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Abstract—In this article, we are motivated by various fixed
point theorems for different types of orthogonal (ϕ,𭟋) con-
tractions in orthogonal Branciari (rectangular) b-metric spaces.
We present examples that improve upon many existing results
to highlight our key findings. Additionally, we provide an
application to clarify the existence and uniqueness of solutions
to integral equations. Finally, we present numerical results that
contrast with the analytical findings.

Index Terms—Orthogonal (ϕ,𭟋)-contraction map type, fixed
point, orthogonal-Cauchy sequence, orthogonal complete Bran-
ciari b-metric space.

I. INTRODUCTION

THE Banach contraction principle, one of the most well-
known research instruments for fixed point results, is

rapidly expanding and improving the field of mathematics in
many different contexts. Banach [1] proposed the notion of
the famous Banach contraction principle in 1922, which is
utilized in complete metric spaces. The principle of Banach
contraction in fixed point theory has been further developed
by many researchers. Some relevant results enhance the
extension outcomes, inviting readers to explore the references
for further clarification [2]- [4].

A widely recognized extension of metric spaces is found
in b-metric spaces, which were initiated by Czerwik [5].
Numerous mathematicians have delved into the intricacies of
this fascinating space; interested readers are encouraged to
explore further in references [6]- [9]. More recently, in 2023,
Mani et al. have proven fixed point results in various types of
metric spaces with different applications (see [10]- [12]). In
2000, Branciari [13] made a new contribution by introducing
generalized metric spaces, wherein the traditional triangle
inequality is substituted with the quadrilateral inequality

Bḃ(ß̃,∝) ≤ Bḃ(ß̃,æ) + Bḃ(æ, q) + Bḃ(q,∝),

for every pairwise different points ß̃,∝,æ and q. In 2015,
George et al. [14] introduced the concept of Branciari b-
metric space (BbMS). Subsequently, numerous authors em-
barked on exploring and analyzing various fixed point the-
orems applicable to such spaces, as evidenced in [15] and
[16].
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Wardowski [17] introduced a concept of 𭟋-contraction in
metric spaces. Recently, Kari et al. [18] proposed the notion
of θ-ϕ-contraction within BbMS, presenting a fixed-point
theorem for such metric spaces. In 2018, Wardowski [19]
investigated a variation of the Banach fixed-point theorem,
studying a novel class of contraction maps termed (ϕ,𭟋)-
contraction on metric spaces. This study was influenced by
the research of both Wardowski and Kari et al. Furthermore,
Rossafi et al. [20] recently explored the concept of (ϕ,𭟋)-
contraction type maps in rectangular b-metric spaces, build-
ing upon previous work in the field.

In 2017, Eshaghi Gordji et al. [21] introduced the notion
of orthogonality and presented a full structure for further
developments. Building upon this initial study, Eshaghi
Gordji and Habibi [22] expanded the research, demonstrating
fixed point theorems in generalized orthogonal metric spaces.
For additional insights into orthogonal concepts and related
results, refer to ( [23]- [32]).

In this paper, we expand upon several fixed-point theorems
concerning different types of orthogonal (ϕ,𭟋) contraction
of a map type in orthogonal complete BbMS. Our proof
technique, employed in this study, effectively establishes
the existence of fixed points, enhancing the robustness of
our recent findings. Additionally, we bolster our results by
providing both an illustrative example and an application.
Moreover, we present an application that focuses on verifying
the existence and uniqueness of an integral equation, along
with demonstrating the validity of the analytical solutions.

II. PRELIMINARIES

Definition 1. [14] Let ℧ be a non-empty set, ω≀ ≥ 1 be a
given real number, and let Bḃ : ℧×℧ → [0,+∞) be a map
such that for all ß̃,∝∈ ℧ and all distinct points q,ℵ ∈ ℧,
each distinct from ß̃ and ∝:

1) Bḃ(ß̃,∝) = 0 ⇐⇒ ß̃ =∝;
2) Bḃ(ß̃,∝) = Bḃ(∝, ß̃);
3) Bḃ(ß̃,∝) ≤ ω≀[Bḃ(ß̃, q) + Bḃ(q,ℵ) + Bḃ(ℵ,∝)].
Then, (℧,Bḃ) is called a BbMS.

Lemma 1. [16] Let (℧,Bḃ) be a BbMS:
1) Suppose that sequences {ß̃ṗ} and {∝ṗ} in ℧ are such

that ß̃ṗ → ß̃ and ∝ṗ→∝ as ṗ → ∞, with ß̃ ̸=∝, ß̃ṗ ̸= ß̃
and ∝ṗ ̸=∝ for all ṗ ∈ N. Then, we have
1

ω≀
Bḃ(ß̃,∝) ≤ lim

ṗ→∞
inf Bḃ(ß̃ṗ,∝ṗ) ≤ lim

ṗ→∞
supBḃ(ß̃ṗ,∝ṗ)

≤ ω≀Bḃ(ß̃,∝).

2) If ∝∈ ℧ and {ß̃ṗ} is a Cauchy sequence in ℧ with
ß̃ṗ ̸= ß̃ȷ̇ for every ȷ̇, ṗ ∈ N, ȷ̇ ̸= ṗ, converging to ß̃ ̸=∝,
then
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1

ω≀
Bḃ(ß̃,∝) ≤ lim

ṗ→∞
inf Bḃ(ß̃ṗ,∝) ≤ lim

ṗ→∞
supBḃ(ß̃ṗ,∝)

≤ ω≀Bḃ(ß̃,∝), for all ß̃ ∈ ℧.

Lemma 2. [18] Let (℧,Bḃ) be a BbMS and let {ß̃ṗ} be a
sequence in ℧ such that

lim
ṗ→∞

Bḃ(ß̃ṗ, ß̃ṗ+1) = lim
ṗ→∞

Bḃ(ß̃ṗ, ß̃ṗ+2) = 0.

If {ß̃ṗ} is not a Cauchy sequence, then there exist ξ > 0
and two sequences {ȷ̇(σ)} and {ṗ(σ)} of positive integers
such that

ξ ≤ lim
σ→∞

inf Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

)

≤ lim
σ→∞

supBḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

) ≤ ω≀ξ.

ξ ≤ lim
σ→∞

inf Bḃ(ß̃ṗ(σ)
, ß̃ȷ̇(σ)+1

)

≤ lim
σ→∞

supBḃ(ß̃ṗ(σ)
, ß̃ȷ̇(σ)+1

) ≤ ω≀ξ.

ξ ≤ lim
σ→∞

inf Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)+1

)

≤ lim
σ→∞

supBḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)+1

) ≤ ω≀ξ.

ξ

ω≀
≤ lim

σ→∞
inf Bḃ(ß̃ȷ̇(σ)+1

, ß̃ṗ(σ)+1
)

≤ lim
σ→∞

supBḃ(ß̃ȷ̇(σ)+1
, ß̃ṗ(σ)+1

) ≤ ω2
≀ ξ.

