality techniques, some conditions for the per-
manence and global attractiveness of the system are obtained.
In addition, sufficient conditions for the existence of positive
periodic solutions were established using the coincidence de-
gree theory. Finally, numerical simulation results illustrate the
effectiveness of our findings.

Index Terms—cooperative system; time delay; impulsive con-
trol; global attractivity; periodic solution.

I. INTRODUCTION

COOPERATIVE systems have been favored by re-
searchers as an imperative part of population dynamics

in recent years [1-3]. Cooperative population is an important
manifestation of natural biodiversity. Studying their forma-
tion and evolution mechanisms can help to better understand
and protect biological communities in nature.

Complex ecological relationships, such as food web and
energy flow, exist within cooperative populations. Through
an in-depth study of these relationships, we can better
understand the structure and function of the ecosystem.
Biologists widely believe that emphasizing the cooperative
evolutionary theory is more effective since many species
achieve survival and reproduction through mutual benefit and
win-win, and studying cooperative populations is the exact
proof [4,5]. Humans may also learn lessons from cooperative
populations, such as how to find a balance and solve various
common environmental problems.

Using simple non-time-delay dynamic models often cannot
effectively describe time-delay effects in time because many
phenomena in ecology involve species interactions and evolu-
tion. Dynamic models with time delays can more accurately
explain practical problems. In addition, many ecosystems
have time-delay effects caused by various processes that
accumulate over time, such as nutrient transport in the
soil and tree growth. Scholars have conducted extensive
research on population models with time delays and obtained
many promising results [6-10]. As discussed in [4] and
[9], cooperative models with time delays obtain sufficient
dynamic conditions such as persistence. Furthermore, time
delay is a common phenomenon that has wide applications
in many fields, such as electronics, mechanics, and chemistry
[7,8]. Therefore, studying ecological models with time delays
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can provide more comprehensive solutions and theoretical
systems for related problems in these fields.

The biological population model is a crucial research field
in ecology and can help us better understand population
dynamics and ecological interactions in ecosystems. Because
populations do not exist in isolation, any population can
be affected by various momentary effects causing sudden
changes in system variables or growth patterns. For exam-
ple, pesticide spraying, natural enemy release, and natural
disasters.

The introduction of impulsive differential equation theory
in population modeling studies to describe the phenomenon
of rapid changes in certain states of a system at fixed or
irregular moments has gained much attention from scholars
[11-15]. There are various pulse disturbances in ecosystems,
such as natural disasters and human activities, which have a
very complex and diverse impact on the ecosystem. Impulse-
controlled biological population models can better simulate
the impact of these pulse disturbances on different population
numbers and ecological interactions in ecosystems. Thus,
impulse-controlled biological population models helping us
better understand the essence and impact mechanisms of
these disturbances. In [10], the authors considered the fol-
lowing impulsive delay Logistic model

ż(s) = z(s)[a(s) − b(s)z(s − τ)], s 6= sk

z(s+
k ) = hkz(sk), k = 1, 2 · · · .

(1)

The uniform persistence and global attractiveness of the
model were obtained using useful technologies.

In the real world, various ecological interactions in ecosys-
tems are quite complex and often nonlinear. In addition,
biological population models with impulsive perturbations
can better simulate the effects of global climate change
on different population sizes and ecological interactions in
ecosystems. Furthermore, they can help us better understand
the interactions among various groups in ecosystems, even
to predict ecosystem responses to different disturbances, and
they can address major challenges, such as global climate
change.

Considering the complexity of time delays and interac-
tions among populations, Stamova in [11] investigated the
following delayed impulsive cooperation systems

ẏi(s) = yi(s)
[
ci(s) − bi(s)yi(s)

− yi(s−ηii(s))
ei(s)+

Pn
j=1,j 6=i dj(s)yj(s−ηij(s))

]
,

yi

(
s+

k

)
= yi (sk) + Fik(yi(sk)), s = sk.

(2)

Some conditions for the dynamic properties of the system
were obtained. Despite the good results of the work done,
Li [13] pointed out that a mistake exists in the results and
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investigated the following system

ẏi(s) = ri(s)yi(s)[1 − bi(s)yi(s − τii(s))
− yi(s−τii(s))

ai(s)+
Pn

j=1,j 6=i cj(s)yj(t−τij(s))
], s 6= sk,

yi(sk) = yi(s−k ) + Iikyi(s−k )).
(3)

Using a new method, the conditions for the persistence of
the above model were derived.

