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Abstract—In the realm of discrete-time modeling for gene
regulatory networks, significant focus has been placed on
addressing the time lags inherent in the process of DNA
transcription to RNA and the subsequent translation of mRNA
to proteins. These temporal delays have been consistently
incorporated into discrete gene regulatory network models.
However, true gene regulatory networks are also subject to
spatial variables, due to the uneven distribution of protein and
MRNA concentrations. The integration of reaction-diffusion
terms is thus essential to fully represent the impact of spatial
dynamics on gene regulatory networks. In such networks,
reaction-diffusion dynamics highlight the complex interactions
between neighboring spatial regions, where closeness leads to
mutual influences on their functional activities. Based on this
conceptual groundwork, this study introduces a discrete-time
gene regulatory network model that includes the mutual
interconnections between spatial areas. To guarantee the
model's robust stability, we have established delay-dependent
stability criteria using carefully designed Lyapunov-Krasovskii
functions, framed within the context of linear matrix
inequalities. The robustness and effectiveness of our approach
are demonstrated through a numerical example presented in
this work.

Index Terms—Discrete-time genetic regulatory networks;
Robust  stability; Reaction-diffusion; Linear matrix
inequalities

I. INTRODUCTION

Historically, scientific inquiry predominantly centered on
elucidating the functions of select genes, proteins, and
molecules.  However,  contemporary  understanding
underscores that the orchestration of most biological
functions transcends the control exerted by individual
molecules or genes, instead arising from the intricate
interplay among myriad components. This interaction entails
the regulation of gene expression or function by the influence
or activity of other genes, and conversely. With the
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progressive evolution of biological science, particularly the
nuanced exploration of molecular mechanisms witnessed in
recent years, there has emerged an increasingly profound
appreciation among experts for the fundamental significance
of genetic networks. Given the inherent complexity of
authentic genetic networks, it becomes imperative to employ
simplification strategies for effective comprehension.
Genetic regulatory networks (GRNs) have emerged as potent
tools in this regard, offering valuable insights into intricate
biochemical processes such as gene transcription, translation,
and protein diffusion within cellular microenvironments such
as the cytosol and nucleus.

Researchers have made significant strides in the field of
Genetic Regulatory Networks (GRNs), leading to the
development of a diverse array of models. These include
Bayesian models [1-3], Boolean models [4], and differential
equations models [5-9]. Among them, the differential
equations models stand out for their ability to capture the
essence of GRNs through the representation of continuous
values. However, the integration of delayed discrete-time
GRNs is crucial for their practical deployment and use in
simulation scenarios [10]. Scholars such as Sakthivel [11]
have contributed significantly to the robustness evaluation of
discrete-time GRNSs, especially in dealing with various forms
of delays.

Time delays are a fundamental aspect of numerous
scientific disciplines, encompassing areas such as chemistry,
physics, neural networks [12, 13], and GRNs. Within GRNs,
these delays originate from the inherently slow pace of
biochemical processes, including gene transcription and
translation, or from the finite switching capabilities of
amplifiers. Concurrently, uncertainties arise due to
imperfections in modeling, the influence of external factors,
and variations in parameters. In response to these
complexities, a multitude of research efforts have been
dedicated to performing robust stability analyses of GRNs,
specifically addressing the intricacies of time delays and
uncertainties.

As mentioned above, genetic regulatory processes require
the migration of regulatory proteins or metabolites within
cellular compartments such as the cytoplasm and nucleus.
Recognition of the importance of protein diffusion has
highlighted the need to incorporate reaction-diffusion
phenomena into genetic regulatory network (GRN) models,
rather than assuming spatial homogeneity. Several studies
[14-16] have highlighted the key role of reaction-diffusion
dynamics in shaping GRN behavior, emphasizing that
models that ignore these effects may produce inaccurate
predictions of protein and mRNA concentrations. Therefore,
the integration of reaction-diffusion mechanisms is essential
in GRN modeling. However, the literature on this aspect
remains limited, especially regarding discrete-time GRNs
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within plant systems.

In this study, we aim to incorporate reaction-diffusion
dynamics into discrete-time GRNs and analyze the stability
of discrete GRNs with reaction-diffusion terms, considering
scenarios both with and without Brownian motion. Through
computer simulations, we demonstrate the effectiveness of
our theoretical findings and the impact of integrating
reaction-diffusion dynamics into GRN modeling.

The main contributions of this work are summarized as
follows:

(1) Integration of spatial diffusion: this study introduces
the integration of spatial diffusion mechanisms into discrete
GRNs, thus establishing a novel discrete coupled GRN
incorporating reaction-diffusion dynamics.

