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A Descent Conjugate Gradient Method for
Optimization Problems
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Abstract—OQver the years, a considerable number of conju-
gate gradient methods have been proposed based on modifica-
tions on the well-known classical conjugate gradient methods.
These methods were shown to have satisfied descent condition
taking into consideration the strong Wolfe line search and
other line search schemes. Convergence of objective functions
were also guarantied. In this study, a decent conjugate gradi-
ent method for solving unconstrained non-linear optimization
problems is developed. Algorithm of the proposed method
was well developed by constructing its update parameter.
Descent properties of the method based on some assumptions
on the objective function were established. The convergence
analysis of the method showed that it converges globally taking
into consideration the strong Wolfe conditions . Dolan and
More performance profile was used to compare the numerical
strength of this method with other methods, showing clear
evidence of better performance of the new method in the profiles
tested.

Index Terms—global convergence; unconstrained optimiza-
tion; strong Wolfe conditions; descent direction; step length.

I. INTRODUCTION

q N unconstrained optimization problem of the form
i 1
min f(z), (1

with f : R® — R, where f is continuously differentiable is
central to problems involving decision making arising from
engineering, social sciences, sciences etc. In fact most of
the optimization problems found in theoretical fields are
reducible to problems of the form (1). In this paper we
aim to construct an efficient conjugate gradient method (CG
method) to solve large-scale problem (1).
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CG-methods have been shown to be effective in solving (1)
using the following iterative formula:

Tl = Tk + apdy. 2

The step length a; > 0 is determined from line search
schemes known as strong Wolfe conditions:

fx) — flog + ardy) > —Sargl di 3)

and

gz + ardy)Tdy > ogl dy 4

for0<d<o<l1
with the direction dj, given by

o

Br € R is a scalar referred to as the CG coefficient or update
parameter where gy, represents the gradient of f(xy).
Hestenes and Stiefel [12] in 1952 presented an algorithm to
solve algebraic equations. This algorithm later became the
first CG method that solved the unconstrained optimization
problem (1). CG methods are normally formed from different
constructions of ). Other CG-methods developed in this line
which formed the first generation of CG-methods referred to
as classical CG-methods include:

k=0,
k>1.

—9k

— gk + Brdi—1 )

HS _ ggyk—l
k df yr—1’
FR _ gkl
k Mgk—1[12"

PRP _ Givk-1

k = gr—1l??
(6)
T
LS _ —9kYk—1
k df_ gk—1’
DY _ _llgel?
k df,lyk,_ﬁ
cD _ _—llgxll?
k dr_ g1’
Where ||.|| represents the euclidean norm and
Yk—1 = Gk — Gk—1- (N

See [8], [11], [16], [20], [21] or [23] for more details and
related work on the classical CG-methods.
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A. Related Works

Among the classical methods, of interest to our work are
LS and DY methods.
In 1991, Liu and Storey [16] determined () by using the
conjugacy condition

d}_,Sdy, =0, (®)

where S}, is the Hessian matrix of f. In order to circumvent
the computation of second derivative and matrices storage,
(8) was replaced by

di (9x — gr-1) = 0. ©)
Meanwhile, with §;, being suggested as
9% (gx — gr—1)
dg—l(gk — gk—1)

and using the fact that dy_igr = 0, they proposed the
following update parameter

Br = (10)

=g gk — gr—1)
i v
k—19k—1

(1)

The descent and convergence properties of the method were
presented.

Moreover, Dai and Yuan [7] in 1999 took into consideration
deficiency found in the global convergence properties of well
known CG methods to propose a method with strong global
convergence properties. Their motivation propelled them to
investigate CG method that generates descent direction when
the standard Wolfe conditions (3) and (4) are satisfied. Let
di be a descent direction with d£71 gr—1 < 0. An update
parameter [j which defines a descent direction dj was
determined with the requirement that

~lgul|* + Brgi di—1 < 0. (12)
Br > 0 was assumed. They defined a parameter
|lgk|I?
T = . (13)
Bk
Hence, (12) was said to be equivalent to
T > g di—1. (14)

By letting 7, = di ,yk—1, they proposed the following
formula. 5
[lg |

dgflykfl '

B = 5)
Their method is globally convergent when conditions (3)
and (4) are satisfied.

As a result of the efficiency, ease of implementation
and low memory status of CG-methods, a remarkable
number of CG methods and hybrid CG methods were
introduced and are still being introduced. A greater number
of the proposed methods came as modifications of the
classical CG-methods. Some of these methods include:
Abubakar et al [2] proposed LS-type method under
standard Wolfe and Armijo-like schemes; Dai and Liao [6]
considered an inexact line search conjugacy scheme that
reduces to a classical exact line search conjugacy scheme to
solve (1). Dai and Yuan [7] worked on a CG-method based
on Wolfe scheme that converges globally; Dai and Yuan

[8] studied an hybrid version of CG-method for (1); Hu
and Storey [13] worked on an algorithm that uses conjugate
gradient coefficient on which certain conditions were placed;
Jiang et al [14] presented a three-term conjugate algorithm
that is based on LS CG method; Jie and Zhong [15] worked
on three-term CG method for problem (1); Liu and Storey
[16] studied inexact line search on conjugacy to solve (1);
Lu et al [17] presented a modified Dai-Liao conjugacy
condition based on a new quasi-Newton equation to solve
(1); Malik et al [19] proposed a three-term CG method with
a unique search direction that satisfied descent condition
and Zheng [24] introduced a secant equation into Dai-Liao
conjugacy condition.