The cooperative relationship between populations cannot
be ignored, and the following system was considered in [15]

ẏi(s) = yi(s)(ai(s) − bi(s)yi(s)
+

∑n
j=1,i6=j cij(s)

yj(s−τj(s))
1+yj(s−τj(s))

), s 6= sk,

yi(s+
k ) = (1 + hik)yi(sk).

(4)
The permanence, existence, and global stability of the almost
periodic positive solution of the system were obtained.

Furthermore, studying population dynamics with time
delays can accurately predict future trends and identify
management strategies needed to manage them [16-20]. For
example, in disaster recovery, ecological restoration, and
species conservation, it is often necessary to predict and
control species recovery and population growth to maintain
biodiversity. In summary, it is important to study models
of biological populations with delayed and impulsive per-
turbations [21-25]. Although research on impulse models is
still in full swing [15-23], cooperative models with impulsive
perturbations have been less studied, and their dynamical
properties have not been sufficiently studied. Therefore,
the following delayed cooperative system with impulsive
controls was proposed and considered in this study

Ṅi(s) = Ni(s)[ri(s) − bii(s)Ni(s)
− Ni(s)

ai(s)+
Pn

j 6=i bij(s)
R 0
−γij

Kij(τ)Nj(s+τ)dτ
],

Ni(s+
k ) = (1 + hik)Ni(sk), s = sk, k ∈ n,

(5)
where Ni(s) represents the density of the population and
sk represents the moment of impulse. Some conditions
about permanence and global attractivity were obtained by
constructing appropriate Lyapunov functions using some
inequality techniques and differential equation knowledge.
Moreover, the existence of positive periodic solutions of the
considered system was obtained using the coincidence degree
theory.

Through this study, we firmly believe that this work can
explain the impact of time delay on the dynamic behavior
of other species. We also claim that studying the relevant
theories of the system (5) is very meaningful as it can expand
previous results, acknowledge biological value [16-25], and
provide some ideas for future research.

II. PRELIMINARIES

In this paper, we use the following initial conditions for
system (5):

Ni(s) = Θi(s), ∀t ∈ [−γ, 0], (6)

where Θi(s)(i = 1, 2, . . . n) are continuous nonnegative
functions defined on [−γ, 0] and satisfying Θi(0) > 0, where
γ = max{γij(i, j = 1, 2, . . . n)}.

Throughout this paper, for any bounded continuous func-
tion p(s) defined on [0,+∞) we define

pL = min
s∈[0,∞]

p(s), pM = max
s∈[0,∞]

p(s),

and for any Ω-periodic continuous function P (s) defined on
[0,+∞) we define.

P̄ =
1
Ω

∫ Ω

0

P (s)ds.

For convenience, we define

sup s1
k = sup(sk+1 − sk) = η,

inf s1
k = inf(sk+1 − sk) = θ, k ∈ Z,

and
hM

ik = sup
k∈Z

hik, hL
ik = inf

k∈Z
hik.

The followings are some basic assumptions in this paper.
(H1) ri(s) > 0, bij(s) > 0(i, j = 1, 2, . . . n) are all con-

tinuous bounded functions on [0,+∞), and Kij(τ)(i, j =
1, 2, . . . n) are nonnegative integrable functions defined in
[−γij , 0] satisfying

∫ 0

−γij
Kij(τ)dτ = 1, hik

> 0 and
γij > 0 are constants.

(H2) ri(s) > 0, bij(s) > 0(i, j = 1, 2, . . . n) are all
continuous bounded Ω-periodic functions on [0,+∞), and
Kij(τ)(i, j = 1, 2, . . . n) are nonnegative integrable func-
tions defined in [−γij , 0] satisfying

∫ 0

−γij
Kij(τ)dτ = 1,

hik
> 0 and γij > 0 are constants.

Now, we introduce the following useful lemmas.
Lemma 1 Let N(s) = (N1(s), N2(s), . . . , Ni(s))T is

any solution of system (5), then Ni(s) > 0.
Proof. Firstly, it can be easy to see that the ith equation

of the system can be written in the following form

Ṅi(s) = Qi(s)Ni(s), s 6= sk, i = 1, 2, . . . , n,

where

Qi(s) = − Ni(s)

ai(s) +
∑n

j 6=i bij(s)
∫ 0

−γij
Kij(τ)Nj(s + τ)dτ

ri(s) − bii(s)Ni(s),

which yields

Ni(s) =
∏

0<sk<s

(1 + hik)Ni(0) exp(
∫ t

0

Qi(s)ds) > 0.