The subsequent definition, as introduced by
Wardowski [19], will serve as the foundation for proving
our result.
Definition 2. [19] Let χ be the set of all functions
𭟋̂ : R+ → R and ϕ : (0,+∞) → (0,+∞) holds the
axioms as follows:

1) 𭟋 is strictly increasing;
2) for every sequence {ß̃ṗ}ṗ∈N is positive integers

lim
ṗ→∞

ß̃ṗ = 0 ⇐⇒ lim
ṗ→∞

𭟋(ß̃ṗ) = −∞;

3) lim infω≀→α+ ϕ(ω≀) > 0 for each ω≀ > 0;
4) there exists σ ∈ (0, 1) such that

lim
ß̃→0+

ß̃σ𭟋(ß̃) = 0.

Rossafi et al. initiate a new class of (ϕ,𭟋)-
contraction.

Definition 3. [20] Let χ be the set of all functions
𭟋 : R+ → R and Π be the set of all functions
ϕ : (0,+∞) → (0,+∞) holds the conditions as follows:

1) 𭟋 is strictly increasing;
2) for every sequence {ß̃ṗ}ṗ∈N of positive integers

lim
ṗ→∞

ß̃ṗ = 0 ⇐⇒ lim
ṗ→∞

𭟋(ß̃ṗ) = −∞;

3) lim infω≀→α+ ϕ(ω≀) > 0 for all ω≀ > 0;
4) 𭟋 is continuous.

Definition 4. [20] Let (℧,Bḃ) be a BbMS with
coefficient ω≀ > 1 and W : ℧ → ℧ be a map:

1) W is called a (ϕ,𭟋)-contraction of a map type if there
exists 𭟋 ∈ χ and ϕ ∈ Π such that
Bḃ(W ß̃,W ∝) > 0 →

𭟋[ω2
≀ Bḃ(W ß̃,W ∝)] + ϕ(Bḃ(ß̃,∝)) ≤ 𭟋[M(ß̃,∝)],

where

M(ß̃,∝) = max{Bḃ(ß̃,∝),Bḃ(ß̃,W ß̃),Bḃ(∝,W ∝),

Bḃ(∝,W ß̃)}.

2) W is called a (ϕ,𭟋)-Kannan contraction of a map
type if there exists 𭟋 ∈ χ and ϕ ∈ Π such that
Bḃ(W ß̃,W ∝) > 0, we have

𭟋[ω2
≀ Bḃ(W ß̃,W ∝))] + ϕ(Bḃ(ß̃,∝))

≤ 𭟋(
Bḃ(ß̃,W ß̃) + Bḃ(∝,W ∝)

2
).

3) W is called a (ϕ,𭟋)-Reich contraction of a map type
if there exists 𭟋 ∈ χ and ϕ ∈ Π such that
Bḃ(W ß̃,W ∝) > 0, we have

𭟋[ω2
≀ Bḃ(W ß̃,W ∝))] + ϕ(Bḃ(ß̃,∝))

≤ 𭟋(
Bḃ(ß̃,∝) + Bḃ(ß̃,W ß̃) + Bḃ(∝,W ∝)

3
).

The subsequent definition of orthogonality served as the
cornerstone for the remainder of our research.
Definition 5. [21] Let ℧ be a non-empty and ⊥⊆ ℧×℧ be
an binary relation. If ⊥ satisfies the below condition:

∃ δ0 : (∝⊥ δ0) or (δ0 ⊥∝), ∀ ∝∈ ℧,

then, (℧,⊥) is called an orthogonal set (O-set).
Definition 6. [21] Let (℧,⊥) be an O-set. A sequence {ß̃ṗ}
is called an orthogonal sequence (briefly, O-sequence) if

(ß̃ṗ ⊥ ß̃ṗ+1) or (ß̃ṗ+1 ⊥ ß̃ṗ), ∀ ṗ ∈ N.

Definition 7. Let (℧,⊥,Bḃ) be an orthogonal BbMS if (℧,⊥)
is an O-set and (℧,Bḃ) is a BbMS.

Definition 8. Let (℧,⊥,Bḃ) be an orthogonal BbMS.
(1) A map W : ℧ → ℧ is said to be an O-continuous

in ß̃ ∈ ℧ if for each O-sequence {ß̃ṗ}ṗ∈N in ℧ with
ß̃ṗ → ß̃, we have W(ß̃ṗ) → W(ß̃). Also, W is said to
be an O-continuous on ℧ if W is an O-continuous in
each ß̃ ∈ ℧.

(2) A set ℧ is called an orthogonal complete if every
orthogonal Cauchy sequence is convergent.

III. MAIN RESULTS

In this section, we construct fixed point results for orthog-
onal BbMS and discuss the notion of (ϕ,𭟋)-contraction types
in these areas.
Definition 9. Let (℧,⊥,Bḃ) be an orthogonal BbMS with
coefficient ω≀ > 1 and a map W : ℧ → ℧;

1) W is called an orthogonal (ϕ,𭟋)-contraction of a map
type if there exists 𭟋 ∈ χ and ϕ ∈ Π such that
Bḃ(W ß̃,W ∝) > 0 with ß̃ ⊥∝, we have

𭟋[ω2
≀ Bḃ(W ß̃,W ∝)] + ϕ(Bḃ(ß̃,∝))

≤ 𭟋[M(ß̃,∝)], ∀ ß̃,∝∈ ℧,
(1)

where
M(ß̃,∝) = max{Bḃ(ß̃,∝),Bḃ(ß̃,W ß̃)

,Bḃ(∝,W ∝),Bḃ(∝,W ß̃)}.
2) W is called an orthogonal (ϕ,𭟋)-Kannan

contraction of a map type if there exists 𭟋 ∈ χ
and ϕ ∈ Π such that Bḃ(W ß̃,W ∝) > 0 with ß̃ ⊥∝,
we have

𭟋[ω2
≀ Bḃ(W ß̃,W ∝))] + ϕ(Bḃ(ß̃,∝))

≤ 𭟋(
Bḃß̃,W ß̃) + Bḃ(∝,W ∝)

2
).

3) W is called an orthogonal (ϕ,𭟋)-Reich
contraction of a map type if there exists 𭟋 ∈ χ
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and ϕ ∈ Π such that Bḃ(W ß̃,W ∝) > 0
with ß̃ ⊥∝, we have

𭟋[ω2
≀ Bḃ(W ß̃,W ∝))] + ϕ(Bḃ(ß̃,∝))

≤ 𭟋(
Bḃ(ß̃,∝) + Bḃ(ß̃,W ß̃) + Bḃ(∝,W ∝)

3
).

Lemma 3. Let (℧,⊥,Bḃ) be an orthogonal BbMS.
1) Suppose that the O-sequences {ß̃ṗ} and {∝ṗ} in

℧ are such that ß̃ṗ → ß̃ and ∝ṗ→∝ as ṗ → ∞,

with ß̃ ̸=∝, ß̃ṗ ̸= ß̃ and ∝ṗ ̸=∝ for all ṗ ∈ N.
Then, we have

1

ω≀
Bḃ(ß̃,∝) ≤ lim

ṗ→∞
inf Bḃ(ß̃ṗ,∝ṗ)

≤ lim
ṗ→∞

supBḃ(ß̃ṗ,∝ṗ) ≤ ω≀Bḃ(ß̃,∝).