(2) Stability theorem for Brownian motion and time delay:
Taking into account Brownian motion and time delay, this
study introduces a theorem aimed at determining the stability
of discrete modeling GRNs incorporating reaction-diffusion
processes. This theorem serves as an important tool for
understanding the dynamic behavior of GRNs under the
influence of these complex factors.

Il. PROBLEM FORMULATION

Following nonlinear delayed genetic regulatory network

[17]:

{X(m+1):AX(m)+I§F(Y(m-9(m)))+L M

Y(m+1) =CY(m) + DX (m—&(m))
where
A=diag{4,,4,, 4y},
]

f):diag{dl,dz,---,&N} ,
X (m) =[x, (m), X, (m),--x, ()],
Y (m) =[y,(m), y,(m), -, yu ()]’
Y (m=6(m))=[y,(m-6(m)),y,(m-6(m)),
Yy (m—@(m)ﬂT
X (m=8(m)) =[x (m—9(m)).--, xy (m-9(m)) ],

F(Y(m-6(m))) =[f1(y1(m—€(m))), f,(y,(m-6(m)))
o Ay (v (m—0m)) |
L=[L L]
In Eq. (1), x(m)eR" (i=12:---,N) and y,(m)eR"

represent the concentrations of mMRNA and protein of the i
node at time m, respectively. The parameters & and ¢

denote the degradation rates of mMRNA and protein, and d; is
the translation rate. The term L, signifies the basal
transcriptional rate of the repressor of gene i , and f,(y)is

the Hill form regulatory function. This function represents
the feedback regulation of the protein on transcription and is
expressed as follows:

A

is the Hill coefficient, V;

fi(x)=

where H, is a positive

constant, &(m) and $(m) are time-varying delays satisfying
0<6,,,<0(m<é,.,

0<8,, <IM) <3,

7, < 0< A

7, < 9< y7a

B =(b,, ) e R"™" is described as

),

J/nn’
=40

7w
where y,.. represent transcription factorn’e{1,2,3---,N} is

b

nn'

an activator of genen, 0 represent that there is no link from
node n' to n , —y, represent transcription factor n’ is an

repressor of genen .
Now, assuming that X* and Y~ are the equilibrium point
vectors of Eq. (1), let x(m)=X(m)-X",y(m)=Y(m)-Y~,
and f(y(m-0(m)))=F(y(m-6(m))+Y")-F(Y") then
Eqg. (1) can be expressed as follows:
X (m+1) = AX(m) + BF (Y (m-6(m)))
{Y(m+1)=C~ZY(m)+ DX (m—9(my))

Based on the fundamental discrete GRN model outlined in
Eg. (1), we now advance to develop an enhanced discrete
GRN model that integrates reaction-diffusion terms to
capture the spatial-temporal dynamics more
comprehensively.

{X(m+1,n):A’X(m,n)+§F(Y(m-@(m),n))+®l+L .
Y(m+1,n) =C'y(m,n) +©,+Dx(m—&m),n)
Where
X(m,n) =[x (m,n),---, X (m, n)]T ’
Y(mn) =[y,(mn),---, v (mn)]
Y (m=o6(m),n)=[y,(m-6(m),n),---, yy (m—e(m),n)]T’
X (m—9(m),n) =[x, (m—m),n),---, (m—lsl(m),n)]T ’
F(y(m—e(m)),n):[fl(y(m—ﬁ(m),n)),-u,
fy (y(m—6’(m),n))]T '

In Eq. (4), x,(m,n) and y,(m,n) are the concentrations of

mRNA and protein of the ith node at the time m and space
n.

A typical continuous-time genetic regulatory networks
with reaction-diffusion terms [15] is described as:

@3).
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% (tr) R (L)) L.
(gt ):;%{Dik 8(rk )J—a,x,(t,r)Jr
29 (3 (t-oOr))va o
ayig'r) ) Z%ED ay‘a(:k'r)j—éivi (tr)+
+Bb% (t-0(t),r),i=12,n

where r=(r,r,-5) eQcR®, Q={rr|<L}, L is
constant, k =1,2,---,1,D, >0, D, >0denote the diffusion
rate  matrices; X (t,r) and ¥ (t,r) demonstrate the
concentrations of mMRNA and protein at the ith node
respectively; & and ¢ represent degradation rates of the

I
mRNA and protein, respectively; b, is a constant; g, (*) is
the activation function; g, = > ¢, , I; is the set of all the

i
jel;

nodes which are repressors of gene I; W :=(cg, ) € R™" is
coupling matrix, which is defined as

where ¢; represent transcription factor j is an activator of
gene i, O represent that there is no link from node jto i, —«;

U]

represent transcription factor j is a repressor of gene i.

According to the form of the reaction-diffusion terms in Eq.