Lemma 2[16] Assume that the sequence sk satisfies 0 ≤
s0 ≤< s1 < s2 < ..., with limk→∞ sk = ∞. Moreover,
suppose that
(i) m ∈ PC[R+, Rn], m(s) is left continuous at s = sk(k =
1, 2, . . .), g ∈ C[R+ × Rn, Rn], g(s, u) is quasimonotone
nondecreasing in u for each s for k = 1, 2, . . ., φk(u) ∈
C[Rn, Rn] and φk(u) is nondecreasing in u and

Dm(s) ≤ g(s,m(s)), s 6= sk, m(s0) ≤ u0,

m(s+
k ) ≤ φk(m(sk)), k = 1, 2, . . . ;

(ii) q(s) is the maximum solution of impulsive differential
system (7)

u̇(s) = g(s, u), s 6= sk, u(t0) ≤ u0,

u(s+
k ) = φk(u(sk)),

(7)

existing on [s0,∞). Then we have that m(s) ≤ q(s), s ≥ s0.
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On the other side, if the inequality takes the reverse direc-
tion, l(s) be the minimum solution of impulsive differential
equations (7) in [s0,+∞), then m(s+

0 ) ≥ u0 which means
m(s) ≥ l(s), s ≥ s0.

Lemma 3[10] Considering the following system (8)

Ṅ(s) = N(s)(a − bN(s)), s 6= sk,

N(s+
k ) = hkN(sk), k = 1, 2, .s,

(8)

if a > 0, b > 0, hL
k > 1, then for any positive solution N(s)

of system (8) satisfies

m0 ≤ lim
s→∞

inf N(s) ≤ lim
s→∞

supN(s) ≤ M0

where m0 = aη+ln hL
k

bηhL
k

and M0 = (aθ+ln hM
k )hM

k

bθ .

III. 3 MAIN RESULTS

Theorem 3.1 If (H1) holds, then system (5) is permanent.
Proof. Let N(s) = (N1(s), N2(s), . . . , Ni(s))T is any

positive solution of system (5), then we derive

Ṅi(s) ≤ Ni(s)[rM
i − bL

iiNi(s)], i = 1, 2, . . . .

By Lemma 2, we get Ni(s) ≤ qi(s), where qi(s) is any
positive solution of the following system

q̇i(s) = qi(s)[rM
i − bL

iiqi(s)], s 6= sk,

qi(s+
k ) = (1 + hik)qi(sk), k = 1, 2, . . . , n.

Then, using Lemma 3, we get

lim sup
s→+∞

Ni(s) ≤ lim sup
s→+∞

qi(s) ≤ Mi, (9)

where Mi = (rM
i θ+ln(1+hM

ik ))(1+hM
ik )

bL
iiθ

, thus we get

ẏi(s) ≥ Ni(s)[rL
i − bM

ii yi(s) −
yi(s)
aL

i

], i = 1, 2, . . . .

Next, we consider the following system

l̇i(s) = li(s)[rL
i − (bM

ii +
1
aL

i

)li(s)], i = 1, 2, . . . .

li(s+
k ) = (1 + hik)li(sk), k = 1, 2, . . . , n.

Let li(s) be a solution of the above system, then we get
Ni(s) ≥ li(s). Moreover, using Lemma 3 we get

lim inf
s→+∞

Ni(s) ≥ lim inf
s→+∞

li(s) ≥ mi =
rL
i η + ln(hL

ik + 1)
(bM

ii + 1
aL

i
)η(hL

ik + 1)
.

(10)
Finally, from (9) and (10), one can easily get the permanence
of system (5).
Theorem 3.2. If (H2) holds, then system (5) has at least a
positive Ω-periodic solution.

Proof. First, we set

Ni(s) = exp ui(s), i = 1, 2, . . . , n.

Then system (5) is rewritten in the following form

u̇i(s) = si(s) − bii(s)eui(s)

− eui(s)

ai(s) +
∑n

j 6=i bij(s)
∫ 0

−γij
Kij(τ)euj(s+τ)dτ

,

ui(s+
k ) = ln(1 + hik) + ui(sk).