B. Motivation

A considerable number of the proposed methods that solve
(1) efficiently come as linear combinations or hybrids of the
classical methods. For instance, [1] combined PRP and LS
methods to solve (1). [5] developed a new Dai-Liao-type
method that incorporates DY method for (1). [9] proposed
an hybrid CG method that combined CD and DY methods.
[18] applied the second inequality condition of the strong
Wolfe conditions to modify the conjugate parameters of PRP
and HS methods for their two methods to solve (1). In [23],
hybrid method which is a linear combination of DY and HS
methods was proposed. Ayinde, et al [4] combined AYO
with DHS and DLS (see [25]) methods to give two hybrid
methods. Moreover, the convergence property and practical
performance of DY [7] and LS [16] respectively are of
interest. In practice, LS performs better than DY, on the other
hand, convergence property of DY surpasses that of LS and
other well known CG methods. Our inspiration comes from
[1] and [23] and also from the properties of LS and DY
methods which when combine can produce an efficient CG
method.

The construction of the proposed method is initiated from (5)
alongside other equations to arrive at a formula which yields
different well known classical methods when the constant
terms are altered. Discussion on the construction of the
proposed CG method is given under problem formulation
in section 2. Section 3 discusses the proposed algorithm, the
descent and convergence properties of the method. Section
4 covers the implementation of the proposed algorithm
for nonlinear problems, parameter specification, numerical
results and their discussion. Section 5 gives the conclusion.

II. PROBLEM FORMULATION

This section discusses the construction of the conjugate
coefficient for the proposed CG method. The starting point
is the direction dj given in (5).

From (5), we have

dr = —gr + Brdi_1. (16)
Multiply (16) by g to give
9 di = —||gr|1” + Brgf di—1. (17)
From (17),
T 2
9 Dk + |9k
Br=""——"" (18)
i g,fdkfl
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Multiply (7) by g to give

i k-1 = lgrll* = grgr—1- (19)
Thus,
gkl l” = g8 yr—1 + grgr—1- (20)
By substituting (20) in (18),
B = gidi + gf Us L+ gkgr—1 21
k—1
Similarly, multiply (7) by d;_1 to give
df_yn—1 = gi de—1 — gj_1dy_1. (22)
From (22), we have
ghdi—1 = di_yr—1+ gi_1dr-1. (23)
Substitute (23) in (21) to give
B = Gk + Gl ye—1 + grgr— L 24)

dk 1Yk— 1+gk 1d -1

At this point, we shall introduce constants a, b, ¢, e, f € R
such that

Td,+b
B = agkdk +bgi yr—1 + forgr— L 25)
P k-1t egl_ydia
From (6),
T
_ ]gs — M (26)
gk 1dk 1
and from ([7], p.180),
d¥ 2
Foe _ llgel® o

df 1gk—1 A yp—

Interestingly, we note thatif a =0,e =0,b=1,c=1 and
f=0in(25), g = g5,

ifa=1,e=1,b=0,c=0and f=0in (25), B = gBPY
and
ifa=0e=1>b=—1,¢c=0and f = 0 in (25),

B =
Therefore, this paper proposes a descent CG-method as
follows: Let a =1, b=1,c=0,e=1 and f = 0 in (25)
to give

Aoaar _ Yidi g yk—1
Bi = — - . (28)
p—19k—1  Gp_1dk—1
By using (27), the proposed CG coefficient becomes
BAOAAH _ |lgk]I? 9k Yr—1 (29
dgflyk—l glzjfldk—l

The choice of values of the constants a, b, ¢, e and f is
to achieve a linear combination of DY and LS CG methods.
Equations (2) and (5) with {1044 will be called AOAAH-
CG method.

III. PROPOSED ALGORITHM AND PROPERTIES

In this section, the algorithm, descent properties and
convergence results for the proposed method are presented.
3.1 Algorithm (new ;)

Step 1:Let xg € R™ be the initial point with € > 0, set
k=0 and dyp = —go. If ||gx|| < €, then stop;

Step 2: Determine «y > 0 using conditions (3)-(4);

Step 3: Compute 310445 and find {z}}, {gx} and {d}};
Step 4: Set £ = k + 1 and then proceed to step 2.

3.2 Descent Properties

The descent properties of the new method are addressed in
the following theorem.

Theorem 3.2.1. Let dy, and gy be generated by the CG-
method (29) algorithm as presented in subsection 3.1 .
Then, d;, satisfies the following condition.

gic di < —cllgxll” (30)
or
df g <0, 31)
for each k > 0.
Proof: It is obvious by induction that
di 90 = ~llgol? (32)

is true for the case when k& = 0.
Let (30) be true when k£ > 1. Multiplying (16) by g to give

df g = —llgrl* + B4 di_ g (33)
Hence,
2 T
kg g% (d{_lyk_l d{_lgk_l) 10k
From (26) and (27), we have
dige = —lgrll* + (BEY = BED)di_1gr.  (35)
Case 1. If ﬁ,fs > (. Since B;?Y > 0, (See [7]) therefore,
dk gr < —=llgrll® + B2 di_ 1 gk (36)
y [7], ¢ = . Hence,
dr 2 37
Foe < ~(55)lll ™ 67
Therefore, sufficient descent property is satisfied.
Case 2. If L5 < 0. Then,
di gk = —llgel* + (B = B %) di_ige - (38)
T
—_||gk||2+( Hng 9 Yk—1 )d LGk (39)

dg_lyk—l dg_lgk—l

BE° < 0 implies gf yr—1 < 0, g yk—1 = ||gxl* — grgr—1 <
0 and grgr—1 > 0. Since gg,ldk—l < 0 (see [5]) then,

g < —lgpl? + (M kgt )
dp_1yk—1  dj_19k-1
g |? 9L gk-1 | 1
_ de oy <0. (41
(d;‘f,lykq df,lgkq)gk*l h “h

Therefore, sufficient descent property is satisfied.
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3.3 Convergence Results
The following assumptions on the objective function is
required for the convergence results.
Assumptions 3.3.1
(1) Set

U={z|f(z) < f(y)}

bounded with y € R™ .

(2) Given a neighborhood V' of U, f is continuous and
differentiable in V' with its gradient g(x) and Lipschitz
constant L satisfying

lg(z) =9Il < Lllx =yl
for any z,y € V.

(42)

(43)

In addition, by Assumption 3.3.1 there are two constants D
and ¢ that satisfy

lz —yl| <D (44)
for any z,y € V
and

lg(2)l] < ¢ (45)
for any x € V.