(5), ®, and ®, are defined to represent the reaction

diffusion terms of concentrations of mRNA and protein
respectively as follows:

0, =.§1[X (m,n+1)= X (m,n)—(X (m,n)-X (m,n—l))}
0,=¢ [Y (m,n+1)=Y (m,n)—(Y (m,n)—Y(m,n—l))J

(6),
where & and &, are positive coupling coefficient.

After substituting Eq. (6) into Eq. (4) and simplifying, we
obtain

X (m+1,n)= AX (m,n)+BF (Y (m- 6(m),n))
+&(X(Mn+)+X(mn-1))+L

Y(m+Ln)=CY(mn)+&(Y(mn+1)+Y(mn-1)) ),
+DX (m—&(m),n)
where A=A'—2& and C=C'-2¢,.

Assuming that X and Y are the equilibrium point vectors
of Eg. (7), let x(mn)=X(mn)-X , y(mn)=Y(m,n)
Y and f (y(m-6(m),n))= F(y(m—e(m),n)+?)—F(Y) , then
Eq. (7) can be expressed as follows:

x(m+1,n)= Ax(m,n)+Bf (y(m-6(m),n))

+& (x(m,n+1)+x(m,n-1))
y(m+1,n) =Cy(m,n)+¢&, (y(m,n+1)+y(m,n-1)) ®),
+Dx(m - 9(m),n)

Considering that the concentrations of mMRNA and proteins
are influenced by molecular Brownian motion, Eq. (8) is
rewritten as

x(m-+1,n) = Ax(m,n)+Bf (y(m-6(m),n))+& (x(m,n+1)
+x(m,n-1))+o (y(m,n), y(m—6(m),n)) w(m,n)

y(m+1n)=Cy(m,n)+¢& (y(m,n+1)+y(mn-1))
+Dx(m-&(m),n)

Q).
where o(m,n) is a vector-form scalar Brownian motion with
e{w(m,n)} =0,
g{co(m, n)" o(m, n)} =1,
e{o(m,n)" o(m’,n)} =0(m’=m),
and o(y(m,n),y(m—-6(m),n)) is the noise intensity matrix
satisfying

o (y(m,n),y(m=6(m),n))o(y(m,n),y(m-6(m),n)) 10,

<y'(mn)H,y(m,n) +y" (m=6(m),n)H,y(m-6(m),n)
where H, and H, are known constant matrices with

appropriate dimensions.
Nonlinear function f,(-) satisfies the Ineq. (11), because

f.(\) is a monotonically increase function with saturation
0< M < lgl"
Zi
Ineq. (11) is reformulated in matrix notation, thereby
engendering

2% #0,i=12n

(11).

T (F () -Kx) <0
where K =diag(x;, ,, &), Vx € R".
In this study, we contemplate the imposition of Dirichlet
boundary conditions, articulated as follows:
x(m,n)=0,n € oQ
{y(m, n)=0,neoQ
where 0Q represents boundary.
Lemma 1 [16]. For any constant matrixW =W" >0, scalar
r'>0, exist

(12),

t'-1

r i AWK = S KT OW i ()

I=t'—r" I=t'—r" I=t'—r"
Lemma 2 [18]. For any vectors X ,Y eR", H >0 is any
positive definite matrix, exist following Ineq.
2XTHY < XTHX +Y'THY
1. STABILITY CRITERIA
In this section, we will investigate a stability criterion for

(13).

(14).

Eg. (8).

Theorem 1 For given scalars 6., , O, » S @Nd 3.,
satisfying Ineq. (2), w(m,n) =0, the trivial solution of Eq. (9)
is stability if there exist scalars y>0 , matrices
Al =A,>0 (h=L2) , P =R, >0 RL=R,>0 and

Q=Q,>0 (hW=1-4) , T/=T,>0 , S =5 >0 and
S; =S, >0, such that the following linear matrix Ineq. (LMI)
holds:

(15).

Where
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Q, 0 ;1 0 0 0 0
* Q,, 0 0 Qz‘s 0 0
s oo, —R 0 0 0
- ' 'gmax - '9m|n
T ox ok Q. 0 0 0]’
R
* * * * [¢) 0 3
® amin
* * * * * -P, 0
* * * * % * Q7 ;
I 0 0 Qi Qi 0 0
0 0 0 0 0 92’13 92‘14
0 0 0 0 0 0 0
= _ 0 0 0 0 0 0 0
T 0 KA, 0 0 0 Q. Q.|
0 0 KA, O 0O 0 0
R, 0 0 0 0 0 0
L Hmin - gmax B