(11)

Next, we define X and Z as the normed vector spaces. Let
C (R,Rn) be the space of all continuous functions u(s) =
(u1(s), u2(s), . . . , un(s)) : R → Rn. We take

X = Z = u(s) ∈ C (R,Rn),

where u(s) is an Ω-periodic function with norm

‖u‖ =
n∑

i=1

max
s∈[0,Ω]

|ui(s)|.

Then, X and Z are the Banach spaces.
Let

Y =





u1(s)
u2(s)

...
un(s)

 ,


g11

g21

...
gn1

 , · · · ,


g1q

g2q

...
gnq




∣∣∣∣∣∣∣∣∣
ui(s) ∈ Cω(i = 1, 2 · · · , n)

(g1k
, g2k

, · · · , gnk
)T

= (∆U1 (sk) , · · · ,∆Un (sk))T

k = 1, 2, . . . , n

 ,

where Ui(s) is original function of ui(s).
For k = 1, 2, . . . q, define

z = [u0(s), z1, . . . , zq],

where u0(s) = (u1(s), u2(s), . . . , un(s))T , and zk = (g1k
,

g2k
, . . . , gnk

)T .
Then we define

‖z‖ =
n∑

i=1

max
s∈[0,Ω]

|ui(s)| +
q∑

k=1

‖zk‖.

One can see that (Z, ‖ · ‖) is Banach space.
We set L and N as operators satisfying

L


u1(s)
u2(s)

...
un(s)

 =




u̇1(s)
u̇2(s)

...
u̇n(s)

 ,


∆u1(s1)
∆u2(s1)

...
∆un(s1)

 ,

· · · ,


∆u1(sq)
∆u2(sq)

...
∆un(sq)


 ,

where

DomL =
{

(u1(s), u2(s), · · · , un(s))T ∈ X | u̇i(s) ∈ CΩ

}
=

{
(u1(s), u2(s), · · · , un(s))T ∈ X | ui(s) ∈ C ′

Ω

}
,

and

N


u1(s)
u2(s)

...
un(s)

 =




f1(s)
f2(s)

...
fn(s)

 ,


ln(1 + h11)
ln(1 + h21)

...
ln(1 + hn1)

 ,

· · · ,


ln(1 + h1q

)
ln(1 + h2q

)
...

ln(1 + hnq
)


 ,
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where

fi(s) =ri(s) −
eui(s)

ai(s) +
∑n

j 6=i bij(s)
∫ 0

−γij
Kij(τ)euj(s+τ)dτ

− bii(s)eui(s).

Further, we define that P : X → X and Q : Z → Z
satisfying

P


u1(s)
u2(s)

...
un(s)

 =
1
ω


∫ ω

0
u1(s)ds +

∑q
k=1 g1k∫ ω

0
u2(s)ds +

∑q
k=1 g2k

...∫ ω

0
un(s)ds +

∑q
k=1 gnk

 ,

and

Q




u1(s)
u2(s)

...
un(s)

 ,


g11

g21

...
gn1

 , · · · ,


g1q

g2q

...
gnq




=

 1
ω


∫ ω

0
u1(s)ds +

∑q
k=1 g1k∫ ω

0
u2(s)ds +

∑q
k=1 g2k

...∫ ω

0
un(s)ds +

∑q
k=1 gnk

 ,




0
0
...
0




q

k=1

 .

One can see that KerL = n and ImL is closed in Z, where

ImL =





u1(s)
u2(s)

...
un(s)

 ,


g11

g21

...
gn1

 , · · · ,


g1q

g2q

...
gnq




∣∣∣∣∣∣∣∣∣


∫ ω

0
u2(s)ds +

∑q
k=1 g1k

= 0∫ ω

0
u2(s)ds +

∑q
k=1 g2k

= 0
...∫ ω

0
un(s)ds +

∑q
k=1 gnk

= 0


 ,

and
ImP = KerL,KerQ = ImL,
dimKerL = codimImL = n.

Thus, L is a Fredholm mapping of index zero.
Moreover, the following form is the generalized inverse of

Kp : Im L → KerP ∩ Dom L:

KP Z =



∫ s

0

f1(s)ds− 1
Ω

∫ Ω

0

∫ s

0

f1(v)dvds

+
∑

0<sk<s

g1k
−

q∑
k=1

g1k∫ s

0

f2(s)ds− 1
Ω

∫ Ω

0

∫ s

0

f2(v)dvds

+
∑

0<sk<s

g2k
−

q∑
k=1

g2k

...∫ s

0

fn(s)ds− 1
Ω

∫ Ω

0

∫ s

0

fn(v)dvds

+
∑

0<sk<s

gnk
−

q∑
k=1

gnk



.