2) If ∝∈ ℧ and {ß̃ṗ} is an orthogonal Cauchy sequence
in ℧ with ß̃ṗ ̸= ß̃ȷ̇ for any ȷ̇, ṗ ∈ N, ȷ̇ ̸= ṗ, converging
to ß̃ ̸=∝, then
1

ω≀
Bḃ(ß̃,∝) ≤ lim

ṗ→∞
inf Bḃ(ß̃ṗ,∝) ≤ lim

ṗ→∞
supBḃ(ß̃ṗ,∝)

≤ ω≀Bḃ(ß̃,∝), for all ß̃ ∈ ℧.
Lemma 4. Let (℧,⊥,Bḃ) be an orthogonal BbMS, and
let {ß̃ṗ} be an O-sequence in ℧ such that

lim
ṗ→∞

Bḃ(ß̃ṗ, ß̃ṗ+1) = lim
ṗ→∞

Bḃ(ß̃ṗ, ß̃ṗ+2) = 0. (2)

If {ß̃ṗ} is not an orthogonal Cauchy sequence, then there
exist ξ > 0 and two O-sequences {ȷ̇(σ)} and {ṗ(σ)} of
positive integers such that

ξ ≤ lim
σ→∞

inf Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

)

≤ lim
σ→∞

supBḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

) ≤ ω≀ξ.

ξ ≤ lim
σ→∞

inf Bḃ(ß̃ṗ(σ)
, ß̃ȷ̇(σ)+1

)

≤ lim
σ→∞

supBḃ(ß̃ṗ(σ)
, ß̃ȷ̇(σ)+1

) ≤ ω≀ξ.

ξ ≤ lim
σ→∞

inf Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)+1

)

≤ lim
σ→∞

supBḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)+1

) ≤ ω≀ξ.

ξ

ω≀
≤ lim

σ→∞
inf Bḃ(ß̃ȷ̇(σ)+1

, ß̃ṗ(σ)+1
)

≤ lim
σ→∞

supBḃ(ß̃ȷ̇(σ)+1
, ß̃ṗ(σ)+1

) ≤ ω2
≀ ξ.

Proof: If {ß̃ṗ} is not an orthogonal Cauchy sequence,
then there exist ξ > 0 and two sequences {ȷ̇(σ)} and {ṗ(σ)}
of positive integers such that ȷ̇(σ) > ṗ(σ) > σ,

ξ ≤ Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

) and Bḃ(ß̃ȷ̇(σ)−1, ß̃ṗ(σ)
) < ξ, (3)

for all positive integers σ. By the b-rectangular inequality,
we have

ξ ≤ Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

)

≤ ω≀[Bḃ(ß̃ȷ̇(σ)
, ß̃ȷ̇(σ)+1) + Bḃ(ß̃ȷ̇(σ)+1, ß̃ȷ̇(σ)−1)

+ Bḃ(ß̃ȷ̇(σ)−1, ß̃ṗ(σ)
)]. (4)

Taking the upper and lower limits as σ → ∞ in (4) and
using (2) and (3), we obtain

ξ ≤ lim
σ→∞

inf Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

) ≤ lim
σ→∞

supBḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

)

≤ ω≀ξ. (5)

Using the b-rectangular inequality again, we have

ξ ≤ Bḃ(ß̃ṗ(σ)
, ß̃ȷ̇(σ)+1)

≤ ω≀[Bḃ(ß̃ṗ(σ)
, ß̃ȷ̇(σ)−1) + Bḃ(ß̃ȷ̇(σ)−1, ß̃ȷ̇(σ)

)

+ Bḃ(ß̃ȷ̇(σ)
, ß̃ȷ̇(σ)+1)]. (6)

Taking the upper and lower limits as σ → ∞ in (6) and
using (2) and (3), we obtain

ξ ≤ lim
σ→∞

inf Bḃ(ß̃ṗ(σ)
, ß̃ȷ̇(σ)+1) ≤ lim

σ→∞
supBḃ(ß̃ṗ(σ)

, ß̃ȷ̇(σ)+1)

≤ ω≀ξ. (7)
Using the b-rectangular inequality again, we have

ξ ≤ Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)+1)

≤ ω≀[Bḃ(ß̃ȷ̇(σ)
, ß̃ȷ̇(σ)−1) + Bḃ(ß̃ȷ̇(σ)−1, ß̃ṗ(σ)

)

+ Bḃ(ß̃ṗ(σ)
, ß̃ṗ(σ)+1)]. (8)

Taking the upper and lower limits as σ → ∞ in (8) and
using (2) and (3), we obtain

ξ ≤ lim
σ→∞

inf Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)+1) ≤ lim

σ→∞
supBḃ(ß̃ȷ̇(σ)

, ß̃ṗ(σ)+1)

≤ ω≀ξ. (9)

Using the b-rectangular inequality again, we have

Bḃ(ß̃ȷ̇(σ)+1, ß̃ṗ(σ)+1)

≤ ω≀[Bḃ(ß̃ȷ̇(σ)+1, ß̃ȷ̇(σ)
) + Bḃ(ß̃ȷ̇(σ)

, ß̃ṗ(σ)
)

+ Bḃ(ß̃ṗ(σ)
, ß̃ṗ(σ)+1)], (10)

ξ ≤ Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

)

≤ ω≀[Bḃ(ß̃ȷ̇(σ)
, ß̃ȷ̇(σ)+1) + Bḃ(ß̃ȷ̇(σ)+1, ß̃ṗ(σ)+1)

+ Bḃ(ß̃ṗ(σ)+1, ß̃ṗ(σ)
)]. (11)

Taking the upper and lower limits as σ → ∞ in (10)
and (11) and using (2) and (5), we obtain

ξ

ω≀
≤ lim

σ→∞
inf Bḃ(ß̃ȷ̇(σ)+1, ß̃ṗ(σ)+1)

≤ lim
σ→∞

supBḃ(ß̃ȷ̇(σ)+1, (ß̃ṗ(σ)+1) ≤ ω2
≀ ξ.

Theorem 1. Let (℧,⊥,Bḃ) be an orthogonal complete BbMS

with an orthogonal element ß̃0 and constant ω≀ > 1, and let
W be a self-map on ℧ which satisfies:

(i) W is ⊥-preserving,
(ii) W is orthogonal (ϕ,𭟋)-contraction of a map type,

(iii) W is O-continuous.
Then, W has a unique fixed point.

Proof: According to the concept of orthogonality, if
(℧,⊥) is an orthogonal set, then there exists

ß̃0 ∈ ℧ : ∀ ß̃ ∈ ℧, ß̃ ⊥ ß̃0 (or) ∀ ß̃ ∈ ℧, ß̃0 ⊥ ß̃.

It follows that ß̃0 ⊥ W ß̃0 or W ß̃0 ⊥ ß̃0. Let

ß̃1 = W ß̃0, ß̃2 = W ß̃1 = W2ß̃0 · · · ß̃ṗ = W ß̃ṗ−1 = W ṗß̃0,

ß̃ṗ+1 = W ß̃ṗ = W ṗ+1ß̃0, ∀ ṗ ∈ N.