The following results are on convergence for the new method.
Lemma 3.3.2. Let the conditions in the assumption 3.3.1 be
satisfied and for any equation of the form (5) with descent
direction dj, where «y, satisfies the Wolfe conditions in (3)
and (4). Then,

(46)

Proof: The comprehensive proof of Lemma 3.3.2 can be
found in [7].

Theorem 3.3.3. Suppose the conditions in the assumption
3.3.1 are satisfied and that xj is determined by the CG-
method (29) algorithm in section 2. Then,

lim inf ||gx|| = 0. (47)
k—o0

Proof: Case 1. When ﬁ,fs > 0. We prove the result by
contradiction.

Let
lim inf ||gg]| # O. (48)
k—o00
Given that
llgkll >0, (49)
there exits a constant n > 0, where
llgll >n  VEk. (50)
From (16),
di + gk = Brdr_1. (1)

Square of both sides of (51) is taken with 3, = B{1044H (o
have

1l 1* = =llgrll* = 2di gi + (B 944 [ldi—1 1. (52)
(52) is divided by (d} g )? to give
leell? _  lgel® _ 2dige | (B2 [ldi ]l

(di gr)? (dfge)?  (dfgr)? (di gr)?

(53)

Since B{OAAH < DY when BLS > 0 for k > 1.
Therefore, result follows from [7].

Case 2. When BF < 0.

Since d;‘g_lgk,l < 0 (see [5]).

AOAAH _ |lgx > 97 Yr—1 . (54)
d%—l(gk — gk-1) dg_lgk_l
From (27)
AOAAH _ dj; g IkYk—1 (55)
dgflgkfl d£71gk71

Since ngyk_l < 0 it implies thatfg,{yk_l > 0 and by (30),
we have

cl|grl? | — gk Y1
BAOAAH < (56)
g | — d{flgk_ﬂ | - dgflgk—ﬂ
2 _ _
< cllgrl* + ] Tgkmgk gk—1|. 57)
| - dk719k—1‘
By (43) and (44),
2
BAOAAH < c||gr|| T"' |lgx||LD (58)
| — dkflgk—1|
_ cllglP+ ljs LD 50
l|dk—1|[|gx—1]l
gpoAAH < |lgxl|(cllgrll + LD)_ 60)
|ldr—1|l|lgr—1l|
By (45)and [22, (Theorem 5.8)] where ||gk—1|] > c1, we
have
aoaam _ |lgrll(co + LD)
By <= (61)
cl|dg—1]|
From (16),
lldkll = llgull + 1829447 (|| dr—1]l. (62)
co+ LD
il < llgwl + LBMPTEDY -y (63)
c1||di—1]|
cp+ LD
el < 4 g0 o

The result of using (30), (64) together with Zoutendijk’s
condition in [26] is

< 400 (65)

Z (g7 di.)?
||d [

E>1

Inequality (65) obviously implies (47).

IV. PROPOSED ALGORITHM IMPLEMENTATION FOR
NONLINEAR PROBLEMS

This section presents the numerical experiment and results
done to evaluate the performance of our proposed algorithm
with BAOAAH — 3 in comparison with other notable
algorithms available in the literature.