Then we have

QNu(s)

=

 1
ω


∫ Ω

0
f1(s)ds +

∑q
k=1 ln(1 + g1k

)∫ Ω

0
f2(s)ds +

∑q
k=1 ln(1 + g2k

)
...∫ Ω

0
fn(s)ds +

∑q
k=1 ln(1 + gnk

)

 ,




0
0
...
0




q

k=1

 ,

and Kp(I − Q)N : X → X ,

Kp(I − Q)N


u1(s)
u2(s)

...
un(s)



=



∫ Ω

0

f1(s)ds +
∑

0<tk<t

ln(1 + g1k
)

∫ Ω

0

f2(s)ds +
∑

0<tk<t

ln(1 + g2k
)

...∫ Ω

0

fn(s)ds +
∑

0<tk<t

ln(1 + gnk
)



−



(
s

Ω
− 1

2
)
∫ s

0

f1(s)ds +
q∑

k=1

ln (1 + g1k
)

(
s

Ω
− 1

2
)
∫ s

0

f2(s)ds +
q∑

k=1

ln (1 + g2k
)

...

(
s

Ω
− 1

2
)
∫ s

0

fn(s)ds +
q∑

k=1

ln (1 + gnk
)



−



1
Ω

∫ Ω

0

∫ s

0

f1(s)ds +
q∑

k=1

ln (1 + g1k
)

1
Ω

∫ Ω

0

∫ s

0

f2(s)ds +
q∑

k=1

ln (1 + g2k
)

...

1
Ω

∫ Ω

0

∫ s

0

fn(s)ds +
q∑

k=1

ln (1 + gnk
)


.

From the above discussion and by using Arzela-Ascoli
theorem , one can see that QN(Ω̄) is bounded and QN and
Kp(I−Q)N are continuous operators and Kp(I − Q)N(Ω̄)
is compact for any open bounded set Ω ⊂ X .

Next, in order to find the open bounded subset Ω ⊂ X ,
let Lu(s) = λNu(s) with λ ∈ (0, 1) and from (11), we get

u̇i(s) = λfi(s), s 6= sk. i = 1, 2, . . . , n,

ui(s+
k ) = λ ln(1 + hik) + ui(sk), s = sk.

(12)
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Let, u(s) = (u1(s), u2(s), . . . , un(s)) ∈ X is a solution of
system (12) for some parameter λ ∈ (0, 1). Then integrating
system (6) over the interval [0,Ω], we have∫ Ω

0

(
ri(s) − bii(s)eui(s)

− eui(s)

ai(s) +
∑n

j 6=i bij(s)
∫ 0

−γij
Kij(τ)euj(s+τ)dτ

)
ds

= − 1
Ω

ln(
q∏

k=1

(1 + hik
)), i = 1, 2, . . . , n,

which yields (1 + 1
aL

i b̄ii
)(s̄iΩ + ΓiΩ)∫ Ω

0

eui(s)

ai(s) +
∑n

j 6=i bij(s)
∫ 0

−γij
Kij(τ)euj(s+τ)dτ

+ bii(s)eui(s)ds

=r̄iΩ + ΓiΩ, i = 1, 2, . . . , n,

(13)

where

Γi =
1

Ω2
ln(

q∏
k=1

(1 + hik
)) =

1
Ω2

q∑
k=1

ln(1 + hik
).

From the solutions u(s) = (u1(s), u2(s), . . . , un(s)), we
have some constants ξi, ηi ∈ [0,Ω](i = 1, 2, . . . , n) and
satisfying

ui(ξi) = max
s∈[0,Ω]

ui(s), ui(ηi) = min
s∈[0,Ω]

ui(s). (14)

From (13) and (14), we get∫ Ω

0

bii(s)eui(ηi)ds ≤ r̄iΩ + ΓiΩ.

Therefore, we find that

ui(ηi) ≤ ln
r̄iΩ + ΓiΩ

b̄ii
=: Ai. (15)

On the other hand, we have∫ Ω

0

(
bii(s)eui(s)+

eui(s)

ai(s)
)
ds ≥ r̄iΩ+ΓiΩ, i = 1, 2, . . . , n.