For any ß̃0 ∈ ℧, set ß̃ṗ = W ß̃ṗ−1.
Next, we will examine the two possibilities offered:
(i) If ß̃ṗ = ß̃ṗ+1 for any ṗ ∈ N ∪ {0}, then we have

W ß̃ṗ = ß̃ṗ.
It is easy to see that ß̃ṗ is a fixed point of W .
Hence, the proof is complete.

(ii) If ß̃ṗ ̸= ß̃ṗ+1 for any ṗ ∈ N ∪ {0}, then we get
Bḃ(ß̃ṗ+1, ß̃ṗ) > 0, for each ṗ ∈ N.
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Since W is ⊥-preserving, we obtain

ß̃ṗ ⊥ ß̃ṗ+1 (or) ß̃ṗ+1 ⊥ ß̃ṗ.

This implies that {ß̃ṗ} is an O-sequence.
Since W is an orthogonal (ϕ,𭟋)-contraction map of a map

type, by substituting ß̃ = ß̃ṗ−1 and ∝= ß̃ṗ into (1), for all
ṗ ∈ N, we have

𭟋[Bḃ(ß̃ṗ, ß̃ṗ+1)] ≤ 𭟋[ω2
≀ Bḃ(ß̃ṗ, ß̃ṗ+1)] + ϕ(Bḃ(ß̃ṗ−1, ß̃ṗ))

≤ 𭟋(M(ß̃ṗ−1, ß̃ṗ)),∀ ṗ ∈ N, (12)

where

M(ß̃ṗ−1, ß̃ṗ) = max(Bḃ(ß̃ṗ−1, ß̃ṗ),Bḃ(ß̃ṗ−1, ß̃ṗ),Bḃ(ß̃ṗ, ß̃ṗ+1),

Bḃ(ß̃ṗ, ß̃ṗ)}
= max{Bḃ(ß̃ṗ−1, ß̃ṗ),Bḃ(ß̃ṗ, ß̃ṗ+1)}.

If M(ß̃ṗ−1, ß̃ṗ) = Bḃ(ß̃ṗ, ß̃ṗ+1), by (12), we have

𭟋(Bḃ(ß̃ṗ, ß̃ṗ+1)) ≤ 𭟋(Bḃ(ß̃ṗ, ß̃ṗ+1))− ϕ(Bḃ(ß̃ṗ−1, ß̃ṗ))

< 𭟋(Bḃ(ß̃ṗ, ß̃ṗ+1)).

Since 𭟋 is increasing, we get

Bḃ(ß̃ṗ, ß̃ṗ+1) < Bḃ(ß̃ṗ−1, ß̃ṗ). (13)

It is a contradiction.
Hence, M(ß̃ṗ−1, ß̃ṗ) = Bḃ(ß̃ṗ−1, ß̃ṗ).
Thus,

𭟋(Bḃ(ß̃ṗ, ß̃ṗ+1)) ≤ 𭟋(Bḃ(ß̃ṗ−1, ß̃ṗ))− ϕ(Bḃ(ß̃ṗ−1, ß̃ṗ)).

Repeating this step, we conclude that

𭟋(Bḃ(ß̃ṗ, ß̃ṗ+1)) ≤ 𭟋(Bḃ(ß̃ṗ−1, ß̃ṗ))− ϕ(Bḃ(ß̃ṗ−1, ß̃ṗ))

≤ 𭟋(Bḃ(ß̃ṗ−2, ß̃ṗ−1))− ϕ(Bḃ(ß̃ṗ−1, ß̃ṗ))

− ϕ(Bḃ(ß̃ṗ−2, ß̃ṗ−1))

≤ · · · ≤ 𭟋(Bḃ(ß̃0, ß̃1))−
ṗ∑

i=0

ϕ(Bḃ(ß̃i, ß̃i+1)).

Since lim infα→ω+
≀
ϕ(α) > 0.

If we obtain lim inf ṗ→∞ ϕ(Bḃ(ß̃ṗ−1, ß̃ṗ)) > 0, then by the
definition of the limit, there exists ṗ0 ∈ N and H > 0 such
that for all ṗ ≥ ṗ0, ϕ(Bḃ(ß̃ṗ−1, ß̃ṗ)) > H.

Hence,

𭟋(Bḃ(ß̃ṗ, ß̃ṗ+1)) ≤ 𭟋(Bḃ(ß̃0, ß̃1))−
ṗ0−1∑
i=0

ϕ(Bḃ(ß̃i, ß̃i+1))

−
ṗ∑

i=ṗ0−1

ϕ(Bḃ(ß̃i, ß̃i+1))

≤ 𭟋(Bḃ(ß̃0, ß̃1))−
ṗ∑

i=ṗ0−1

H

= 𭟋(Bḃ(ß̃0, ß̃1))− (ṗ− ṗ0)H, ∀ ṗ ≥ ṗ0.
Letting the limit as ṗ → ∞ in the above inequality, we

obtain

lim
ṗ→∞

𭟋(Bḃß̃ṗ, ß̃ṗ+1)) ≤ lim
ṗ→∞

[𭟋(Bḃ(ß̃0, ß̃1))− (ṗ− ṗ0)H].

That is, limṗ→∞ 𭟋(Bḃ(ß̃ṗ, ß̃ṗ+1)) = −∞, then based on
condition (ii) outlined in Definition 3, we can deduce that

lim
ṗ→∞

Bḃ(ß̃ṗ, ß̃ṗ+1) = 0. (14)

Next, we shall prove that

lim
ṗ→∞

Bḃ(ß̃ṗ, ß̃ṗ+2) = 0.

We assume that ß̃ṗ ̸= ß̃ȷ̇ for every ṗ, ȷ̇ ∈ N, ṗ ̸= ȷ̇.

Indeed, suppose that ß̃ṗ = ß̃ȷ̇ for some ṗ = ȷ̇+ σ with
σ > 0, and using (13), we have

Bḃ(ß̃ȷ̇, ß̃ȷ̇+1) = Bḃ(ß̃ṗ, ß̃ṗ+1) < Bḃ(ß̃ṗ−1, ß̃ṗ).

Continuing this process, we have

Bḃ(ß̃ȷ̇, ß̃ṗ+1) = Bḃ(ß̃ṗ, ß̃ṗ+1) < Bḃ(ß̃ȷ̇, ß̃ȷ̇+1).

It is a contradiction.
Therefore, Bḃ(ß̃ṗ, ß̃ȷ̇) > 0 for every ṗ, ȷ̇ ∈ N, ṗ ̸= ȷ̇.