o
Il
*
*
*
o O O o

* * * * QlZ,lZ 0 0
* * * * * Q13,13 Q13,14

* * * * * * 914,14_

0, =ARA=R + P, +Q + 8y (A— 1) R(A- 1) -

min 1

+ (G — 3 NA-DTR, (A= 1)+ A4S,

Q,,,=APB + 8, (A= 1) RB + (I, — %, )(A—1)'R,B,
Q15 =A RE + G (A= 1) RE + (Fre = ia (A= 1) RS,
Q4 =ATRE + Gpin (A= 1) RE + (e = Guin A=) R
Q,,=D'P,D-P, +6,;,,D'R,D + (6,0 — 0, )D'R,D ,
Q,=D'P,C+6,,,D'R,(C—1)+(Opex —Orin)D'R,(C - 1),
Q,.,=D"P&, + 0, D" R&, + (O —0in)D'R,E,
Q,,,=D" P&, + 0,1, D" R&, + (O — 0in) D' RS,
Q,;=C'PRC-P,+P, +Q3+€mm(C N'R,(C-1)

“R, /O + (0, — 0, )YC =1 R(C 1)+ A,
Q;13=CTRE, + 6, (C = 1) R&, + (O — O (C — 1) R,E,,
Q;,,=C'P&, + 0, (C— 1) R&, + (O — 00 C— 1T R&,,
Q,,=Q,-Q, _Z?n_—emﬁ ~
Qy =T, —2A,,

Q010=B"'PB+8,,,B'RB + (9, — s )BT R,B-T, - 2A,,

Qlo,ll = ET Plé:l + ‘9min éT R1§1 + (‘9max - I9min ) BT R2§1 '

Q. =B'RE + 8, B'RE +(Fm — Fnin)B'R, efl ,
Q11 =& P&+ 9né R& + (G = i )& Ro& = S
D1y = & RE +Fin&l R+ (o = Gin)&) 251,
Quo1r =& P&+ 800l RE + (o = Gin )& Ro& =Sy
Q51528 P&, +6ins RSy + (Oax = Orin)&; Ri&, =S,
Q4314=E B, + &y R, +( ~ 0S5 452,
Q41478 P&, +0ndy R3§2+( hax ~ Onin )5 Re&p —

Proof

Set

{M(m,n):x(m +1,n) —x(m,n) (16).

#o(M,N) = y(m+1,n) — y(m,n)

Define a Lyapunov-Krasovskii functional candidate for Eq.
(17) as

V(m,n) = ZS:VQ (m,n) (17),
g=1
Where
V,(m,n) = x" (m,n)Rx(m,n) +y’ (m,n)P,y(m,n) ~ (18),
V, (m,n) = % X" (m,n)P,x(l,n) + E y" (I,n)P,y(l,n)
|=m-9(m) |=m-6(m)
(19),
Vy(mm= $ xT(l,n)le(l,n)+mf&xT(l,n)sz(l,n)
(20),
+ y T(1,n)Qy(l,n) + _ y" (1L,mQ,y(l,n)
VA(m,n)_
DD WHE L RS WD LRI

= m-1

- mzu;a,n)&ﬂz(l,nn S Y dOmRu)

O=—0pin |=m+6 O=—0rax +Onmin 1=M—0, +6

+ S Y 40nRN)

O=—Bax +Ormin 1=M—Oi, +6

(21),
Vs(m,n):limi T (y(Ln)Tf(y(l.n)) (22).
Define AV (m, n}m;ﬂi;n)(m +1,n) =V (m,n), then
e{AV(m,n)} = {ZAV (m, n)} (23),
Where
e{AV,(k,i)} = g(xT (m+1n)Px(m+1,n)—x"(m,n)Px(m,n)

+y"(M+Ln)Ry(m+1,n) -y’ (m,n)Ry(m,n))
(24),

£(X" (m,n)Px(m, n) = X" (M= 9(m), n)P,x(m — 9(m), n)

+y" (m,n)R,y(m,n) - y" (m—6(m),n)P,y(m—6(m),n))

£{AV,(m,n)} =

(25),
e{AV4(m,n)} =
&(X"(m,n)Qx(m,n) +x" (M= ,N)(Q, —Q)X(M — Gy,,n)
X (M = 8, MQX(M = Gy, 1) + YT (M,N)Q,y(m, )
+Y" (M= 6,0, 1)(Q, —Q3)Y(M = Gyy,,1)
=" (M= Gy, MQ,Y(M = 6,,,,1))

(26),
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1

3

AV, (m,n)} =s{9mm;4 (M MR (m.r)- > 2 A R0
+ (o~ Foi) 14 (M, MR, 25,(m, ”)‘. > uJ(I MR,z4(1,n)
+ Ot} (M, MRy, (M, ) ~ 2 £ ()R (1,1) + (G — O
+ 4 (M MRy (ko) mZ u (l,n)Rmz(l,n)}
(27),
e{AV,(m,n)} = {7 (y(m,n)T,f (y(m,n)) - 2)