Thus, we further obtain

ui(ξi) ≥ ln
āi(r̄iΩ + ΓiΩ)

āib̄ii + 1
=: Ci. (16)

From (15) and (16), we derive∫ Ω

0

|u̇i(s)|ds

≤ |Γi|Ω + |ri|Ω +
∫ ω

0

(
bii(s)eui(s)

+
eui(s)

ai(s) +
∑n

j 6=i bij(s)
∫ 0

−γij
Kij(s)euj(s+τ)dτ

)
ds

≤ |Γi|Ω + |ri|Ω +
∫ ω

0

(
bii(s)eui(s) +

eui(s)

ai(s)
)
ds

≤ |Γi|Ω + |ri|Ω +
s̄iΩ + Γiω

b̄ii

=: Di.

By further calculation, it can be concluded that

ui(s) ≤ ui(ηi) +
∫ Ω

0

|u̇i(s)|ds ≤ Āi + Di := Ri, (17)

and

ui(s) ≥ ui(εi) −
∫ Ω

0

|u̇i(s)|ds ≥ C̄i − Di := Ki. (18)

Thus, we get

max
s∈[0,Ω]

|ui(s)| ≤ max(Ri,Ki) := Bi. (19)

Let 0 < B < +∞ be big enough, satisfying |u∗
1|+ |u∗

2|+
· · · + |u∗

n| < B and B > B1 + B2 + · · · + Bn. Let Ω∗ ⊂ X
be a bounded open set satisfying:

Ω∗ = {u ∈ X : ‖u‖ < B}.

In order to verify all the conditions of the coincidence
degree theory, we define

hµ(x) = µQNu + (1 − µ)Gu, µ ∈ [0, 1],

then, we can get 0 /∈ hµ(Ω∗ ∩ KerL).
Thus, according to the homology invariance and similar

methods in [20], we have

deg{JQN,Ω∗ ∩ KerL, (0, 0, . . . , 0)}
=deg{G, Ω∗ ∩ KerL, (0, 0, . . . , 0)}
6=0.

Finally, one can see that Ω∗ satisfies all the conditions
of coincidence degree theory. Therefore, system (11) has
an Ω-periodic solution u∗(s) = (u∗

1(s), u
∗
2(s), . . . , u

∗
n(s)).

Therefore, system (5) has a positive Ω-periodic solution.
Theorem 3.3. If (H1) holds and Gi > 0(i = 1, 2, · · · , n),
the system (6) is globally attractive. Where

Gi = bL
ii+

aL
i

(aM
i +

∑n
j 6=i bM

ij Mj)2
−

∑n
j 6=i bM

ji

(aL
i +

∑n
j 6=i bL

jimj)2
> 0.

Proof. Assume that (W1(s), · · · ,Wn(s) and
(N1(s), · · · , Ni(s)) are any two positive solutions of
system (5), then there exist real numbers S∗ > 0 and
M > m > 0 for s ≥ S∗ such that

m ≤ Wi(s), Ni(s) ≤ M.

Define a function as follows

V1(s) =
n∑

i=1

| lnWi(s) − lnNi(s)|, (20)
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then we obtain

D+V1(t)

=
n∑

i=1

sgn(Wi(s) − Ni(s))(
Ẇi(s)
Wi(s)

− Ṅi(s)
Ni(s)

)

=
n∑

i=1

sgn(Wi(s) − Ni(s))
(
− bii(s)(Wi(s) − Ni(s))

− (
Wi(s)

ai(s) +
∑n

j 6=i bij(s)
∫ 0

−γij
Kij(τ)Wj(s + τ)dτ

− Ni(s)

ai(s) +
∑n

j 6=i bij(s)
∫ 0

−γij
Kij(τ)Nj(s + τ)dτ

))

≤
n∑

i=1

[
− bii(s)|Wi(s) − Ni(s)|

− [
ai(s)|Wi(s) − Ni(s)|

ai(s) +
∑n

j 6=i bij(s)
∫ 0

−γij
Kij(τ)Wj(s + τ)dτ

× 1

ai(s) +
∑n

j 6=i bij(s)
∫ 0

−γij
Kij(τ)Nj(s + τ)dτ

+

∑n
j 6=i bij(s)

∫ 0

−γij
Kij(τ)|Wj(s + τ) − Nj(s + τ)|dτ

ai(s) +
∑n

j 6=i bij(s)
∫ 0

−γij
Kij(τ)Wj(t + τ)dτ

× 1

ai(s) +
∑n

j 6=i bij(s)
∫ 0

−γij
Kij(τ)Nj(t + τ)dτ

)
]

≤
n∑

i=1

[
− (bii(s) +

aL
i

(aM
i +

∑n
j 6=i bM

ij Mj)2
)|Wi(s) − Ni(s)|

+

∑n
j 6=i bij(s)

∫ 0

−γij
Kij(τ)|Wj(s + τ) − Nj(s + τ)|dτ

(aL
i +

∑n
j 6=i bL

ijmj)2
]
.