A. Parameter Specification

We set § = 0.0001, 0 = 0.9 for the algorithm code for all
the formulas. ¢ = 1 was selected for NEW+ CG method [24].
All the algorithms were implemented on MATLAB R2015a,
HP 650 windows 10 OS and RAM 3GB. The algorithm will
terminate if || g || < 1076.
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B. Numerical Results and Discussion Table II. List of test problems and initial points contd.
In this subsection, tables for the numerical experiment and - — -
. . . s/n | Abrev. | Dim. initial points
graphs showing graphical representations of the performance
oo . L 36 | RY2 | 10000 (1,1,...,1)
indices of the proposed method against the existing methods 37 | RY2 | 50000 (1.1 1)
and analysis of the results of the experiment are given. LR
On the tables, Abrev. represents abbreviations of the 38 | EY2 ) 100000 (1,1, 1)
) LOTEU. TeP Cviati 39 | E3 2 | (0.1,0.1,...,0.1)
test problems while Dim. represents dimensions of the Ty
40 | E3 100 | (0.1,0.1,...,0.1)
problems. Table I shows the set of test problems drawn from Al 3 500 (0.1,0.1, .. 0.1)
[3] with their initial points considered for the experiment. DO
Computation was done by using conditions (3)-(4) for 42 £3 1000 | (0.1,0.1,...,0.1)
p Yy g
all the formulas for comparison. We adopt the following 43 £2 2 (L,1,...1)
e . . 44 E2 500 (1,1,..,1)
abbreviations in the tables: Extended Penalty-EP, Quadratic- A5 AR 9 (11,.1)
QU, Extended MCCORMCK-EK, Diagonal 4-DI, Extended 46 AR 100 ( 1’ 1’ o 1)
Himmelblau-HE, Extended Baele-EB, Raydan 1-RY1, A7 DO 9 ( 3’ 3’ " 3)
Raydan 2-RY2, Extended Three Exponential Terms-E3, 48 DO 100 ( 3’ 3’ Y 3)
Extended Tridiagonal2-E2, ARWHEAD-AR, DQDRTIC- 49 DO 500 ( 3’ 3’ o 3)
DQ, MDF EXPLIN 1-ME, RMODF COSINE-CO, RMODF 50 DO 1000 ( 3’ 3’ o 3)
SINE-SI, Extended Rosenbrock ER, Extended Booth- EX, 51 DO 10000 ( 3’ 3’ - ’3)
Chebyquad-CB, Quadratic Diagonal Perturbed-QP and 52 | ME 9 ( 1’ 1’ o 1)
Generalized PSCI-PS. B
53 | MFE 100 (1,1,..,1)
. . . 54 | MFE 500 (1,1,..,1)
Table I. List of test problems and initial points. 55 ME 1000 (11, 1)
s/n | Abrev. | Dim. initial points 56 | ME | 10000 (L,1,..,1)
1 EP 2 (1,2,...,n) 57 | ME | 50000 (1,1,...,1)
2 QU 2 (1—1/1,...,1—1/n 58 | ME | 100000 (1,1,...,1)
3 | ER 2 (1,1,..,1) 59 | CO 2 (1,1,...,1)
4 | ER 100 (1,1,...,1) 60 | CO 100 (1,1,...,1)
5 | ER 500 (1,1,..,1) 61 | CO 500 (1,1,...,1)
6 | ER | 1000 (1,1,...,1) 62 | CO | 1000 (1,1,...,1)
7 D4 2 (1,1,...,1) 63 coO 10000 (1,1,...,1)
8 D4 100 (1,1,..,1) 64 | SI 2 (1,1,...,1)
9 D4 500 (1,1,...,1) 65 | SI 100 (1,1,...,1)
10 | DI | 1000 (1,1,...,1) 66 | SI 500 (1,1,...,1)
11 | DI | 10000 (1,1,...,1) 67 | ST 1000 (1,1,...,1)
12 | DI | 50000 (1,1,...,1) 68 | ST | 10000 (1,1,...,1)
13 | DI | 100000 (1,1,..,1) 69 | SI | 50000 (1,1,...,1)
14 | HE 2 (1,1,...,1) 70 | ST | 100000 (1,1,...,1)
15 | HE 100 (1,1,...,1) 1| EK 2 (1,1,...,1)
16 | HE 500 (1,1,...,1) 72 | EK 100 (1,1,..,1)
17 | HE | 1000 (1,1,...,1) 3| EK 500 (1,1,...,1)
18 | HE | 10000 (1,1,..,1) 4 | EK | 1000 (1,1,...,1)
19 | HE | 50000 (1,1,..,1) 7 | EK | 10000 (1,1,...,1)
20 | HE | 100000 (1,1,...,1) % | EX 2 (1,3,....1,3)
21 | EB 2 (1,0.8,...,1,0.8) 7| EX 100 (1,3,...1,3)
22 | EB 500 (1,0.8,...,1,0.8) 8| EX 500 (1,3,...1,3)
23 | EB | 1000 (1,0.8,...,1,0.8) 79 | EX | 1000 | (1,3,..1,3)
24 | EB | 10000 | (1,08,...,1,0.8) 80 | EX | 10000 | (1,3,..,1,3)
25 | RY1 ) (1,1,...,1) 81 EX 1000 (1,3,...,1,3)
26 | RY1 100 (1,1,...,1) 82 EX 10000 (1,3,...,1,3)
27 | RY1 | 500 (1,1,...,1) 83 | CB 2 (1,1,...,1)
28 | RY1 | 1000 (1,1,...,1) 84 | CB 100 (1,1,...,1)
29 | RY1 | 10000 (1,1,..,1) 8 | OB 500 (1,1,...,1)
30 | RY1 | 50000 (1,1,..,1) 8 | CB | 1000 (1,1,...,1)
31 | RY1 | 100000 (1,1,...,1) 87 | CB | 10000 (1,1,...,1)
32 | RY?2 2 (1,1,..,1) 88 QP 2 (0.5,0.5,...,0.5)
33 | RY?2 100 (1,1,...,1) 89 PS 2 (3,0.1,...,3,0.1)
34 | RY?2 500 (1,1,...,1)
35 | RY2 | 1000 (1,1,..,1)
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Table III. Numerical result CPU and values of function f.

s/n | Prob. | Dim. AOAAH DY LS NEW +
CPU/FN CPU/FN CPUJFN CPU/FN

1| EP 2 0.245/2.17 F/F F/F F/F

2 QU 2 0.16/ — 1.06 0.2/ —1.06 0.17/9.27F — 01 0.144/ — 1.06

3 | ER 2 | 4.792/1.49E — 15 | 0.539/2.82E — 18 | 1.717/4.37E — 14 F/F

4 ER 100 3.516/1.98E — 13 | 0.565/1.41E — 16 | 1.997/1.24F — 1 F/F

5 ER 500 3.66/9.23E — 17 F/F 29.079/3.39EF — 16 F/F

6 ER 1000 3.825/1.14F — 16 F/F 19.615/3.95FE — 16 F/F

7 DI 2 0.163/5.75E — 16 | 0.171/2.28E — 14 | 0.27/6.53E — 17 0.169/7.25E — 18
8 DI 100 0.203/2.85E — 16 | 0.209/1.45E — 14 | 0.348/7.18E — 18 | 0.709/7.86F — 18
9 DI 500 0.194/1.42F — 16 | 0.221/8.24E — 15| 0.371/3.59E — 17 F/F

10 DI 1000 0.18/2.84F — 16 | 0.223/1.65F — 14 | 0.377/7.18E — 17 | 0.247/1.77FE — 16
11 DI 10000 0.47/2.83E — 16 | 0.413/6.25F — 15| 1.22/3.36FE — 17 F/F

12 DI 50000 | 1.432/1.41FE —16 | 1.157/1.06F — 14 | 4.736/7.89EF — 18 | 19.286/2.00E — 09
13 DI | 100000 | 3.132/2.81F — 16 | 2.134/2.10F — 14 | 10.18/1.58F — 17 16.938/F

14 HE 2 0.302/1.43E — 15 | 0.942/1.24F — 14 | 0.59/2.94F — 15 0.34/1.23E — 15
15 | HE 100 0.412/3.93E — 15 | 1.21/1.64F — 14 | 0.685/8.61E — 16 | 0.296/3.92F — 15
16 | HE 500 0.417/4.39E — 16 | 1.137/8.08E — 15 | 0.768/1.15F — 15 | 0.367/2.04FE — 15
17 | HE 1000 0.446/9.62E — 16 | 1.228/2.94F — 15 | 0.992/7.71F — 15 | 0.395/4.08E — 15
18 | HE | 10000 | 1.038/5.04FE — 15 | 2.965/7.50FE — 15 | 3.299/4.47F — 15 | 1.197/3.33E — 15
19 HE | 50000 65.4/1.88F — 16 | 219.6/1.14F — 14 | 218.3/9.00F — 16 | 526.9/1.03E — 14
20 HE | 100000 | 7.456/3.45E — 15 | 22.24/1.26E — 14 | 14.31/4.47E — 15 | 15.64/1.09E — 15
21 | EB 2 | 4.114/9.31E — 13 5F/F 2.393/4.52F — 01 F/F