Now, applying (1) with ß̃ = ß̃ṗ−1 and ∝= ß̃ṗ+1, we have

𭟋[Bḃ(ß̃ṗ, ß̃ṗ+2)] =𭟋[Bḃ(W ß̃ṗ−1,W ß̃ṗ+1)]

≤𭟋[ω2
≀ Bḃ(W ß̃ṗ−1,W ß̃ṗ+1)]

≤𭟋(M(ß̃ṗ−1, ß̃ṗ+1))− ϕ(Bḃ(ß̃ṗ−1, ß̃ṗ+1)),

where

M(ß̃ṗ−1, ß̃ṗ+1) = max{Bḃ(ß̃ṗ−1, ß̃ṗ+1),Bḃ(ß̃ṗ−1, ß̃ṗ),

Bḃ(ß̃ṗ+1, ß̃ṗ+2),Bḃ(ß̃ṗ+1, ß̃ṗ)}
= max{Bḃ(ß̃ṗ−1, ß̃ṗ+1),Bḃ(ß̃ṗ−1, ß̃ṗ)}.

So, we get

𭟋(Bḃ(ß̃ṗ,ß̃ṗ+2))

≤ 𭟋(max{Bḃ(ß̃ṗ−1, ß̃ṗ),Bḃ(ß̃ṗ−1, ß̃ṗ+1)})
− ϕ(Bḃ(ß̃ṗ−1, ß̃ṗ+1)). (15)

Take γṗ = Bḃ(ß̃ṗ, ß̃ṗ+2) and ϑṗ = Bḃ(ß̃ṗ, ß̃ṗ+1).
Thus, by (15), one can write

𭟋(γṗ) ≤ 𭟋(max(γṗ−1, ϑṗ−1))− ϕ(Bḃ(γṗ−1)). (16)

Since 𭟋 is increasing, we get

γṗ < max{γṗ−1, ϑṗ−1}.
By (13), we have

ϑṗ ≤ ϑṗ−1 ≤ max{γṗ−1, ϑṗ−1},

which implies that

max{γṗ, ϑṗ} ≤ max{γṗ−1, ϑṗ−1}, ∀ ṗ ∈ N.

Hence, the O-sequence max{γṗ−1, ϑṗ−1}ṗ∈N is a
non-negative decreasing O-sequence of real numbers.

Thus, there exists λ ≥ 0 such that

lim
ṗ→∞

max{γṗ, ϑṗ} = λ.

By (14), assume that λ > 0, we get

λ = lim
ṗ→∞

sup γṗ = lim
ṗ→∞

supmax{γṗ, ϑṗ}

= lim
ṗ→∞

max{γṗ, ϑṗ}.

Letting the lim supṗ→∞ in (16), and applying the
contraction of 𭟋 and the property of ϕ, we get

𭟋( lim
ṗ→∞

sup γṗ)

≤ 𭟋( lim
ṗ→∞

supmax{γṗ−1, ϑṗ−1})− lim
ṗ→∞

supϕ(γṗ−1)

≤ 𭟋( lim
ṗ→∞

supmax{γṗ−1, ϑṗ−1})− lim
ṗ→∞

inf ϕ(γṗ−1)

< 𭟋( lim
ṗ→∞

max{γṗ−1, ϑṗ−1}).

Therefore, 𭟋(λ) < 𭟋(λ). It is a contradiction.
Hence,

lim
ṗ→∞

Bḃ(ß̃ṗ, ß̃ṗ+2) = 0.
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Next, we show that {ß̃ṗ}ṗ∈N is an orthogonal
Cauchy sequence, that is

lim
ṗ,ȷ̇→∞

Bḃ(ß̃ṗ, ß̃ȷ̇) = 0, ∀ ṗ, ȷ̇ ∈ N.

Suppose the opposite, according to Lemma 4, there
are ξ > 0 such that for any positive integer σ, there exist
two O-sequences {ṗ(σ)} and {ȷ̇(σ)}, where

ξ ≤ lim
σ→∞

inf Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

)

≤ lim
σ→∞

supBḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

) ≤ ω≀ξ.

ξ ≤ lim
σ→∞

inf Bḃ(ß̃ṗ(σ)
, ß̃ȷ̇(σ)+1

)

≤ lim
σ→∞

supBḃ(ß̃ṗ(σ)
, ß̃ȷ̇(σ)+1

) ≤ ω≀ξ.

ξ ≤ lim
σ→∞

inf Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)+1

)

≤ lim
σ→∞

supBḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)+1

) ≤ ω≀ξ.

ξ

ω≀
≤ lim

σ→∞
inf Bḃ(ß̃ȷ̇(σ)+1

, ß̃ṗ(σ)+1
)

≤ lim
σ→∞

supBḃ(ß̃ȷ̇(σ)+1
, ß̃ṗ(σ)+1

) ≤ ω2
≀ ξ. (17)

From (1), and by setting ß̃ = ß̃ȷ̇(σ)
and ∝= ß̃ṗ(σ)

we have

lim
σ→∞

M(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

)

= lim
σ→∞

max{Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

),Bḃ(ß̃ȷ̇(σ)
, ß̃ȷ̇(σ)+1

),

Bḃ(ß̃ṗ(σ)
, ß̃ṗ(σ)+1

),Bḃ(ß̃ṗ(σ)
, ß̃ȷ̇(σ)+1

)}
≤ ω≀ξ. (18)

Now, applying (1) with ß̃ = ß̃ȷ̇(σ)
and ∝= ß̃ṗ(σ)

, we obtain

𭟋[ω2
≀ Bḃ(ß̃ȷ̇(σ)+1

, ß̃ȷ̇(σ)+1
)]

≤ 𭟋(M(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

))− ϕ(Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

)).

Letting σ → ∞ the above inequality and applying (18)
and (17), we get

𭟋(
ξ

ω≀
ω2
≀ ) = 𭟋(ξω≀) ≤ 𭟋(ω2

≀ lim
σ→∞

supBḃ(ß̃ȷ̇(σ)+1
, ß̃ṗ(σ)+1

))

= lim
σ→∞

sup𭟋(ω2
≀ Bḃ(ß̃ȷ̇(σ)+1

, ß̃ṗ(σ+1
))

≤ lim
σ→∞

sup𭟋(M(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

))

− lim
σ→∞

supϕ(Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

))

= 𭟋( lim
σ→∞

supM(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

))

− lim
σ→∞

supϕ(Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

))

≤ 𭟋( lim
σ→∞

supM(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

))

− lim
σ→∞

inf ϕ(Bḃ(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

))

< 𭟋( lim
σ→∞

supM(ß̃ȷ̇(σ)
, ß̃ṗ(σ)

)) ≤ 𭟋(ω≀ξ).

Therefore, the sequence {ß̃ṗ} forms an orthogonal Cauchy
sequence in ℧.

Due to the completeness of (℧,⊥,Bḃ), there exist æ ∈ ℧
such that

lim
ṗ→∞

Bḃ(ß̃ṗ,æ) = 0.

Currently, we demonstrate that Bḃ(Wæ,æ) = 0 by apply-
ing a proof by contradiction.

We consider that

Bḃ(Wæ,æ) > 0.

Since ß̃ṗ → æ, as ṗ → ∞. ∀ ṗ ∈ N, we can deduce from
Lemma 4, we get

1

ω≀
Bḃ(æ,Wæ) ≤ lim

ṗ→∞
supBḃ(W ß̃ṗ,Wæ)

≤ ω≀Bḃ(æ,Wæ).