Next, we let

V2(s) =
n∑

i=1

n∑
j 6=i

∫ 0

−γij

1
(aL

i +
∑n

j 6=i bL
ijmj)2

Kij(τ)

×
∫ s

s+τ

bij(σ)|Wj(σ) − Nj(σ)|dσdτ.

Finally, we let V (s) = V1(s) + V2(s), then we obtain

D+V (t) ≤ −
n∑

i=1

(
bii(s) +

aL
i

(aM
i +

∑n
j 6=i bM

ij Mj)2

)
× |Wi(s) − Ni(s)| +

n∑
i=1

n∑
j 6=i

bM
ij

× 1
(aL

i +
∑n

j 6=i bL
ijmj)2

|Wj(s) − Nj(s)|

≤ −
n∑

i=1

(
bL
ii +

aL
i

(aM
i +

∑n
j 6=i bM

ij Mj)2

−
∑n

j 6=i bM
ji

(aL
i +

∑n
j 6=i bL

jimj)2

)
|Wi(s) − Ni(s)|

≤ −
n∑

i=1

Gi|Wi(s) − Ni(s)|.

In addition, for s = sk, we get

V (s+
k ) = V1(s+

k ) + V2(s+
k ) + · · · + Vi(s+

k ) = V (sk). (21)

Thus for s > S1, we get

D+V (s) ≤ −
n∑

i=1

Gi|Wi(s) − Ni(s)|.

Integrating from s to S1 on both sides of (21), we obtain

V (s) − V (S1) ≤ −
n∑

i=1

Gi

∫ t

S1

|Wi(s) − Ni(s)|ds,

and

V (s) +
n∑

i=1

∫ s

S1

|Wi(s) − Ni(s)|ds ≤ V (S1) < +∞, (22)

which yields

n∑
i=1

∫ s

S1

|Wi(s) − Ni(s)| < +∞.

Similarly, by adopting the method in [7], and by Barbalat’s
lemma, it follows that for i = 1, 2, . . . , n

lim
s→+∞

|Wi(s) − Ni(s)| = 0.

This completes the proof.
Next, from Theorem 3.1, Theorem 3.2 and Theorem 3.3,

we have the following corollary.
Corollary 3.1. If (H2) holds and Gi > 0(i = 1, 2, · · · , n),
then system (6) is permanent and has a global attractive
positive Ω-periodic solution. Where

Gi = bL
ii+

aL
i

(aM
i +

∑n
j 6=i bM

ij Mj)2
−

∑n
j 6=i bM

ji

(aL
i +

∑n
j 6=i bL

jimj)2
> 0.

In system (5), if hik = 0, then then system (5) is reduced
to the following non-impulsive n-species non-autonomous
cooperative Lotka-Volterra system with time delays

Ṅi(s) =Ni(s)
[
ri(s) − bii(s)Ni(s)

− Ni(s)

ai(s) +
∑m

l=1 bjl(s)
∫ 0

−lτ
Kj(τ)Nj(s + τ)dτ

]
.

(23)
Accordingly, the assumptions (H1) and (H2) turn to

(H3) ri(s) > 0, bij(s) > 0(i, j = 1, 2, . . . n) are all con-
tinuous bounded functions on [0,+∞), and Kij(τ)(i, j =
1, 2, . . . n) are nonnegative integrable functions defined in
[−γij , 0] satisfying

∫ 0

−γij
Kij(τ)dτ = 1, γij > 0 are

constants.
(H4) ri(s) > 0, bij(s) > 0(i, j = 1, 2, . . . n) are all

continuous bounded Ω-periodic functions on [0,+∞), and
Kij(τ)(i, j = 1, 2, . . . n) are nonnegative integrable func-
tions defined in [−γij , 0] satisfying