22 EB 500 2.756/F F/F F/F 6.146/F

23 | EB | 1000 | 7.874/8.65E —13 F/F F/F F/F

24 | EB | 10000 |38.827/1.19F — 12 F/F F/F F/F

9% | RY1 | 2 0.073/F 0.053/2.71E + 13 F/F 0.078/F

26 | RY1 100 0.017,/143000 0.015,/143000 0.015/143000 0.013/143000
27 | RY1 500 0.008/8.73E 4+ 07 | 0.008/8.73E + 07 | 0.013/8.73E + 07 | 0.012/8.73E + 07
28 | RY1 | 1000 | 0.008/1.39E+09 | 0.009/1.39E +09 | 0.011/1.39E +09 | 0.008/1.39E + 09
29 | RY1 | 10000 | 0.014/1.39FE + 13 | 0.012/1.39F + 13 | 0.015/1.39F + 13 | 0.012/1.39F + 13
30 | RY1 | 50000 | 0.031/8.68E + 15 | 0.057/8.68FE + 15 | 0.071/8.68FE + 15 | 0.064/8.68E + 15
31 | RY1 | 100000 | 0.039/1.39FE + 17 | 0.035/1.39E 4+ 17 | 0.053/1.39E + 17 | 0.047/1.39E + 17
32 | RY2 2 0.102/2.00 0.177/2.00 0.087,/2.00 0.015/2.00

33 | RY2 100 0.121/1.00E' + 02 | 0.218/1.00E 4+ 02 | 0.108/1.00E 4 02 | 0.086/1.00E + 02
34 | RY2 | 500 0.107/5.00E + 02 | 0.215/5.00E 4+ 02 | 0.079/5.00E 4 02 | 0.052/5.00E + 02
35 | RY2 1000 0.11/1.00E + 03 | 0.222/1.00F + 03 | 0.099/1.00F + 03 | 0.048/1.00E + 03
36 | RY2 | 10000 | 0.193/1.00E + 04 | 0.37/1.00E + 04 | 0.151/1.00F +04 | 0.078/1.00F + 04
37 | RY2 | 50000 | 0.342/5.00E + 04 | 0.631/5.00E + 04 | 0.238/5.00E 4+ 04 | 0.508/5.00E + 04
38 | RY2 | 100000 | 0.572/1.00E +05 | 1.01/1.00E' + 05 | 0.377/1.00E +05 | 2.611/1.00E + 05
39 | E3 2 0.284/2.56E 4+ 00 | 0.467/2.56E + 00 | 0.32/2.56E£ 400 | 0.296/2.56E + 00
40 E3 100 0.367/128 0.541/1.28F + 02 0.454/128 0.641/128

41 E3 500 0.394/6.40FE + 02 | 0.547/6.40FE + 02 | 0.48/6.40F + 02 0.701/6.40F + 02
42 | E3 1000 | 0.909/1.28E + 03 | 0.884/1.28E + 03 | 0.486/1.28E + 03 6.4/1.28FE + 03
43 E2 2 1.016/3.90E — 01 | 0.28/3.90E — 01 F/F F/F

44 | E2 | 500 | 4.231/1.94E + 02 F/F F/F F/F

45 AR 2 0.201/2.28E — 14 | 0.251/2.12E — 14 | 0.397/4.75E — 14 | 0.213/1.11F — 14
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Table IV. Numerical result of CPU and values of function f contd.

s/n | Prob. | Dim. AOAAH DY LS NEW +
CPU/FN CPU/FN CPU/FN CPU/FN

46 | AR 100 | 14.454/9.70E + 03 F/F F/F F/F

47 | DQ 2 0.211/0.00E 4+ 00 | 0.366/0.00E + 00 2.224/F 0.504/0.00E + 00

48 D@ 100 4.14/4.12F — 14 1.25/2.74F — 14 1.326/4.69FE — 15 6.088/2.21F — 15

49 D@ 500 2.769/1.51E — 13 0.546/1.12F — 15 1.206/2.13E — 14 0.753/2.37E — 14

50 | D@ 1000 3.37/1.40F — 14 1.403/7.39F — 14 0.915/2.18FE — 15 1.001/3.01F — 14

ol D@ 10000 | 7.169/3.03F — 14 3.623/2.24F — 14 4.034/1.82FE — 14 1.76/5.00F — 14