£ (y(m—6(m),n)T, f (y(m—6(m),n))}
Considering Ineq. (12), it follows that for diagonal
matrices A, >0, A, >0, there exist

2y"(mn)KA, f (y(m,n))-2f" (y(m,n))A, f (y(m,n))=0 (29),
2y (m—60(m),n)KA, f (y(m—6(m),n)) (30)
—2£7(y(m—0(m),n))A, f (y(m—06(m),n))>0 '

Utilizing Lemma 1, we ascertain
- S HamRm <
I=m—Yin (31)'
_ 1 [x(m,n)—x(m—smm,n)] R, [x(m,n) —x(m—9; ,n)]
Zﬂl e e LR MU
_X(m maxln)] R [X(m mlnfn) X(m max!n)]
_z RIGLLES 0mm[y(m’“) )
7X(m mln’n)] R [y(m n) y(m mm’n)]
—Z,U AR <o [ym0nn)

_X(m 2 axln)] R [y(m m|n|n)_ y(m_gmax‘n)]
Considering the spatial continuity and limitary of GRNs,
we can obtain

X" (m,n+2)S,x(m,n +1) < A,x"(m,n)S,x(m,n) (35)
X" (m,n-1)S,x(m,n-1) < A x" (m,n)S,x(m,n) ’
y' (m,n+1)S,y(m,n+1) < A4y" (m,n)S,y(m,n) (36)
y' (mn-1)8,y(m,n~1) < Ly’ (m,n)S,y(m,n) ’
where
A= max{xz(m,n)/xz(m,n—l)}
A, = max{yz(m,n)/ yz(m,n—l)}'
Then, combing (17)-(36), we can obtain
e{AvV(mn)} <e{cTEL} (37),
Where
¢ =[x (mn),x" (m=g(m),n),x" (m-g,,n),x" (M= 9,,,.N)
ly (m n) y (m a(m) n) y (m mln’n)!y (m_ maxvn)

7 (y(m.n)), f

y'(mn+1),y"(mn-1]
The analysis above implies that Eq. (9), in the absence of
Brownian motion, demonstrates mean square asymptotic
stability, thereby completing the proof.

"((m—6(m))),x" (m,n+1),x" (m,n-1),

Theorem 2 For given scalars 9

m|n !

6,

max !

9

min

and

3., satisfying Ineq. (2), the trivial solution of Eqg. (9) is

matrices

(38),

(39),

(40),

stability if there exist scalars p>0 |,
Al =A,>0 (h=L2) , P =R, >0 RL=R,>0 and
Q. =Q,>0 (h=1---,4) , T1T=T1>Ol, S/ =S,>0 and
S; =S, >0, such that the following LMIs hold:
+ P iR+ (P — Hin) Ry < ol
®, 0 % 0 O, O, DO,
x O, 0 0 0 0 0
P v o, —R 0 0
0,= o = i <0
xxox D, 0 0 0
% * % * (1)55 (I)56 (I)57
* * * * Dy O
| * * * * * D,
(T, O0 1, O TII, I, II,]|
* M, 0 0 0 0 O
s * Il I, O 0 0
0,=| * * * I, O 0 0 |<0
* * % * ]‘[55 Hss ]‘[57
* * * * * Hes He7
| * * * * * * H77
Where
®,=APA+3. (A-1)'R(A-1)
+ (G = G (A= 1) R, (A1)
-P+R+Q,—-R /9, +4S,
®,=APB+3, (A-1)"R,B+(3, — %) (A-1)'R,B,
D5 = ARG + G (A= 1) RE + (s = T (A= D' R,
@y = ARG + Fia (A= 1)"RE + (Fx = G A= 1) R,
®,,=3D"P,D-P,+36,,D'R,D +3(6,., —6.,)D'R,D ,
®,=Q,—Q - 91—7%? o~
®,=-Q,- gm;z o
®,=B"PB+3,BRB+(4, —%,)B'RB-T,+A,,
Dgo =B'PE + 9,1, B'RE + (s — Fin) B' R
®g; = B'PE + 9, BRE + (I — o) B 251,
<I>66 O] P& + 300 R& + (e = hin)O Re& =S,
gy =& RE + Grinll R + (G = Grin)& 251,
Oy =& RE + &l R1§1+( ~3in)& R =S,
1, =2C"PC-P+P, +Q, +
20, (C-1)'R(C-1)-R, /6, ,
+2(Onax = Onn)(C =)' R(C = 1) + pH, + 2,5,
=R/ Opin »
l‘[lS:KAl,
Mg =CTP&, + 6,0 (C — 1) Re&, + (s —6rin)(C ~ 1) RE,
My, =CTRE, + 004y (C = 1) Re&y + (G = G (C = 1) R, ,

I, =—P, + KTA,K + pH, ,
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I, :Q3_Q4_R3/0min _R4/(9max _emin) !