(19)

Now, applying (1) with ß̃ = ß̃ṗ and ∝= æ, we have

𭟋(ω2
≀ Bḃ(W ß̃ṗ,Wæ)) ≤ 𭟋(M(ß̃ṗ,æ))− ϕ(Bḃ(ß̃ṗ,æ)),

∀ ṗ ∈ N, where

M(ß̃ṗ,æ) = max{Bḃ(ß̃ṗ,æ),Bḃ(ß̃ṗ,W ß̃ṗ),Bḃ(æ,Wæ),

Bḃ(æ,W ß̃ṗ)},

and
lim
ṗ→∞

supmax{Bḃ(ß̃ṗ,æ),Bḃ(ß̃ṗ,W ß̃ṗ),Bḃ(æ,Wæ),

Bḃ(æ,W ß̃ṗ)} = Bḃ(æ,Wæ). (20)
Therefore,

𭟋(ω2
≀ Bḃ(W ß̃ṗ,Wæ)) ≤ 𭟋(max{Bḃ(ß̃ṗ,æ),Bḃ(ß̃ṗ,W ß̃ṗ),

Bḃ(æ,Wæ),Bḃ(æ,W ß̃ṗ)})− ϕ(Bḃ(ß̃ṗ,æ)). (21)

By letting ṗ → ∞ in inequality (21), and utilizing
equations (19) and (20), along with the contraction of 𭟋,
we obtain

𭟋[ω2
≀
1

ω≀
Bḃ(æ,Wæ)] = 𭟋[ω≀Bḃ(æ,Wæ)]

≤ 𭟋[ω2
≀ lim
ṗ→∞

supBḃ(W ß̃ṗ,Wæ)]

= lim
ṗ→∞

sup𭟋[ω2
≀ Bḃ(W ß̃ṗ,Wæ)]

≤ lim
ṗ→∞

sup𭟋(M(ß̃ṗ,æ))− lim
ṗ→∞

supϕ(Bḃ(ß̃ṗ,æ))

= 𭟋(Bḃ(Wæ,æ))− lim
ṗ→∞

inf ϕ(Bḃ(ß̃ṗ,æ))

< 𭟋(Bḃ(æ,Wæ)).

Since 𭟋 is increasing, we get

ω≀Bḃ(æ,Wæ) < Bḃ(æ,Wæ).

This implies that

Bḃ(æ,Wæ)(ω≀ − 1) < 0 → ω≀ < 1.

It is a contradiction.
Therefore, Wæ = æ.
Uniqueness: Assume that æ and q in ℧ are distinct fixed

points of W such that q ̸= æ.
Hence, we get

Bḃ(æ, q) = Bḃ(Wæ,Wq) > 0.

By choice of ß̃∗, we obtain

(ß̃∗ ⊥ q, ß̃∗ ⊥ æ) or (q ⊥ ß̃∗, æ ⊥ ß̃∗).

Since W is ⊥-preserving, we have

(W ṗß̃∗ ⊥ W ṗq, W ṗß̃∗ ⊥ W ṗæ) or

(W ṗq ⊥ W ṗß̃∗, W ṗæ ⊥ W ṗß̃∗), ∀ ṗ ∈ N.

Since W is an orthogonal (ϕ,𭟋)-contraction of a
map type, and applying (1) with ß̃ = æ and ∝= q, we
obtain

𭟋(Bḃ(æ, q)) = 𭟋(Bḃ(Wq,Wæ)) ≤ 𭟋(ω2
≀ Bḃ(Wq,Wæ))

≤ 𭟋(M(æ, q))− ϕ(Bḃ(æ, q)),

where
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M(æ, q) = max{Bḃ(æ, q),Bḃ(æ,Wæ),Bḃ(q,Wq),

Bḃ(q,Wæ)}
= Bḃ(æ, q).

Therefore, we get

𭟋(Bḃ(æ, q)) ≤ 𭟋(Bḃ(æ, q))− ϕ(Bḃ(æ, q)) < 𭟋(Bḃ(æ, q)).

This implies that
Bḃ(æ, q) < Bḃ(æ, q),

which is a contradiction.
Hence, æ = q.

Corollary 1. Let (℧,⊥,Bḃ) be an orthogonal complete BbMS
and W : ℧ → ℧ be a given map. Assume that there exists
𭟋 ∈ χ and τ ∈ (0,∞) such that for any ß̃,∝∈ ℧ with ß̃ ⊥∝,
we obtain

BḃW ß̃,W ∝) > 0 →
𭟋[ω2

≀ Bḃ(W ß̃,W ∝)] + τ ≤ [𭟋(M(ß̃,∝))],

where
M(ß̃,∝) = max{Bḃ(ß̃,∝),Bḃ(ß̃,W ß̃),Bḃ(∝,W ∝),

Bḃ(W ß̃,∝)}.
Then, W has a unique fixed point.

Expanding on Theorem 1, we establish fixed-point the-
orems for orthogonal (ϕ,𭟋)-Kannan type and Reich type
contraction maps.

Theorem 2. Let (℧,⊥,Bḃ) be an orthogonal complete
BbMS, and W : ℧ → ℧ be an orthogonal (ϕ,𭟋)-Kannan
contraction map of a map type. Then, W has a unique fixed
point.

Proof: According to the concept of orthogonality, if
(℧,⊥) is an orthogonal set, then there exist

ß̃0 ∈ ℧ : ∀ ß̃ ∈ ℧, ß̃ ⊥ ß̃0 (or) ∀ ß̃ ∈ ℧, ß̃0 ⊥ ß̃.

It follows that ß̃0 ⊥ W ß̃0 or W ß̃0 ⊥ ß̃0. Let

ß̃1 = W ß̃0, ß̃2 = W ß̃1 = W2ß̃0 · · · ß̃ṗ = W ß̃ṗ−1 = W ṗß̃0,

ß̃ṗ+1 = W ß̃ṗ = W ṗ+1ß̃0, ∀ ṗ ∈ N.

For any ß̃0 ∈ ℧, set ß̃ṗ = W ß̃ṗ−1.
Now, let us consider ß̃ṗ = ß̃ṗ+1, then we have W ß̃ṗ = ß̃ṗ.
It is easy to see that ß̃ṗ is a fixed point of W .
Therefore, completing the proof.
If ß̃ṗ ̸= ß̃ṗ+1 for any ṗ ∈ N ∪ {0}, then we have

Bḃ(ß̃ṗ+1, ß̃ṗ) > 0 for each ṗ ∈ N.
Since W is ⊥-preserving, we have

ß̃ṗ ⊥ ß̃ṗ+1 (or) ß̃ṗ+1 ⊥ ß̃ṗ.

This implies that {ß̃ṗ} is an O-sequence.
Since W is an orthogonal (ϕ,𭟋)-Kannan contraction map

of type, there exists 𭟋 ∈ χ and ϕ ∈ Π such that

𭟋[ω2
≀ Bḃ(W ß̃,W ∝)] + ϕ(Bḃ(ß̃,∝))

≤ 𭟋
(Bḃ(W ß̃, ß̃) + Bḃ(W ∝,∝)

2

)
≤ 𭟋(max{Bḃ(ß̃,W ß̃),Bḃ(∝,W ∝)})
≤ 𭟋(max{Bḃ(ß̃,∝),Bḃ(ß̃,W ß̃),

Bḃ(∝,W ∝),Bḃ(∝,W ß̃)}).
Therefore, W is an orthogonal (ϕ,𭟋)-contraction map

type.