52 | ME 2 0.179/2.00E 4+ 00 | 0.103/2.00E + 00 0.581/2.00E' + 00 | 0.412/2.00E + 00

53 | ME 100 0.327/100 0.125/100 0.824/100 0.514/100F

54 | ME 500 0.322/5.00F + 02 0.116/5.00E + 02 0.708/5.00F + 02 0.488/5.00F + 02

55 | ME | 1000 | 0.344/1.00E +03 | 0.116/1.00F + 03 0.721/1.00E 4+ 03 | 0.534/1.00E + 03

56 | ME | 10000 | 0.52/1.00E + 04 0.166/1.00E + 04 1.168/1.00E + 04 | 0.703/1.00F + 04

57 | ME | 50000 | 1.17/5.00E + 04 0.366/5.00E + 04 2.085/5.00E + 04 | 1.343/5.00E + 04

58 | ME | 100000 | 1.875/1.00F + 05 0.602/1.00F + 05 3.233/1.00F + 05 2.34/1.00E + 05

59 coO 2 0.091/ — 1.00 0.089/ — 1.00 0.19/—-1.0 0.132/ —1.00

60 | CO 100 0.116/ — 50.0 0.288/ — 50.0 0.32/ —50.0 0.207/F

61 | CO 500 3.52/ —2.50E+2 | 0.528/ —2.50E +2 | 0.29/ — 2.50F + 02 F/F

62 | CO 1000 | 3.75/—5.00E+2 | 0.546/ —5.00E+2 | 0.34/ — 5.00E + 02 F/F

63 | CO | 10000 | 10.55/—5.00E+3 | 0.446/ —5.00E+3 | 2.65/ — 5.00E + 03 F/F

64 ST 2 0.13/ —1.00 0.145/ — 1.00 0.5/ —1.00 0.33/ —1.00

65 ST 100 0.185/ — 50.0 0.201/ — 50.0 0.659/ — 50.0 0.348/F

66 | SI 500 0.15/ —2.50E+2 | 0.173/ —2.50E+2 | 0.60/ —2.50FE +02 | 0.4/ — 2.50E + 2

67 | SI 1000 | 0.15/ —5.00E+2 | 0.175/ —5.00E +2 | 0.63/ —5.00E 4+ 02 | 0.42/ —5.00E + 2

68 | SI | 10000 | 0.23/—5.00E+3 | 0.258/ —5.00E+3 | 1.02/—5.00E+ 03 | 0.62/ —5.00F + 3

69 ST 50000 | 0.6/ —2.50E' + 04 | 0.579/ — 2.50F + 04 | 1.958/ — 2.50F + 04 1347/F

70 SI | 100000 | 0.874/ — 5.00E +4 | 1.002/ — 5.00FE + 04 | 3.182/ — 5.00F + 04 15.502/F

71 | EK 2 0.38/ —4.96FE —3 | 0.327/ —4.96E — 3 F/F F/F

72 | EK 100 0.279/ —95.7 0.253/ — 95.7 0.446/ — 95.7 0.835/ — 97

73 | EK | 500 0.44/ —1.24 0.385/ — 1.24 F/F F/F

74 | EK | 1000 0.46/ — 2.48 0.4/ — 2.48 F/F F/F

75 | EK | 10000 | 0.89/—248E +1 | 0.689/ —2.48FE +1 F/F F/F

76 | EX 2 0.158/1.51F — 13 0.199/2.06 E — 14 0.278/6.90F — 15 0.128/4.44F — 15

77 | EX 100 0.311/2.06E — 15 0.243/5.52F — 14 0.335/1.84FE — 13 0.216/9.22F — 15

78 | EX 500 0.244/8.58E — 15 0.247/2.13E — 14 0.342/1.10FE — 13 0.143/1.74FE — 14

79 | EX 1000 0.255/1.57TF — 14 0.256/4.26F — 14 0.384/8.06FE — 15 0.164/5.42F — 16

80 | EX | 10000 | 0.471/2.58E — 14 0.485/6.55F — 07 1.003/4.08E — 14 | 0.284/5.42F — 15

81 EX 50000 1.909/5.16E — 14 1.498/1.67F — 14 3.64/2.04F — 13 1.529/5.63F — 14

82 | EX | 100000 | 5.228/1.27FE — 13 2.868/3.35E — 14 7.654/2.09E — 14 | 3.386/6.28F — 14

83 | CB 2 0.011/1.33 0.015/1.33 0.016/1.33 0.034/1.33

84 | C¢B | 100 0.227/1.33 0.0210/1.33 F/F 0.214/F

8 | ¢B | 500 0.209/1.33 0.11/1.33 F/F 1.007/F

8 | CB | 1000 0.121/1.33 0.17/1.33 F/F 1.645/F

87 | CB | 10000 0.1/1.33 0.2/1.33 F/F 20.576/F

88 | QP 2 0.206/3.63E — 02 | 0.036/3.63FE — 02 F/F 0.326/F

89 | PS 2 0.18/7.73E — 01 0.211/7.73E - 01 0.365/7.73E — 01 0.22/7.73E — 01
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Table V. Numerical result of number of iterations and gradient norm.

s/n | Prob. | Dim. AOAAH DY LS NEW+
ITR/GN ITR/GN ITR/GN ITR/GN

1 EP 2 23/8.92FE — 07 F/F F/F F/F

2 QU 2 19/9.71E — 07 | 27/4.80FE — 07 17/3.21E — 07 18/8.32E — 07
3 ER 100 335/9.06F — 07 | 66/2.75E —07 | 155/7.71E — 07 F/F

4 | ER 2 462/9.96E — 07 | 66/3.89FE — 08 | 145/3.06E — 07 F/F

5 ER 500 | 397/5.76E — 07 F/F 2540/8.65E — 07 F/F

6 ER | 1000 | 368/8.42E — 07 F/F 1679/8.87E — 07 F/F

7 DI 2 18/8.64E — 07 | 21/8.78E — 07 25/8.07E — 07 19/2.53E — 07
8 DI 100 20/6.08E — 07 | 24/7.01E — 07 29/2.67F — 07 59/1.78F — 07
9 DI 500 21/4.29E — 07 | 25/5.27TE — 07 29/5.98E — 07 F/F

10 | DI 1000 | 21/6.07E —07 | 25/7.46E —07 | 29/8.46FE —07 | 25/2.17E — 07
11 | DI | 10000 | 22/6.06E —07 | 27/4.60E —07 | 31/5.79E — 07 F/F

12 | DI | 50000 | 23/4.27E —07 | 28/5.95E —07 | 33/2.80E —07 | 14/8.85E — 07
13 DI | 100000 | 23/6.04E — 07 | 28/8.41F — 07 33/3.96E — 07 182/F