1_134 = R4 / (emax _grnax) '
H44 :_Q4 - R4/(9max _emin) ’
I :_2A1+T1'

Hgs=&; P&, + 6in&s Re&y + (O = Orin)&; Ri&, =S,
;=& P&, + 0083 Ry + O = 0rin) & RS,
1,28 P&, + 0,105 R, + (Grx = Onin )52 RS, =S, -
Proof
Employing Lemma 2, we ascertain
2y" (m,n)C"P,Dx(m—9(m),n) <y (m,n)C"P,Cy(m,n)
+Xx" (m—=9(m),n) D"P,Dx(m - 9(m),n)
20,.,y" (m,n)(C —1)" R,Dx(m— 9(m),n) <
OrinY" (M, N)(C — 1) R, (C — 1)y(m,n)
+Opin X" (M —&(mM),n) D" R,Dx(m — g(m),n)
2(Bpax = Orin)Y" (M, n)(C — 1) R,Dx(m — &(m),n) <

(41),

(42),

(Orax = Ormin)Y" (M, N)(C = 1) R,(C — 1) y(m,n) + (43),
(Brax — Brin)X" (M —3(m),n) D" R,Dx(m — $(m),n)

2yT (m—6(m),n)KA, f ((y(m—6(m),n)) <

y" (m—6(m),n)KTA,Ky(m —g(m),n) (44).

+f ((y(m—6(m),n))A, f ((y(m—6(m),n)),
Observing Ineq. (10), it is evident that
" (Y(m,n), y(M=O(m).m)[ P+ GuioR: +(Snae = Goin )R ]
a(y(m,n),y(m-6(m),n))
< py"(m,n)H,y(m,n)+ py" (m—6(m),n)H,y(m—6(m),n)
(45),
Subsequently, by consolidating Eqgs. (17)-(36) and Eqgs.
(41)-(44), we obtain
e{AV(m,n)} <z {¥]OY, +V]0,¥,}
Where
¥ = [XT (m,n),x" (m—g(m),n),x" (m-9,

(46),

n),x" (m-49.,.,n),

7 (y(m—-0(m),n)),x" (m,n+1),x" (m,n —1)]T
‘P; = [yT (m1 n)! yT (m - g(m)v n), yT (m _eminv n)v yT (m - Hmaxv n),

7 (y(m,n)),y" (mn+1),y" (mn —1)]T
This is complete the proof.

IV. SIMULATION EXAMPLES

In this section, we present two examples to demonstrate
the validity of Theorems 1 and 2. Specifically, Example 1
highlights the passivity properties of the proposed GRNs
model without Brownian motion, while Example 2 exhibits
the passivity characteristics of the same model when
Brownian motion is taken into account.

A. Robust stability of proposed discrete-time RGNs
without molecular Brownian motion

In this section, we consider a GRNs (9) with 5 nodes,
where L=100. The parameters are assumed to be [17]

01 0 0 0 O
0 01 0 0 O
A=C=|0 0 01 0 0],
0 0 0 01 0
0 0 0 0 01
008 0 0 0 0
0 008 0 0 O
D=| 0 0 008 0 0 |,
0 0 0 008 O
0 0 0 0 008
0 -05 05 0 0
05 0 0 05 05
B=| 0 05 0 0 0],
05 05 0 0 O
0 0 0 05 0

065 0 0 0 0

0 065 O 0 0

K=| 0 0 065 O 0

0 0 0 065 O
0 0 0 0 065
where f(X)=x?/@+x?) , A4 =4=2, the time delays
d(m)=4+2sin(mz/2) and O(m)=4+sin(mz/2) , so that
9.=2, 8,=6,6., =3, 6.,=5, coupling coefficient
& =4, =0.2. The simulation results for the trajectories of

mRNA and protein concentrations in Example 1 are
presented in Figs. 1-5.

xl(m,n)
=

100

7 0 0 m

@

7 0 0 m
(b)
Fig. 1 The trajectory of x(m,n) and y,(m,n) , (8 x(m,n) , (b)

Ya(m,n)
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n 0 0 m n 0 0 m
@)

@

4 0 0 m o 0 o m
(b) (b)
Fig. 2 The trajectory of x,(m,n) and y,(m,n) , (8 X,(mn), (o) Fig. 4 The trajectory of X,(m,n) and y,(M,n) , (a) x,(m,n), (b)
AW ya(m,n)

xs(m,n)
=)

-1
100

n 0 0 m n

0 0 m
(@)