∫ 0

−γij
Kij(τ)dτ = 1,

γij > 0 are constants.
Then also from Theorem 3.1, Theorem 3.2 and Theorem

3.3, we have the following two corollaries.
Corollary 3.2 If (H3) holds and Gi > 0, then system

(23) is permanent and globally attractive.
Corollary 3.3 If (H4) holds and Gi > 0, then system

(23) is permanent and has a global attractive positive Ω-
periodic solution.
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4 NUMERICAL EXAMPLES

In this section, two examples are given to illustrate the
obtained theoretical results in this paper. In order to facilitate
understanding and calculation, in the following examples, for
n = 2, we consider the differential equations with impulses.

Example 4.1

Ṅ1(s) = N1(s)[1.4 + 0.2 cos(s) − (1.8 + 0.2 cos(s))N1(s)

− N1(s)

1.35+0.15 cos(s)+(1.95+0.05 cos(s))
R 0
−γ12

K2(τ)N2(s+τ)dτ
],

N1(s
+
k ) = (1.25 + 0.15 cos k)N1 (sk) , s = sk. k ∈ n

ẏ2(s) = y2(s)[0.7 + 0.1 cos(s) − (1.7 + 0.1 cos(s))y2(s)

− N2(s)

1.6+0.1 cos(s)+(0.85+0.05 cos(s))
R 0
−γ21

K1(τ)N1(s+τ)dτ
],

N2(s
+
k ) = (1.65 + 0.15 cos k)N2 (sk) , s = sk, k ∈ n.

(24)

It is easy to get that θ = 1
2 , η = 1. By direct calculation,

we can obtain that

G1 ≈ 0.831 > 0, G2 ≈ 0.413 > 0.

Obviously, the assumptions of Corollary 3.1 are all satisfied.
Therefore, system (24) is permanent and has a globally
attractive positive 2π-periodic solution. The corresponding
numerical simulations are given in Fig. 1. and Fig. 2.
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Fig. 1. The global attractivity, periodic solution and per-
manence of N1(s). Here, we take different initial valu-
es Ni

1(0), i=1,2,3,4,5.
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Fig. 2. The global attractivity, periodic solution and per-
manence of N2(s). Here, we take different initial valu-
es Ni

2(0), i=1,2,3,4,5.

The following example is a special case of Example 4.1.

Example 4.2
ẏ1(s) = y1(s)[1.4 + 0.2 cos(s) − (1.8 + 0.2 cos(s))y1(s)

− y1(s)

1.35+0.15 cos(s)+(1.95+0.05 cos(s))
R 0
−γ12

K2(τ)y2(s+τ)dτ
],

ẏ2(s) = y2(s)[0.7 + 0.1 cos(s) − (1.7 + 0.1 cos(s))y2(s)

− y2(s)

1.6+0.1 cos(s)+(0.85+0.05 cos(s))
R 0
−γ21

K1(τ)y1(s+τ)dτ
].

(25)

From Example 4.1, one can see that, the assumptions of
Corollary 3.3 are satisfied. Then system (25) is permanent
and has a globally attractive positive 2π-periodic solution.
The corresponding numerical simulations are given in Fig.3.
and Fig.4.
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Fig. 3. The global attractivity, periodic solution and per-
manence of y1(s). Here, we take different initial valu-
es yi

1(0), i=1,2,3,4,5.
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Fig. 4. The global attractivity, periodic solution and per-
manence of y2(s). Here, we take different initial valu-
es yi

2(0), i=1,2,3,4,5.

IV. CONCLUSION

Considering differential equations with impulses for cer-
tain species can provide valuable insights. For example,
fishermen maximizing their benefits by implementing a ban
on fishing and artificially releasing larvae for a specific
period makes sense. However, among the many previously
studied population dynamical impulse models, cooperation
models are rare, and most of them only study the relationship
between one or two populations, which also lack relevant nu-
merical examples to illustrate the obtained results. Therefore,
in this study, we investigated a class of n-species cooperation
models (5) and used appropriate numerical examples to
illustrate them. In this study, by utilizing useful inequality
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techniques, the impulsive comparison principle, and the
Lyapunov method, some conditions on global attractivity,
permanence, and the existence of positive periodic solutions
were obtained.

Moreover, because the model (5) can be seen as a special-
ization of the model in [7-11], the theoretical results obtained
in this study can be seen as an extension and complement to
previous work.
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