14 | HE 2 40/5.08E — 07 | 123/8.44FE — 07 | 53/6.48F — 07 38/4.49F — 07
15 | HE 100 43/8.54E — 07 | 133/9.83E — 07 | 58/3.72E —07 | 30/7.95E — 07
16 | HE 500 46/2.56E — 07 | 139/7.63E — 07 | 70/3.75E —07 | 42/5.80E — 07
17 | HE 1000 46/3.81FE — 07 | 142/444F — 07 | 82/9.63FE — 07 | 42/8.20E — 07
18 | HE | 10000 | 46/8.45F —07 | 145/6.67TF — 07 | 100/7.91F — 07 | 44/7.40F — 07
19 | HE | 50000 | 47/1.76E —07 | 161/9.18E — 07 | 64/3.81E — 07 | 210/7.28E — 07
20 | HE | 100000 | 49/8.35E —07 | 155/8.51E —07 | 64/8.03E —07 | 69/4.63E — 07
21 | EB 2 | 509/9.22E — 07 F/F 4301/9.76E — 07 F/F

22 | EB | 500 183/F F/F F/F 317/F

23 | EB 1000 | 576/8.67E — 07 F/F F/F F/F

24 | EB | 10000 | 657/8.52E — 07 F/F F/F F/F

25 | RY1 2 10/0.00E + 00 6/0.00F + 00 F/F 9/F

26 | RY1 100 1/4.74FE — 120 | 1/4.74E — 120 1/4.74FE — 120 1/4.74F — 120
27 | RY1 500 1/0.00E + 00 1/0.00E + 00 1/0.00E + 00 1/0.00E + 00
28 | RY'1 | 1000 1/0.00E + 00 1/0.00E + 00 1/0.00E + 00 1/0.00E + 00
29 | RY1 | 10000 1/0.00E + 00 1/0.00E + 00 1/0.00E + 00 1/0.00E + 00
30 | RY'1 | 50000 1/0.00E + 00 1/0.00E + 00 1/0.00E + 00 1/0.00E + 00
31 | RY'1 | 100000 | 1/0.00E + 00 1/0.00E + 00 1/0.00E + 00 1/0.00E + 00
32 | RY2 2 13/4.24E — 07 | 24/6.52E —07 | 9/4.65E — 08 6/3.13E — 09
33 | RY2 100 14/1.8TE — 07 | 27/8.80E —07 | 9/3.29E — 07 9/2.69E — 09
34 | RY2 500 14/4.18E — 07 | 28/9.30FE — 07 9/7.35E — 07 6/4.95E — 08
35 | RY2 1000 14/5.91E — 07 | 29/8.35E — 07 10/1.92E — 08 6/7.00F — 08
36 | RY2 | 10000 | 15/3.77E —08 | 31/7.93E —07 | 10/6.06E — 08 6/2.22E — 07
37 | RY2 | 50000 | 15/8.42E —08 | 32/8.38E —07 | 10/1.36E —07 | 14/5.72FE — 12
38 | RY2 | 100000 | 15/1.19E —07 | 33/7.53E —07 | 10/1.92E —07 | 31/1.13E —07
39 | E3 2 38/7.95E —07 | 51/8.04E —07 | 35/747E —07 | 35/9.77TE — 07
40 E3 100 39/6.63E — 07 | 60/9.41FE — 07 | 41/9.52F — 07 71/6.12FE — 07
41 E3 500 46/8.64F — 07 | 68/9.7TE — 07 | 43/5.91F — 07 81/9.90F — 07
42 | E3 1000 | 105/6.09E — 07 | 107/9.86E — 07 | 43/4.91E —07 | 778/9.52FE — 07
43 | E2 2 119/9.85E — 07 | 38/8.97E — 07 F/F F/F

4 | E2 500 | 499/5.95E — 07 F/F F/F F/F

45 AR 2 28/6.51F — 07 | 35/5.32E — 07 | 44/9.90FE — 07 29/2.99F — 07

Volume 54, Issue 9, September 2024, Pages 1765-1775




TAENG International Journal of Applied Mathematics

Table VI. Numerical result of number of iterations and gradient norm contd.