0 0 m n

0 0 m
(b) (b)
Fig. 3 The trajectory of X,(m,n) and y,(m,n) , (@ X,(m,n), (b) Fig. 5 The trajectory of X;(m,n) and y;(m,n) , (@) X;(m,n), (b)
ys(m,n) ys(m,n)
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Based on the references [15, Theorem 1], [18, Remark 2],
[19, Theorem 1], and Theorem 1 of this paper, the maximum
delay 0., =9, IS derived when

03,050.7,0910} and = =u>1 .
illustrations are provided for Tab. 1:

n=1,=7€{0.],

The following

Tab 1. Upper bounds on 4, = 3., with different ¢

Case 01 03 05 07 09 1.0
[15, Theorem1] o o © © 0 3.9616
[18,Remark2] o o © © 0 5.4571
[19, Theorem1] o o o o 2.8994 \
Theorem 1 0w o o 0 o0

(1) If ©<0.7, it is deemed achievable to satisfy the LMI
conditions outlined in the aforementioned references and
Theorem 1.

(2) When 4 =0.9, the LMIs conditions specified in [19,
Theorem 1] are feasible, whereas the LMI conditions
presented in [15, Theorem 1], [18, Remark 2], and Theorem 1
of this paper are infinite.

(3) When x=1, the LMIs conditions discussed in [15,
Theorem 1] and [18, Remark 2] are feasible, while the LMI
conditions in [19, Theorem 1] are not. Only the LMI
conditions from Theorem 1 of this paper remain infinite.

Therefore, within the specified range <1, Theorem 1 of
this paper exhibits a reduced level of conservativeness
compared to the other theorems mentioned.

B. Robust stability of proposed discrete-time RGNs with
molecular Brownian motion

Considering the Brownian motion for Eq. (9), H, =H, =1,

by using the Toolbox YALMIP in MATLAB to solve the Egs.

(38)-(40), we can obtain the following feasible solution:
[123.7624 -3.6860 30.4576 -24.3507 1.2589
-3.6860 100.0948 4.3267 26.7041 -30.3114
P =| 30.4576 4.3267 160.8677 31.5952 -0.9129 |,
-24.3507 26.7041 31.5952 128.1865 -6.2252
| 1.2589 -30.3114 -0.9129 -6.2252 153.6969

[213.5355 -11.7444 0.2031 -14.9690 -15.0062
-11.7444 223.8458 -14.5358 0.6587 -6.3989
0.2031 -14.5358 204.9699 2.9470 -0.1778 |,
-14.9690 0.6587 2.9470 216.3033 14.7650
| -15.0062 -6.3989 -0.1778 14.7650 201.8289

12.8719 -0.7229 3.2591 -2.2803 0.0723
-0.7229 10.9296 0.6907 2.6611 -3.3137
3.2591 0.6907 17.4109 3.5905 -0.2864 |,

N
Il

-2.2803
0.0723

48.9448
-8.2973
-1.9276
-8.5427
-10.5340

2.6611
-3.3137

-8.2973
58.4982

-10.3107

-1.6811
-2.2717

3.5905
-0.2864

-1.9276
-10.3107

40.6860
-0.0330

13.7605
-0.9807

-8.5427

-0.9807
15.9501

-10.5340

-1.6811 -2.2717

-0.0330

50.8505

-0.0792 |,
10.4751

-0.0792 10.4751 38.5927

Q1 =

Qz:

[ 2.7042
-0.1259
0.9816
-0.5557
| 0.0805

[1.7331
-0.0651
0.6069
-0.3321
| 0.0501

[ 5.7483
-0.0526
0.1349
-0.1986
| -0.0597

[ 5.7039
0.0074
0.2253
-0.2084
| 0.0196

[16.5609
-0.8663
5.1341
-3.5436
0.3629

[10.9880
-0.5090
3.1548
-2.2462
| 0.1975

[12.3794
0.1271
0.2321

-0.0822

| 0.1614

[33.5527
0.0635
0.0271
0.0465

| 0.0775

[28.2705
-1.0388
-0.6399
-0.6731
-1.6035

53.3749
-13.8581
-3.9649
-13.5427
-17.9107

-0.1259
2.1523
0.3358
0.8485

-0.9746

-0.0651
1.4070
0.2164
0.5381

-0.6028

-0.0526
5.6706
-0.0627
0.1248
-0.1449

0.0074
5.4746
0.0183
0.2110
-0.2036

-0.8663
12.9783
1.2278

4.2080

-5.0871

-0.5090
8.7228
0.7094
2.6094
-3.1257

0.1271
12.0238
0.1539

0.2238
-0.1548

0.0635
33.4630
0.0747
0.0279
0.0044

-1.0388
29.3543
-1.3039
-0.2060
-0.5944

-13.8581
69.5572
-17.2343
-3.1163
-3.7813

0.9816
0.3358
4.2993
1.1904
-0.2049

0.6069
0.2164
2.7551
0.7606
-0.1512

0.1349
-0.0627
5.8235
0.1382
0.0078

0.2253
0.0183
5.9165
0.2123
0.0106

5.1341
1.2278
23.4792
5.4297
-0.2733

3.1548

0.7094
15.1520
3.3182
-0.1488

0.2321
0.1539
12.6806
0.1934
0.0127

0.0271

0.0747

33.6230
0.0122
0.0020

-0.6399
-1.3039
27.5448
-0.1083
-0.2918

-3.9649 -13.5427
-17.2343 -3.1163
-0.4811

39.5860
-0.4811
-0.4444
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-0.5557
0.8485
1.1904
3.0357
-0.4269

-0.3321
0.5381
0.7606
1.9489
-0.2752

-0.1986
0.1248
0.1382
5.7519
0.0637

-0.2084
0.2110
0.2123
5.6941

-0.0178

-3.5436
4.2080
5.4297

17.7222

-1.6074

-2.2462
2.6094
3.3182
11.6579
-0.9199

-0.0822
0.2238
0.1934

12.3398

-0.1533

0.0465
0.0279
0.0122
33.5365
-0.0748

-0.6731
-0.2060
-0.1083
28.7993
1.3151

56.8761
17.5052

0.0805 |
-0.9746
-0.2049 |,
-0.4269

3.6748 |

0.0501 ]
-0.6028
01512 |,
-0.2752

2.3320 |

-0.0597
-0.1449
0.0078 |,
0.0637
5.8304 |

0.0196
-0.2036
0.0106 |,
-0.0178
5.9395 |

0.3629
-5.0871
-0.2733 |,
-1.6074
21.6668

0.1975 |
-3.1257
-0.1488 |,
-0.9199
14.1244

0.1614 |
-0.1548
0.0127 |,
-0.1533
12.7364

0.0775]
0.0044
0.0020 |,
-0.0748
33.6417 |

-1.6035]
-0.5944
0.2918 |,

1.3151
265794 |

-17.9107
-3.7813
-0.4444 |,
17.5052
35.3414




TAENG International Journal of Applied Mathematics

-3.1202]
-1.1587
-0.6299 |,
2.4963
22.5041 |

0.0575 ]
-3.7849
0.2704 |,
-0.1615
22,5104

-0.9016 |
-0.6595

25.9074
-1.9785
T, =|-1.3087
-1.1906
-3.1202

[18.7595
-0.3106
3.8109
-3.6727
| 0.0575

[25.4054
-0.7231
0.3288
-1.2286
| -0.9016

-1.9785
27.9776
-2.4724
-0.3971
-1.1587

-0.3106
15.1752
0.0214
3.4803

-3.7849

-0.7231
25.7523

-1.3087
-2.4724
24.5675
-0.2367
-0.6299

3.8109
0.0214
22.3917
3.5736
0.2704

0.3288

-1.1906
-0.3971
-0.2367
26.9743
2.4963

-3.6727
3.4803
3.5736

18.7794

-0.1615

-1.2286
-0.8859 0.3244
-0.8859 25.1405 0.4728 0.0106 |,
0.3244 0.4728 25.5519 0.8999
-0.6595 0.0106 0.8999 25.0024 |

£=2.0809.

From Fig. 6, it can be observed that when the values of &
and &, fall within the range of region I, the system is
robustly stable. Nevertheless, should the values of & and &,

reside within the confines of region I, the proposed GRN
model ceases to exhibit stability.

1.0
0.9
0.8
0.7
0.6
05
0.4
03}
02}

0.1r

0.1 02 03

04 05

§
Fig. 6 Determining the stability of Eq. (9) under different coupling
coefficients.

06 0.7 08 09 1.0

V. CONCLUSION

In this seminal investigation, we introduce an innovative
methodology aimed at integrating reaction-diffusion
mechanisms into discrete-time GRNs. Our principal
objective revolves around scrutinizing the robust stability of
these networks in the presence of time-varying delays and
Dirichlet boundary conditions, leveraging advanced
Lyapunov-Krasovskii functions. Furthermore, we undertake
a comprehensive analysis of asymptotic stability concerning
GRNs incorporating reaction-diffusion terms alongside
Brownian motion. This unprecedented inquiry marks the
initial attempt to incorporate reaction-diffusion phenomena
into discrete-time GRNs. To substantiate the efficacy and
validity of our novel approach, we furnish detailed numerical
examples and simulation outcomes. These findings serve to
corroborate the accuracy and efficacy of our methodology,
thus emphasizing its potential to significantly impact the
realm of gene regulatory network modeling and analysis.
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