As shown in the proof of Theorem 1, we conclude that W
has a unique fixed point.

Theorem 3. Let (℧,⊥,Bḃ) be an orthogonal complete BbMS,
and let W : ℧ → ℧ be an orthogonal (ϕ,𭟋)-Reich
contraction map of type. Then, W has a unique fixed point.

Proof: According to the concept of orthogonality, if
(℧,⊥) is an orthogonal set, then there exist

ß̃0 ∈ ℧ : ß̃ ⊥ ß̃0 (or) ß̃0 ⊥ ß̃, ∀ ß̃ ∈ ℧.

It follows that ß̃0 ⊥ W ß̃0 or W ß̃0 ⊥ ß̃0. Let

ß̃1 = W ß̃0, ß̃2 = W ß̃1 = W2ß̃0 · · · ß̃ṗ = W ß̃ṗ−1 = W ṗß̃0,

ß̃ṗ+1 = W ß̃ṗ = W ṗ+1ß̃0, ∀ ṗ ∈ N.

For any ß̃0 ∈ ℧, set ß̃ṗ = W ß̃ṗ−1.
Now, let us consider ß̃ṗ = ß̃ṗ+1.
In this case, we have W ß̃ṗ = ß̃ṗ, indicating that ß̃ṗ is a

fixed point of W .
Thus, we complete the proof.
Alternatively, if ß̃ṗ ̸= ß̃ṗ+1 for every ṗ ∈ N∪ {0}, then we

conclude that Bḃ(ß̃ṗ+1, ß̃ṗ) > 0, for any ṗ ∈ N.
Since W is ⊥-preserving, we obtain

ß̃ṗ ⊥ ß̃ṗ+1 (or) ß̃ṗ+1 ⊥ ß̃ṗ,

which implies that {ß̃ṗ} is an O-sequence.
Since W is an orthogonal (ϕ,𭟋)-Reich contraction map

of type, there exists 𭟋 ∈ χ and ϕ ∈ Π such that
𭟋[ω2

≀ Bḃ(W ß̃,W ∝)] + ϕ(Bḃß̃,∝))

≤ 𭟋(
Bḃ(ß̃,∝) + Bḃ(W ß̃, ß̃) + Bḃ(W ∝,∝)

3
)

≤ 𭟋(max{Bḃ(ß̃,∝),Bḃ(ß̃,W ß̃),

Bḃ(∝,W ∝),Bḃ(∝,W ß̃)}).

Therefore, W is (ϕ,𭟋)-contraction map of type (χ).
Following a demonstration related to the proof of Theorem

1, we deduce that there exists only one fixed point for W .

Example 4. Consider the space ℧ = H ∪ Y , where
H = {0, 1

2 ,
1
3 ,

1
4} and Y = [1, 4], equipped with the

Branciari b-metric Bḃ on R+.
Let the orthogonal relation ⊥ on ℧ be defined by ß̃ ⊥∝

if ß̃,∝≥ 0 for all ß̃,∝∈ ℧.
Define Bḃ : ℧× ℧ → (0,∞) as

Bḃ(ß̃,∝) = |ß̃− ∝ |2.

Then, (℧,⊥,Bḃ) is an orthogonal BbMS with coefficient
ω≀ = 3.

Define the map W : ℧ → ℧ by

W(ß̃) =

{
1 if ß̃ ∈ [1, 4]

2 if ß̃ ∈ H.

Clearly, W is an ⊥-preserving.
Let us consider 𭟋(β) = ln(

√
β), ϕ(β) = 1

2+β .
It is obvious that 𭟋 ∈ χ and ϕ ∈ Π.
Consider ß̃ = 4,∝= 0 we get

W(ß̃) = 1, W(∝) = 2, Bḃ(W ß̃,W ∝) = (1− 2)2 = 1,

Bḃ(ß̃,∝) = 16, Bḃ(ß̃,W ß̃) = 9, Bḃ(∝,W ∝) = 4,

Bḃ(∝,W ß̃) = 1.

On the other hand
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𭟋[ω2
≀ Bḃ(W ß̃,W ∝)] = ln(3),

ϕ[Bḃ(ß̃,∝)] =
1

2 + Bḃ(ß̃,∝)
,

and
M(ß̃,∝) = max{Bḃ(ß̃,∝),Bḃ(ß̃,W ß̃),Bḃ(∝,W ∝),

Bḃ(∝,W ß̃)}
= Bḃ(ß̃,∝) = 16.

Now, from (1), we obtain

𭟋[ω2
≀ Bḃ(W ß̃,W ∝)] + ϕ[Bḃ(ß̃,∝)] ≤ 𭟋[M(ß̃,∝))]

ln(3) +
1

2 + Bḃ(ß̃,∝)
≤ ln(4)

1.0986 + 0.0555 ≤ 1.3862

1.1536 ≤ 1.3862.

Thus, for all ß̃ ∈ [1, 4] and ∝∈ H, we have

𭟋[ω2
≀ Bḃ(W ß̃,W ∝)] + ϕ[Bḃ(ß̃,∝)] ≤ 𭟋[Bḃ(ß̃,∝)].

Clearly, W is O-continuous with æ = 1.
Therefore, condition (1) is fulfilled, and W has a fixed

point.

IV. APPLICATIONS

By utilizing Theorem 1, we demonstrate the existence and
uniqueness of the solution for the following integral equation:

ß̃(β) = λ

∫ ϑ

γ

K(β, δ, ß̃(δ))Bḃδ, (22)

where γ, ϑ ∈ R, ß̃ ∈ C([γ, ϑ],R) and K : [γ, ϑ]2 × R → R is
a given continuous function.
Theorem 5. Assume that the kernel function K satisfies the
condition
|K(β, δ, ß̃(δ))−K(β, δ,∝ (δ))|

≤ 1
ω≀
√
ω2
≀

e
− 1

|ß̃(β)−∝(β)|+1 (|ß̃(β)− ∝ (β)|),

for all β, δ ∈ [γ, ϑ] and ß̃,∝∈ R, then the equation (22)
has a unique solution ß̃ ∈ C([γ, ϑ]) for some parameter λ,
determined by the constants γ, ϑ, and ω≀.

Proof: Define the binary relation ⊥ on ℧ by
ß̃ ⊥∝ ⇐⇒ ß̃(β) ∝ (β) ≥ ß̃(β) or ß̃(β) ∝ (β) ≥∝ (β),

for all β ∈ [0, 1].
Define a function Bḃ : ℧× ℧ → [0,∞) by

Bḃ(ß̃,∝) = ( max
β∈[γ,ϑ]

|ß̃(β)− ∝ (β)|)ω≀ , ∀ ß̃,∝∈ ℧,

It is evident that (℧,⊥,Bḃ) forms an orthogonal complete
BbMS.