s/n | Prob. | Dim. AOAAH DY LS NEW+
ITR/GN ITR/GN ITR/GN ITR/GN

46 | AR 100 | 1928/9.16E — 07 F/F F/F F/F

47 | DQ 2 29/3.64E — 07 50/6.65E — 07 263/ F 69/5.79F — 07

48 | DQ 100 455/8.61F — 07 | 143/8.15E — 07 | 128/7.17E — 07 | 721/9.92F — 07

49 | DQ 500 357/9.86E — 07 | 72/2.58E —07 | 118/9.96E — 07 | 98/9.10E — 07

50 | DQ | 1000 | 413/9.07E —07 | 175/8.02E —07 | 85/8.39FE — 07 | 125/4.12E — 07

51 | D@ | 10000 | 426/9.80E — 07 | 227/6.72E —07 | 133/6.17E — 07 | 110/7.31E — 07

52 | ME 2 25/8.34E — 07 14/2.90E — 07 | 69/9.89F — 07 | 57/8.58F — 07

53 | ME 100 38/9.64F — 07 16/2.79E — 07 | 80/9.41F — 07 | 63/8.66F — 07

54 | ME 500 45/9.61F — 07 16/6.25E — 07 | 85/8.46F — 07 | 69/9.33FE — 07

55 | ME | 1000 48/9.68E — 07 | 16/8.84E —07 | 86/9.97E —07 | 71/8.44FE — 07

56 | ME | 10000 | 57/9.43FE —07 | 18/3.80E —07 | 93/8.80E — 07 | 76/8.75E — 07

57 | ME | 50000 | 60/8.22FE —07 | 18/8.50FE —07 | 97/9.49F — 07 | 68/8.12FE — 07

58 | ME | 100000 | 61/947E —07 19/9.09E — 07 | 99/9.32FE — 07 | 69/8.52F — 07

59 | CO 2 12/2.70E — 07 | 12/1.07E — 07 | 21/2.47E — 07 | 17/7.23E — 07

60 | CO 100 13/4.88E — 07 | 12/7.55E —07 | 23/5.10E — 07 17/F

61 | CO 500 448/1.04FE — 08 | 72/6.62E — 08 | 29/7.34E — 07 F/F

62 | CO 1000 | 448/147E —08 | 72/9.36E —08 | 31/8.11E — 07 F/F

63 coO 10000 | 561/9.19E —08 | 36/5.81F —07 | 113/6.60F — 07 F/F

64 ST 2 18/6.13E — 07 20/5.28E — 07 | 59/8.09E — 07 | 47/8.03E — 07

65 | SI 100 20/4.98E —07 | 22/8.70E — 07 | 67/9.60E — 07 30/F

66 | SI 500 21/3.77E —07 | 24/4.54E —07 | T1/8.79E — 07 | 56/9.53E — 07

67 | SI 1000 21/5.33E —07 | 24/6.41E —07 | 72/9.95FE — 07 | 58/7.58F — 07

68 | SI | 10000 | 22/5.71E—07 | 26/4.73E —07 | 78/8.24E — 07 | 62/7.58E — 07

69 ST 50000 37/5.33E — 07 36/6.43F — 07 | 36/9.58E — 07 | 29/7.58FE — 07

70 ST | 100000 | 52/8.30E — 07 36/9.09FE — 07 | 37/8.63E — 07 | 30/5.60FE — 07

71 | EK 2 52/6.11E — 07 | 46/7.05E — 07 F/F F/F

72 | EK 100 32/1.31E —07 | 26/5.41FE —07 | 41/3.18E — 07 | 96/8.86E — 07

73 | EK 500 59/2.87TFE — 07 | 53/5.85E — 07 F/F F/F

74 | EK | 1000 59/4.03E — 07 | 53/8.27TE — 07 F/F F/F

75 | EK | 10000 61/9.32F — 08 58/4.40F — 07 F/F F/F

76 | EX 2 21/9.15E —07 | 27/8.62E —07 | 28/4.85E — 07 | 17/3.98E — 07

7 | EX 100 31/2.50FE — 07 | 30/9.74E — 07 | 29/9.45E — 07 | 20/4.54F — 07

78 | EX 500 32/2.34FE — 07 | 32/4.63E — 07 | 3477.34E — 07 | 19/7.86FE — 07

79 | EX 1000 32/3.17E — 07 32/6.55F — 07 | 35/3.95E — 07 | 21/1.39FE — 07

80 | EX | 10000 32/4.63F — 07 34/9.83E — 07 | 36/4.29E — 07 | 21/4.39E — 07

81 | EX | 50000 | 23/4.33E —07 | 27/5.64E —07 | 81/9.44E — 07 37/F

82 | EX |100000 | 23/6.12E —07 | 27/7.97E —07 | 83/8.54E — 07 29/F

83 | CB 2 1/0.00E + 00 1/0.00E + 00 1/0.00E + 00 1/0.00E + 00

84 | CB | 100 | 27/7.14E—07 | 2/2.68E —16 F/F 24/F

8 | CB | 500 | 26/8.49E—07 | 2/3.16E —15 F/F 112/F

8 | CB | 1000 | 16/9.14E —07 | 2/2.36E —15 F/F 212/F

87 | B | 10000 | 2/6.41E—08 | 2/1.98E —15 F/F 2075/ F

88 | QP 2 24/9.44E — 07 | 2/3.43E — 16 F/F 15/F

89 | PS 2 22/5.61FE —07 | 26/6.70E —07 | 34/6.74E — 07 | 25/8.89F — 07
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Test results in Tables III to VI generated from test prob-
lems in Tables I and II report the performance profiles of
AOAAH-CG method against DY-CG [7], LS-CG [16] and
NEW+-CG [24] methods respectively. Parameters used to
determine the numerical strength of AOAAH-CG method
against these CG methods were the number of iterations
(ITR), the value of function (FN), the CPU time (CPU) and
gradient norm (GN) respectively. Dimensions: 2, 100, 500,
1000 and 10000, 50000, 100000 were considered to report
results in Tables III to VI. F' in the tables stands for failure of
an algorithm to solve a problem. Graphical representations
showing the numerical strength of all the methods were
generated from the drawing tools of Dolan and More [10]:
Given set S of t5; methods to be compared, let R be the

AOAAH DY

¢ (7)
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Fig. 3: CPU time
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Fig. 4: Gradient norm (GN)

set of n,. test functions. The tools are implemented with the

fact that U, , can either be ITR, F, GN or CPU time for

each method S and problem R with different methods being
compared by using the ratio

Ur,s

Up g = — .

* min{U,s:s€ S andr € F}

However, the overall distribution function for w, s is

defined by

(66)

¢s(7)

where 7 > 0. The probability that u, , is within a factor
7 > 1 in relation to the method s is ¢4(7). So also, the
probability that one method will outperform other methods

1
= —|R € R:logu,s| <7
ny

(67)
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is ¢4(7) for the value 7 = 1. If u; = w, , for some parameter
u;, the chosen method s € S will fail to solve a problem.
Figures (1-4) highlight the profile strengths of the four
methods tested based on number of iterations (ITR), values
of function (FN), CPU time (CPU) and gradient norm (GN)
respectively. Figure 1 shows that the proposed algorithm
AOAAH is more robust than the other three algorithms in
the areas of number of iterations. Figure 2 indicates that
AOAAH algorithm is the top performer in term of value of
functions followed by DY method while the worst performer
is the NEW+ algorithm. In figure 3, AOAAH method solves
more problems than other algorithms in term of CPU time.
Figure 4 shows that AOAAH method outperformed the other
three methods in the area of gradient norm. The overall per-
formance of the four algorithms tested shows that AOAAH
method is more robust and effective than the other three
methods.

V. CONCLUSIONS

A new descent CG method was proposed in this paper as
a result of wide acceptability of CG methods in solving any
problem of the form (1). The new method was constructed
with the inclusion of constants to give a hybrid CG method
which is a linear combination of known classical methods.
This method was tested based on the Wolfe line search
scheme. Descent and convergence of the new method were
established. Numerical strength of the method showed that
it is promising and solved problems better than the chosen
existing methods. For further studies, constants a,b,c,e, f
can be varied to achieve different descent conjugate gradient
methods.
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