Now, let us define a map W : ℧ → ℧ as follows:

W(ß̃(β)) = λ

∫ ϑ

γ

K(β, δ, ß̃(δ))Bḃδ.

Now, we prove that W is ⊥-preserving.
For every ß̃,∝∈ ℧ with ß̃ ⊥∝ and β ∈ ℧, we obtain

W(ß̃(β)) = λ

∫ ϑ

γ

K(β, δ, ß̃(δ)) ≥ 1.

It follows that [(W ß̃)(β)][(W ∝)(β)] ≥ (W ∝)(β) and
so (W ß̃)(β) ⊥ (W ∝)(β).

Thus, W is ⊥-preserving.
Then, we get

|W ß̃(β)−W ∝ (β)|ω≀

= |λ|ω≀
(∣∣∣ ∫ ϑ

γ

K(β, δ, ß̃(δ))Bḃδ

−
∫ ϑ

γ

K(β, δ,∝ (δ))Bḃδ
∣∣∣)ω≀

= |λ|ω≀
∣∣∣ ∫ ϑ

γ

K(β, δ, ß̃(δ))−K(β, δ,∝ (δ))Bḃδ
∣∣∣ω≀

≤ |λ|ω≀

∫ ϑ

γ

|K(β, δ, ß̃(δ))−K(β, δ,∝ (δ))Bḃδ|ω≀

≤ |λ|ω≀

∫ ϑ

γ

( 1
ω≀
√
ω2
≀

e
− 1

|ß̃(δ)−∝(δ)|+1

(|ß̃(δ)| − | ∝ (δ)|)Bḃδ
)ω≀

=
1

ω2
≀
|λ|ω≀

∫ ϑ

γ

(e
− 1

|ß̃(δ)−∝(δ)|+1

(|ß̃(δ)| − | ∝ (δ)|)Bḃδ)
ω≀ ,

which implies that

max
β∈[γ,ϑ]

(|W ß̃(β)−W ∝ (β)|)

= max
β∈[γ,ϑ]

1

ω2
≀
|λ|ω≀

∫ ϑ

γ

|K(β, δ, ß̃(δ))

−K(β, δ,∝ (δ))Bḃδ|ω≀

≤ max
β∈[γ,ϑ]

1

ω2
≀
|λ|ω≀

∫ ϑ

γ

(e
− 1

|ß̃(δ)−∝(δ)|+1

(|ß̃(δ)− ∝ (δ)|)Bḃδ)
ω≀

≤ |λ|ω≀
1

ω2
≀

∫ ϑ

γ

(e
−maxδ∈[γ,ϑ]

1
|ß̃(δ)−∝(δ)|+1

( max
δ∈[γ,ϑ]

|ß̃(δ)− ∝ (δ)|)Bḃδ)
ω≀ .

Due to the definition of the orthogonal BbMS, we have

Bḃ(W ß̃,W ∝) > 0, and for any ß̃ ̸=∝ .

Subsequently, we can apply the natural logarithm to both
sides and obtain

ln[ω2
≀ Bḃ(W ß̃,W ∝)]

≤ ln[|λ|ω≀

∫ ϑ

γ

(e
−maxδ∈[γ,ϑ]

1
|ß̃(δ)−∝(δ)|+1

( max
δ∈[γ,ϑ]

|ß̃(δ)− ∝ (δ)|)Bḃδ)
ω≀ ]

= ln[((ϑ− γ)|λ|)ω≀ ] + ln[

∫ ϑ

γ

(e
−maxδ∈[γ,ϑ]

1
|ß̃(δ)−∝(δ)|+1

( max
δ∈[γ,ϑ]

|ß̃(δ)− ∝ (δ)|)Bḃδ)]
ω≀

= ln[((ϑ− γ)|λ|)ω≀ ] + ln((e
−maxβ∈[γ,ϑ]

1
|ß̃(β)−∝(β)|+1 )ω≀)

+ ln[

∫ ϑ

γ

(( max
δ∈[γ,ϑ]

|ß̃(δ)− ∝ (δ)|)Bḃδ)
ω≀ ]

= ω≀. ln[(ϑ− γ)|λ|]− 1

maxβ∈[γ,ϑ] |ß̃(β)− ∝ (β)|+ 1

+ ln[

∫ ϑ

γ

(( max
δ∈[γ,ϑ]

|ß̃(δ)− ∝ (δ)|)Bḃδ)
ω≀ ].

Let |λ|(ϑ− γ) ≤ 1
eω≀ , we get
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ln[ω2
≀ Bḃ(W ß̃,W ∝)] ≤ − 1

Bḃ(ß̃,∝) + 1
+ ln(Bḃ(ß̃,∝))

≤ − 1

Bḃ(ß̃,∝) + 1
+ ln(Bḃ(ß̃,∝)).

Hence,

𭟋(ω2
≀ Bḃ(W ß̃,W ∝)) + ϕ(Bḃ(ß̃,∝)) ≤ 𭟋(Bḃ(ß̃,∝)),

for all ß̃,∝∈ ℧ with 𭟋(β) = ln(β) and ϕ(β) = 1
β+1 .

Therefore, all the conditions of Theorem 1 are satisfied.
Hence, there is a unique solution to equation (22).

Example 6. Consider the nonlinear integral equation as
follows:

ß̃(β) = λ

∫ η

0

K(β, δ, ß̃(δ))dδ, β ∈ [0, η], 0 ≤ η ≤ 1.

Here,

ß̃(β) = 2

∫ η

0

e2β−2δ ß̃(δ)dδ, ∀ 0 ≤ η ≤ 1. (23)

Let us take K(β, δ, ß̃(δ)) = e2β as the exact solution (E.
S) to equation (23) is determined.

Consequently, the absolute solution to the provided equa-
tion is 2βe2β for β > 0.

A given table shows the numerical results as below:

TABLE I: NUMERIC SOLUTIONS

Iteration A. S E. S Absolute Error

0.1 1.2214 0.2443 0.9771

0.2 1.4918 0.5967 0.8951

0.3 1.8221 1.0932 0.7289

0.4 2.2255 1.7804 0.5072

0.5 2.7183 2.7183 0.0000

0.6 3.3201 3.9841 0.6640

0.7 4.0552 5.6773 1.6221

0.8 4.9530 7.9249 2.9719

0.9 6.0496 10.8894 4.8398

1.0 7.3891 14.7781 7.3890

Table I shows that the fixed point of β is 0.5, and
it is unique.

Comparison between approximate solution (A. S) and
exact solution (E. S) shown in following Figure 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X = Iteration

0

5

10

15

Y
 =

 S
o

lu
ti
o

n
s
 

Approximate Solution

Exact Solution

X: 0.5

Y: 2.718

Fig. 1: shows that the fixed point of β is 0.5, which is
unique.

V. CONCLUSIONS

In this article, we demonstrate several fixed-point theorems
using distinct types of orthogonal (ϕ, 𭟋̂)-contraction maps
in an orthogonal complete BbMS. Our work expands upon
and improves upon various recent results. Additionally, we
provide an illustrative example to support our main findings
and demonstrate an application of integral equations in
resolving issues of existence and uniqueness, along with a
comparison between analytical and numerical solutions.
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